Skip to main content

Membrane Translocation Assayed by Fluorescence Spectroscopy

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 606))

Abstract

Assessing the ability of biomolecules or drugs to overcome lipid membranes in a receptor-independent way is of great importance in both basic research and applications involving the use of liposomes. A combination of uptake, release, and dilution experiments performed by steady-state fluorescence spectroscopy provides a powerful, straightforward, and inexpensive way of monitoring membrane translocation of fluorescent compounds. This is particularly true for peptides and proteins carrying intrinsic tryptophan residues, which eliminates the need for attaching extrinsic labeling moieties to the compound of interest. The approach encompasses three different kinds of fluorescence titrations and some simple calculations that can be carried out in a spreadsheet program. A complete set of experiments and data analyses can typically be completed within two days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heerklotz HH, Binder H, Epand RM (1999) A “release” protocol for isothermal titration calorimetry. Biophys J 76:2606-2613

    Article  CAS  PubMed  Google Scholar 

  2. Heerklotz H, Seelig J (2000) Titration calorimetry of surfactant-membrane partitioning and membrane solubilization. Biochim Biophys Acta 1508:69-85

    Article  CAS  PubMed  Google Scholar 

  3. Heerklotz H (2004) The microcalorimetry of lipid membranes. J Phys Condens Matter 16:R441-R467

    Article  CAS  Google Scholar 

  4. Hagen V, Dekowski B, Nache V, Schmidt R, Geissler D, Lorenz D, Eichhorst J, Keller S, Kaneko H, Benndorf K, Wiesner B (2005) Coumarinylmethyl esters for ultrafast release of high concentrations of cyclic nucleotides upon one- and two-photon photolysis. Angew Chem Int Ed 44:7887-7891

    Article  CAS  PubMed  Google Scholar 

  5. Cambridge SB, Geissler D, Keller S, Cürten B (2006) A caged doxycycline analogue for photoactivated gene expression. Angew Chem Int Ed 45:2229-2231

    Article  CAS  PubMed  Google Scholar 

  6. Gilbert D, Funk K, Dekowski B, Lechler R, Keller S, Möhrlen F, Frings S, Hagen V (2007) Caged capsaicins: new tools for the examination of TRPV1 channels in somatosensory neurons. ChemBioChem 8:89-97

    Article  CAS  PubMed  Google Scholar 

  7. Heerklotz H, Szadkowska H, Anderson T, Seelig J (2003) The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J Mol Biol 329:793-799

    Article  CAS  PubMed  Google Scholar 

  8. Tsamaloukas A, Szadkowska H, Slotte PJ, Heerklotz H (2005) Interactions of cholesterol with lipid membranes and cyclodextrin characterized by calorimetry. Biophys J 89:1109-1119

    Article  CAS  PubMed  Google Scholar 

  9. Tsamaloukas A, Szadkowska H, Heerklotz H (2006) Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins. Biophys J 90:4479-4487

    Article  CAS  PubMed  Google Scholar 

  10. Keller S, Heerklotz H, Blume A (2006) Monitoring lipid membrane translocation of sodium dodecyl sulfate by isothermal titration calorimetry. J Am Chem Soc 128:1279-1286

    Article  CAS  PubMed  Google Scholar 

  11. Keller S, Böthe M, Bienert M, Dathe M, Blume A (2007) A simple fluorescence-spectroscopic membrane translocation assay. ChemBioChem 8:546-552

    Article  CAS  PubMed  Google Scholar 

  12. Tsamaloukas AD, Keller S, Heerklotz H (2007) Uptake and release protocol for assessing membrane binding and permeation by way of isothermal titration calorimetry. Nat Protoc 2:695-704

    Article  CAS  PubMed  Google Scholar 

  13. Bárány-Wallje E, Keller S, Serowy S, Geibel S, Pohl P, Bienert M, Dathe M (2005) A critical reassessment of penetratin translocation across lipid membranes. Biophys J 89:2513-2521

    Article  PubMed  Google Scholar 

  14. Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8:84-87

    Article  CAS  PubMed  Google Scholar 

  15. Drin G, Déméné H, Temsamani J, Brasseur R (2001) Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry 40:1824-1834

    Article  CAS  PubMed  Google Scholar 

  16. Persson D, Thorén PEG, Esbjörner EK, Goksör M, Lincoln P, Nordén B (2004) Vesicle size-dependent translocation of penetratin analogs across lipid membranes. Biochim Biophys Acta 1665:142-155

    Article  CAS  PubMed  Google Scholar 

  17. Thorén PEG, Persson D, Karlsson M, Nordén B (2000) The Antennapedia peptide penetratin translocates across lipid bilayers - the first direct observation. FEBS Lett 482:265-268

    Article  PubMed  Google Scholar 

  18. Terrone D, Sang SLW, Roudaia L, Silvius JR (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry 42:13787-13799

    Article  CAS  PubMed  Google Scholar 

  19. Chico DE, Given RL, Miller BT (2003) Binding of cationic cell-permeable peptides to plastic and glass. Peptides 24:3-9

    Article  CAS  PubMed  Google Scholar 

  20. Persson D, Thorén PEG, Herner M, Lincoln P, Nordén B (2003) Application of a novel analysis to measure the binding of the membrane-translocating peptide penetratin to negatively charged liposomes. Biochemistry 42:421-429

    Article  CAS  PubMed  Google Scholar 

  21. Hope MJ, Bally MB, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812:55-65

    Article  CAS  Google Scholar 

  22. Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858:161-168

    Article  CAS  PubMed  Google Scholar 

  23. MacDonald RC, MacDonald RI, Menco BPM, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297-303

    Article  CAS  PubMed  Google Scholar 

  24. Ladokhin AS, Jayasinghe S, White SH (2000) How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 285:235-245

    Article  CAS  PubMed  Google Scholar 

  25. Chatterjee S, Banerjee DK (2002) Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. Methods Mol Biol 199:3-16

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Heike Nikolenko (FMP) and Matthias Böthe (Robert Koch Institute, Berlin, Germany) for excellent technical assistance and Sebastian Fiedler (FMP) for helpful comments on the manuscript. We are indebted to Dr. Michael Beyermann, Dagmar Krause, and Bernhard Schmikale for synthesis and purification and to Drs. Eberhard Krause and Michael Schümann (all FMP) for mass-spectrometric characterization of penetratin peptide. This work was supported by the European Commission with grant No. QLK3-CT-2002-01989 to S.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Broecker, J., Keller, S. (2010). Membrane Translocation Assayed by Fluorescence Spectroscopy. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology™, vol 606. Humana Press. https://doi.org/10.1007/978-1-60761-447-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-447-0_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-446-3

  • Online ISBN: 978-1-60761-447-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics