Skip to main content

Liposomes Came First: The Early History of Liposomology

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1522))

Abstract

It has been a long journey from Pliny the Elder (23–79 AD) to the FDA approval of the first injectable Nanomedicine in 1997. It has been a journey powered by intellectual curiosity, which began with sprinkling olive oil on seawater and culminated in playing around with smears of egg lecithin on microscopic slides. This brief review highlights how a few pairs of gifted hands attached to highly motivated brains have launched Liposome Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eichman P (2015) From the Lipid Bilayer to the Fluid Mosaic: A Brief History of Membrane Models. http://www1.umn.edu/ships/9-2/membrane.htm. Accessed 26 May 2015

  2. Tanford C (2004) Ben Franklin stilled the waves. Oxford University Press, Oxford

    Google Scholar 

  3. Langmuir I (1917) The constitution and structural properties of solids and liquids. II. Liquids. J Am Chem Soc 39:1848–1906

    Article  CAS  Google Scholar 

  4. Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Danielli JF (1935) The thickness of the wall of the Red blood corpuscle. J Gen Physiol 19:19–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singer SJ (1972) A fluid lipid-globular protein mosaic model of membrane structure. Ann N Y Acad Sci 195:16–23

    Article  CAS  PubMed  Google Scholar 

  7. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  8. Sjostrand FS, Andersson-Cedergren E, Dewey MM (1958) The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res 1:271–287

    Article  CAS  PubMed  Google Scholar 

  9. Robertson JD (1960) The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol 10:343–418

    CAS  PubMed  Google Scholar 

  10. Bangham AD (1989) The first description of liposomes. Curr Content 13:14

    Google Scholar 

  11. Mueller P, Rudin DO, Tien HT, Wescott WC (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980

    Article  CAS  PubMed  Google Scholar 

  12. Beerlink A, Wilbrandt PJ, Ziegler E, Carbone D, Metzger TH, Salditt T (2008) X-ray structure analysis of free-standing lipid membranes facilitated by micromachined apertures. Langmuir 24:4952–4958

    Article  CAS  PubMed  Google Scholar 

  13. Malmstadt N, Jeon TJ, Schmidt JJ (2007) Long-lived planar lipid bilayer membranes anchored to an in situ polymerized hydrogel. Adv Mater 20:84–89

    Article  CAS  Google Scholar 

  14. Deamer DW (2010) From “banghasomes” to liposomes: a memoir of Alec Bangham, 1921–2010. FASEB J 24:1308–1310

    Article  CAS  PubMed  Google Scholar 

  15. Hargreaves WR, Mulvihill SJ, Deamer DW (1977) Synthesis of phospholipids and membranes in prebiotic conditions. Nature 266:78–80

    Article  CAS  PubMed  Google Scholar 

  16. Deamer DW, Pashley RM (1989) Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig Life Evol Biosph 19:21–38

    Article  CAS  PubMed  Google Scholar 

  17. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  CAS  PubMed  Google Scholar 

  18. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  PubMed  Google Scholar 

  19. Bangham AD, Standish MM, Weissmann G (1965) The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol 13:253–259

    Article  CAS  PubMed  Google Scholar 

  20. Sessa G, Weissmann G (1968) Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res 9:310–318

    CAS  PubMed  Google Scholar 

  21. Papahadjopoulos D, Bangham AD (1966) Biophysical properties of phospholipids. II. Permeability of phosphatidylserine liquid crystals to univalent ions. Biochim Biophys Acta 126:185–188

    Article  CAS  PubMed  Google Scholar 

  22. Bangham AD, Papahadjopoulos D (1966) Biophysical properties of phospholipids. I. Interaction of phosphatidylserine monolayers with metal ions. Biochim Biophys Acta 126:181–184

    Article  CAS  PubMed  Google Scholar 

  23. Bangham AD, Standish MM, Watkins JC, Weissmann G (1967) The diffusion of ions from a phospholipid model membrane system. Protoplasma 63:183–187

    Article  CAS  PubMed  Google Scholar 

  24. Bangham AD, Greville GD (1967) Osmotic properties and water permeability of phospholipid crystals. Chem Phys Lipids 1:225–246

    Article  CAS  Google Scholar 

  25. Bangham AD, Hill MW, Miller NG (1974) Preparation and use of liposomes as models of biological membranes. In: Korn ED (ed) Methods in membrane biology, vol 1. Plenum Press, New York, pp 1–68

    Chapter  Google Scholar 

  26. Chan YH, Boxer SG (2007) Model membrane systems and their applications. Curr Opin Chem Biol 11:581–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fahr A, Liu X (2010) Utilization of liposomes for studying drug transfer and uptake. Methods Mol Biol 606:1–10

    Article  CAS  PubMed  Google Scholar 

  28. Reed JR (2010) The use of liposomes in the study of drug metabolism: a method to incorporate the enzymes of the cytochrome p450 monooxygenase system into phospholipid, bilayer vesicles. Methods Mol Biol 606:11–20

    Article  CAS  PubMed  Google Scholar 

  29. Kramer R, Nicklisch S, Ott V (2010) Use of liposomes to study cellular osmosensors. Methods Mol Biol 606:21–30

    Article  PubMed  CAS  Google Scholar 

  30. Martinac B, Rohde PR, Battle AR, Petrov E, Pal P, Foo AF, Vasquez V, Huynh T, Kloda A (2010) Studying mechanosensitive ion channels using liposomes. Methods Mol Biol 606:31–53

    Article  CAS  PubMed  Google Scholar 

  31. Indiveri C (2010) Studying amino acid transport using liposomes. Methods Mol Biol 606:55–68

    Article  CAS  PubMed  Google Scholar 

  32. Hofer CT, Herrmann A, Muller P (2010) Use of liposomes for studying interactions of soluble proteins with cellular membranes. Methods Mol Biol 606:69–82

    Article  PubMed  CAS  Google Scholar 

  33. MirAfzali Z, DeWitt DL (2010) Liposomal reconstitution of monotopic integral membrane proteins. Methods Mol Biol 606:83–94

    Article  CAS  PubMed  Google Scholar 

  34. Stamnes M, Xu W (2010) The reconstitution of actin polymerization on liposomes. Methods Mol Biol 606:95–103

    Article  CAS  PubMed  Google Scholar 

  35. Montes LR, Ahyayauch H, Ibarguren M, Sot J, Alonso A, Bagatolli LA, Goni FM (2010) Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions. Methods Mol Biol 606:105–114

    Article  CAS  PubMed  Google Scholar 

  36. Nantes IL, Kawai C, Pessoto FS, Mugnol KC (2010) Study of respiratory cytochromes in liposomes. Methods Mol Biol 606:147–165

    Article  CAS  PubMed  Google Scholar 

  37. Brittes J, Lucio M, Nunes C, Lima JL, Reis S (2010) Effects of resveratrol on membrane biophysical properties: relevance for its pharmacological effects. Chem Phys Lipids 163:747–754

    Article  CAS  PubMed  Google Scholar 

  38. Lucio M, Lima JL, Reis S (2010) Drug-membrane interactions: significance for medicinal chemistry. Curr Med Chem 17:1795–1809

    Article  CAS  PubMed  Google Scholar 

  39. Reis S, Lucio M, Segundo M, Lima JL (2010) Use of liposomes to evaluate the role of membrane interactions on antioxidant activity. Methods Mol Biol 606:167–188

    Article  CAS  PubMed  Google Scholar 

  40. Sabin J, Prieto G, Sarmiento F (2010) Studying colloidal aggregation using liposomes. Methods Mol Biol 606:189–198

    Article  CAS  PubMed  Google Scholar 

  41. Broecker J, Keller S (2010) Membrane translocation assayed by fluorescence spectroscopy. Methods Mol Biol 606:271–289

    Article  CAS  PubMed  Google Scholar 

  42. Fiedler S, Broecker J, Keller S (2010) Protein folding in membranes. Cell Mol Life Sci 67:1779–1798

    Article  CAS  PubMed  Google Scholar 

  43. Takei K, Yamada H, Abe T (2010) Use of liposomes to study vesicular transport. Methods Mol Biol 606:531–542

    Article  CAS  PubMed  Google Scholar 

  44. Raguz M, Mainali L, Widomska J, Subczynski WK (1808) The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes. Biochim Biophys Acta 2011:1072–1080

    Google Scholar 

  45. Subczynski WK, Raguz M, Widomska J (2010) Studying lipid organization in biological membranes using liposomes and EPR spin labeling. Methods Mol Biol 606:247–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bangham AD, Hill MW (1986) The proton pump/leak mechanism of unconsciousness. Chem Phys Lipids 40:189–205

    Article  CAS  PubMed  Google Scholar 

  47. Johnson SM, Miller KW, Bangham AD (1973) The opposing effects of pressure and general anaesthetics on the cation permeability of liposomes of varying lipid composition. Biochim Biophys Acta 307:42–57

    Article  CAS  PubMed  Google Scholar 

  48. Miller KW (1983) Anaesthetized Liposomes. Academic, London

    Google Scholar 

  49. Ten Centre Study Group (1987) Ten centre trial of artificial surfactant (artificial lung expanding compound) in very premature babies. Br Med J (Clin Res Ed) 294:991–996

    Article  Google Scholar 

  50. Bangham A (2009) The physical chemistry of self/non-self: jigsaws, transplants and fetuses. FASEB J 23:3644–3646

    Article  CAS  PubMed  Google Scholar 

  51. Sessa G, Weissmann G (1970) Incorporation of lysozyme into liposomes. A model for structure-linked latency. J Biol Chem 245:3295–3301

    CAS  PubMed  Google Scholar 

  52. Gruener R, McArdle B, Ryman BE, Weller RO (1968) Contracture of phosphorylase deficient muscle. J Neurol Neurosurg Psychiatry 31:268–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leathwood PD, Ryman BE (1970) The use of skin biopsy in the diagnosis of the glycogen-storage diseases. Biochem J 117:34P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Palmer TN, Ryman BE, Whelan WJ (1968) The action pattern of amylomaltase. FEBS Lett 1:1–3

    Article  CAS  PubMed  Google Scholar 

  55. Leserman L (2008) The Gregoriadyssey: from smetic mesophases to liposomal drug carriers, a personal reflection of Gregory Gregoriadis. J Drug Target 16:525–528

    Article  CAS  PubMed  Google Scholar 

  56. Gregoriadis G (1983) How liposomes changed my life and got away with it. In: Bangham AD (ed) Liposome letters. Academic, London, pp 405–407

    Google Scholar 

  57. Gregoriadis G, Ryman BE (1971) Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J 124:58P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gregoriadis G, Leathwood PD, Ryman BE (1971) Enzyme entrapment in liposomes. FEBS Lett 14:95–99

    Article  CAS  PubMed  Google Scholar 

  59. Kirby C, Gregoriadis G (1984) Dehydration-rehydation vesicles: a simple method for high yield drug entrapment in liposomes. Biotechnology 2:979–984

    Article  CAS  Google Scholar 

  60. Antimisiaris SG (2010) Preparation of DRV liposomes. In: Weissig V (ed) Liposomes: methods and protocols, vol I. Springer Science+Business Media, Berlin, pp 51–75, Walker JM (Series Editor)

    Chapter  Google Scholar 

  61. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    Article  CAS  PubMed  Google Scholar 

  62. Blume G, Cevc G (1993) Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta 1146:157–168

    Article  CAS  PubMed  Google Scholar 

  63. Needham D, McIntosh TJ, Lasic DD (1992) Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta 1108:40–48

    Article  CAS  PubMed  Google Scholar 

  64. Barenholz Y (2012) Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134

    Article  CAS  PubMed  Google Scholar 

  65. Gregoriadis G, Ryman BE (1972) Lysosomal localization of -fructofuranosidase-containing liposomes injected into rats. Biochem J 129:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Allison AG, Gregoriadis G (1974) Liposomes as immunological adjuvants. Nature 252:252

    Article  CAS  PubMed  Google Scholar 

  67. Manesis EK, Cameron CH, Gregoriadis G (1978) Incorporation of hepatitis-B surface antigen (HBsAg) into liposomes. Biochem Soc Trans 6:925–928

    Article  CAS  PubMed  Google Scholar 

  68. Gregoriadis G, Davis D, Davies A (1987) Liposomes as immunological adjuvants: antigen incorporation studies. Vaccine 5:145–151

    Article  CAS  PubMed  Google Scholar 

  69. Gregoriadis G, Panagiotidi C (1989) Immunoadjuvant action of liposomes: comparison with other adjuvants. Immunol Lett 20:237–240

    Article  CAS  PubMed  Google Scholar 

  70. Gregoriadis G, Tan L, Ben-Ahmeida ET, Jennings R (1992) Liposomes enhance the immunogenicity of reconstituted influenza virus A/PR/8 envelopes and the formation of protective antibody by influenza virus A/Sichuan/87 (H3N2) surface antigen. Vaccine 10:747–753

    Article  CAS  PubMed  Google Scholar 

  71. Gregoriadis G, Wang Z, Barenholz Y, Francis MJ (1993) Liposome-entrapped T-cell peptide provides help for a co-entrapped B-cell peptide to overcome genetic restriction in mice and induce immunological memory. Immunology 80:535–540

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gregoriadis G, Saffie R, de Souza JB (1997) Liposome-mediated DNA vaccination. FEBS Lett 402:107–110

    Article  CAS  PubMed  Google Scholar 

  73. Gregoriadis G, McCormack B, Obrenovich M, Perrie Y (2000) Entrapment of plasmid DNA vaccines into liposomes by dehydration/rehydration. Methods Mol Med 29:305–311

    CAS  PubMed  Google Scholar 

  74. Gregoriadis G (2015) XENETIC Webpage. http://www.xeneticbio.com/about-us. Accessed 26 June 2015

  75. Gregoriadis G (2008) Liposome research in drug delivery: the early days. J Drug Target 16:520–524

    Article  CAS  PubMed  Google Scholar 

  76. Weissig V, Lasch J, Klibanov AL, Torchilin VP (1986) A new hydrophobic anchor for the attachment of proteins to liposomal membranes. FEBS Lett 202:86–90

    Article  CAS  PubMed  Google Scholar 

  77. Kung VT, Redemann CT (1986) Synthesis of carboxyacyl derivatives of phosphatidylethanolamine and use as an efficient method for conjugation of protein to liposomes. Biochim Biophys Acta 862:435–439

    Article  CAS  PubMed  Google Scholar 

  78. Tan L, Weissig V, Gregoriadis G (1991) Comparison of the immune response against polio peptides covalently-surface-linked to and internally-entrapped in liposomes. Asian Pac J Allergy Immunol 9:25–30

    CAS  PubMed  Google Scholar 

  79. Gregoriadis G, Neerunjun ED (1975) Treatment of tumour bearing mice with liponsome-entrapped actinomycin D prolongs their survival. Res Commun Chem Pathol Pharmacol 10:351–362

    CAS  PubMed  Google Scholar 

  80. Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine (second of two parts). N Engl J Med 295:765–770

    Article  CAS  PubMed  Google Scholar 

  81. Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine (first of two parts). N Engl J Med 295:704–710

    Article  CAS  PubMed  Google Scholar 

  82. Gregoriadis G (1978) Liposomes in the therapy of lysosomal storage diseases. Nature 275:695–696

    Article  CAS  PubMed  Google Scholar 

  83. D’Souza GG, Weissig V (2009) Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 6:1135–1148

    Article  PubMed  CAS  Google Scholar 

  84. Gregoriadis G (1977) Targeting of drugs. Nature 265:407–411

    Article  CAS  PubMed  Google Scholar 

  85. Milstein C, Kohler G (1977) Clonal variations of myelomatous cells (proceedings). Minerva Med 68:3453

    CAS  PubMed  Google Scholar 

  86. Kohler G, Pearson T, Milstein C (1977) Fusion of T and B cells. Somatic Cell Genet 3:303–312

    Article  CAS  PubMed  Google Scholar 

  87. Milstein C, Adetugbo K, Cowan NJ, Kohler G, Secher DS, Wilde CD (1977) Somatic cell genetics of antibody-secreting cells: studies of clonal diversification and analysis by cell fusion. Cold Spring Harb Symp Quant Biol 41(Pt 2):793–803

    Article  PubMed  Google Scholar 

  88. Heath TD, Fraley RT, Papahdjopoulos D (1980) Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab′)2 to vesicle surface. Science 210:539–541

    Article  CAS  PubMed  Google Scholar 

  89. Leserman LD, Barbet J, Kourilsky F, Weinstein JN (1980) Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 288:602–604

    Article  CAS  PubMed  Google Scholar 

  90. Huang A, Huang L, Kennel SJ (1980) Monoclonal antibody covalently coupled with fatty acid A reagent for in vitro liposome targeting. J Biol Chem 255:8015–8018

    CAS  PubMed  Google Scholar 

  91. Torchilin VP, Goldmacher VS, Smirnov VN (1978) Comparative studies on covalent and noncovalent immobilization of protein molecules on the surface of liposomes. Biochem Biophys Res Commun 85:983–990

    Article  CAS  PubMed  Google Scholar 

  92. Torchilin VP, Khaw BA, Smirnov VN, Haber E (1979) Preservation of antimyosin antibody activity after covalent coupling to liposomes. Biochem Biophys Res Commun 89:1114–1119

    Article  CAS  PubMed  Google Scholar 

  93. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Weissig V, Guzman-Villanueva D (2015) Nanopharmaceuticals (part 2): products in the pipeline. Int J Nanomedicine 10:1245–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Blume G, Cevc G, Crommelin MD, Bakker-Woudenberg IA, Kluft C, Storm G (1993) Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1149:180–184

    Article  CAS  PubMed  Google Scholar 

  96. Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A 85:6949–6953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Allen TM, Chonn A (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 223:42–46

    Article  CAS  PubMed  Google Scholar 

  98. Park YS, Maruyama K, Huang L (1992) Some negatively charged phospholipid derivatives prolong the liposome circulation in vivo. Biochim Biophys Acta 1108:257–260

    Article  CAS  PubMed  Google Scholar 

  99. Nandi PK, Legrand A, Nicolau C (1986) Biologically active, recombinant DNA in clathrin-coated vesicles isolated from rat livers after in vivo injection of liposome-encapsulated DNA. J Biol Chem 261:16722–16726

    CAS  PubMed  Google Scholar 

  100. Nicolau C (1984) Liposomes for gene transfer and expression in vivo. Biochem Soc Trans 12:349–350

    Article  CAS  PubMed  Google Scholar 

  101. Nicolau C, Cudd A (1989) Liposomes as carriers of DNA. Crit Rev Ther Drug Carrier Syst 6:239–271

    CAS  PubMed  Google Scholar 

  102. Nicolau C, Le Pape A, Soriano P, Fargette F, Juhel MF (1983) In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I. Proc Natl Acad Sci U S A 80:1068–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nicolau C, Legrand A, Grosse E (1987) Liposomes as carriers for in vivo gene transfer and expression. Methods Enzymol 149:157–176

    Article  CAS  PubMed  Google Scholar 

  104. Nicolau C, Legrand A, Soriano P (1984) Liposomes for gene transfer and expression in vivo. Ciba Found Symp 103:254–267

    CAS  PubMed  Google Scholar 

  105. Nicolau C, Rottem S (1982) Expression of a beta-lactamase activity in Mycoplasma capricolum transfected with the liposome-encapsulated E.coli pBR 322 plasmid. Biochem Biophys Res Commun 108:982–986

    Article  CAS  PubMed  Google Scholar 

  106. Nicolau C, Sene C (1982) Liposome-mediated DNA transfer in eukaryotic cells. Dependence of the transfer efficiency upon the type of liposomes used and the host cell cycle stage. Biochim Biophys Acta 721:185–190

    Article  CAS  PubMed  Google Scholar 

  107. Soriano P, Dijkstra J, Legrand A, Spanjer H, Londos-Gagliardi D, Roerdink F, Scherphof G, Nicolau C (1983) Targeted and nontargeted liposomes for in vivo transfer to rat liver cells of a plasmid containing the preproinsulin I gene. Proc Natl Acad Sci U S A 80:7128–7131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wong TK, Nicolau C, Hofschneider PH (1980) Appearance of beta-lactamase activity in animal cells upon liposome-mediated gene transfer. Gene 10:87–94

    Article  CAS  PubMed  Google Scholar 

  109. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Elbayoumi TA, Torchilin VP (2010) Current trends in liposome research. Methods Mol Biol 605:1–27

    Article  CAS  PubMed  Google Scholar 

  111. Weissig V (2010) Liposomes—methods and protocols. Preface. Methods Mol Biol v–vi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Weissig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Weissig, V. (2017). Liposomes Came First: The Early History of Liposomology. In: D'Souza, G. (eds) Liposomes. Methods in Molecular Biology, vol 1522. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6591-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6591-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6589-2

  • Online ISBN: 978-1-4939-6591-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics