Skip to main content

An In Vivo Compression Model of Spinal Cord Injury

  • Protocol
  • First Online:
Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1727))

Abstract

Animal spinal cord injury (SCI) models have proven highly useful for investigating the mechanisms involved in the injury process and evaluating the effectiveness of experimental therapeutic interventions. Over the last years, substantial improvements have been made in producing consistent and reproducible animal SCI models. Different SCI models have been developed to address the mechanism of injury, being divided into contusion, compression, distraction, dislocation, transection, or chemical models. The method described here is a mouse compression model of SCI that, in many respects, faithfully reproduces SCI in man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Statistical Center (NSCIS). Spinal cord injury facts and figures at a glance. http://www.nscisc.uab.edu/PublicDocuments/nscisc_home/pdf/Facts_2011_Fe_Final.pdf. Accessed Feb 2011

  2. Paterniti I, Campolo M, Cordaro M, Impellizzeri D, Siracusa R, Crupi R et al (2016) PPAR-alpha modulates the anti-inflammatory effect of melatonin in the secondary events of spinal cord injury. Mol Neurobiol., in press. https://doi.org/10.1007/s12035-016-0131-9

  3. Cordaro M, Paterniti I, Siracusa R, Impellizzeri D, Esposito E, Cuzzocrea S (2017) KU0063794, a dual mTORC1 and mTORC2 inhibitor, reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. Mol Neurobiol 54:2415–2427

    Article  CAS  PubMed  Google Scholar 

  4. Esposito E, Cuzzocrea S (2011) Anti-TNF therapy in the injured spinal cord. Trends Pharmacol Sci 32:107–115

    Article  CAS  PubMed  Google Scholar 

  5. Genovese T, Mazzon E, Di Paola R, Crisafulli C, Muià C, Bramanti P et al (2006) Increased oxidative-related mechanisms in the spinal cord injury in old rats. Neurosci Lett 393:141–146

    Article  CAS  PubMed  Google Scholar 

  6. Andres RH, Meyer M, Ducray AD, Widmer HR (2008) Restorative neuroscience: concepts and perspectives. Swiss Med Wkly 138:155–172

    PubMed  Google Scholar 

  7. Marbacher S, Andres RH, Fathi AR, Fandino J (2008) Primary reconstruction of open depressed skull fractures with titanium mesh. J Craniofac Surg 19:490–495

    Article  PubMed  Google Scholar 

  8. Blight AR, Tuszynski MH (2006) Clinical trials in spinal cord injury. J Neurotrauma 23:586–593

    Article  PubMed  Google Scholar 

  9. Marques SA, Garcez VF, Del Bel EA, Martinez AM (2009) A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment. J Neurosci Methods 177:183–193

    Article  PubMed  Google Scholar 

  10. Rivlin AS, Tator CH (1978) Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 10:38–43

    CAS  PubMed  Google Scholar 

  11. Blight AR (2000) Animal models of spinal cord injury. Top Spinal Cord Inj Rehabil 6(2):1–13

    Article  Google Scholar 

  12. Nout YS, Rosenzweig ES, Brock JH, Strand SC, Moseanko R, Hawbecker S et al (2012) Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury. Neurotherapeutics 9:380–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Genovese T, Mazzon E, Muià C, Bramanti P, De Sarro A, Cuzzocrea S (2005) Attenuation in the evolution of experimental spinal cord trauma by treatment with melatonin. J Pineal Res 38:198–208

    Article  CAS  PubMed  Google Scholar 

  14. Genovese T, Melani A, Esposito E, Paterniti I, Mazzon E, Di Paola R et al (2010) Selective adenosine A(2a) receptor agonists reduce the apoptosis in an experimental model of spinal cord trauma. J Biol Regul Homeost Agents 24:73–86

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cuzzocrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paterniti, I., Esposito, E., Cuzzocrea, S. (2018). An In Vivo Compression Model of Spinal Cord Injury. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics