Skip to main content

Biomechanical Perspective on the Origin of Cetacean Flukes

  • Chapter
The Emergence of Whales

Part of the book series: Advances in Vertebrate Paleobiology ((AIVP,volume 1))

Abstract

The evolution of aquatic forms from terrestrial ancestors has been a reoccurring event in the history of the vertebrates. As these animals adapted to the aquatic environment, the most derived representatives developed structures and mechanisms for high-performance propulsion in water. These organisms converged on propulsive modes that utilized oscillating hydrofoils for rapid and sustained swimming (Howell, 1930; Webb, 1975; Webb and Buffrénil, 1990; Fish, 1993a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott, I. H., and von Doenhoff, A. E. 1959. Theory of Wing Sections. Dover, New York.

    Google Scholar 

  • Ahmadi, A. R., and Widnall, S. E. 1986. Energetics and optimum motion of oscillating lifting surfaces of finite span. J. Fluid Mech. 162:261–282.

    Article  Google Scholar 

  • Amano, M., and Miyazaki, N. 1993. External morphology of Dall’s porpoise (Phocoenoides dalli): growth and sexual dimorphism. Can. J. Zool. 71:1124–1130.

    Article  Google Scholar 

  • Andrews, R. C. 1921. A remarkable case of external hind limbs in a humpback whale. Am. Mus. Novit. 9:1–6.

    Google Scholar 

  • Ashenberg, J., and Weihs, D. 1984. Minimum induced drag of wings with curved planform. J. Aircr. 21:89–91.

    Article  Google Scholar 

  • Azuma, A. 1983. Biomechanical aspects of animal flying and swimming, in: H. Matsui and K. Kobayashi (eds.), Biomechanics VIII-A: International Series on Biomechanics, Volume 4A, pp. 35–53. Human Kinetics Publishers, Champaign, IL.

    Google Scholar 

  • Barnes, L. G., Domning, D. P., and Ray, C. E. 1985. Status of studies on fossil marine mammals. Mar. Mamm. Sci. 1:15–53.

    Article  Google Scholar 

  • Bello, M. A., Roy, R. R., Martin, T. P., Goforth, H. W., Jr., and Edgerton, V. R. 1985. Axial musculature in the dolphin (Tursiops truncatus): some architectural and histochemical characteristics. Mar. Mamm. Sci. 1:324–336.

    Article  Google Scholar 

  • Best, R. C., and da Silva, V. M. F. 1989. Amazon river dolphin, boto Inia geoffrensis (de Blainville, 1817), in: S. H. Ridgeway and R. Harrison (eds.), Handbook of Marine Mammals, Volume 4, pp. 1–23. Academic Press, London.

    Google Scholar 

  • Blake, R. W. 1983. Fish Locomotion. Cambridge University Press, London.

    Google Scholar 

  • Bose, N., and Lien, J. 1989. Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer. Prvc. R. Soc. London Ser. B 237:175–200.

    Article  CAS  Google Scholar 

  • Bose, N., Lien, J., and Ahia, J. 1990. Measurements of the bodies and flukes of several cetacean species. Proc. R. Soc. London Ser. B 242:163–173.

    Article  Google Scholar 

  • Chanin, P. 1985. The Natural History of Otters. Facts on File, New York.

    Google Scholar 

  • Chopra, M. G. 1975. Lunate-tail swimming propulsion, in: T. Y. Wu, C. J. Brokaw, and C. Brennen (eds.), Swimming and Flying in Nature, Volume 2, pp. 635–650. Plenum Press, New York.

    Chapter  Google Scholar 

  • Chopra, M. G. 1976. Large amplitude lunate-tail theory of fish locomotion. J. Fluid Mech. 74:161–182.

    Article  Google Scholar 

  • Chopra, M. G., and Kambe, T. 1977. Hydrodynamics of lunate-tail swimming propulsion. Part 2. J. Fluid Mech. 79:49–69.

    Article  Google Scholar 

  • Curren, K. C. 1992. Designs for swimming: morphometrics and swimming dynamics of several cetacean species. M.S. thesis, Memorial University of Newfoundland.

    Google Scholar 

  • Curren, K. C., Bose, N., and Lien, J. 1993. Morphological variation in the harbour porpoise (Phocoena phocoena). Can. J. Zool. 71:1067–1070.

    Article  Google Scholar 

  • Curren, K. C., Bose, N., and Lien, J. 1994. Swimming kinematics of a harbor porpoise (Phocoena phocoena) and an Atlantic white-sided dolphin (Lagenorhynchus acutus). Mar. Mamm. Sci. 10:485–492.

    Article  Google Scholar 

  • Daniel, T. 1988. Forward flapping flight from flexible fins. Can. J. Zool. 66:630–638.

    Article  Google Scholar 

  • Daniel, T. 1991. Efficiency in aquatic locomotion: limitations from single cells to animals, in: R. W. Blake (ed.), Efficiency and Economy in Animal Physiology, pp. 83–95. Cambridge University Press, London.

    Google Scholar 

  • Daniel, T., Jordan, C., and Grunbaum, D. 1992. Hydromechanics of swimming, in: R. M. Alexander (ed.), Advances in Comparative and Environmental Physiology, Volume 11, pp. 17–49. Springer-Verlag, Berlin.

    Google Scholar 

  • Feldkamp, S. D. 1987. Foreflipper propulsion in the California sea lion, Zalophus californianus. J. Zool. 212:43–57.

    Article  Google Scholar 

  • Felts, W. J. L. 1966. Some functional and structural characteristics of cetaceans’ flippers and flukes, in: K. S. Norris (ed.), Whales, Dolphins and Porpoises, pp. 255–276. University of California Press, Berkeley.

    Google Scholar 

  • Fierstine, H. L., and Walters, V. 1968. Studies of locomotion and anatomy of scombrid fishes. Mem. South. Calif. Acad. Sci. 6:1–31.

    Google Scholar 

  • Fish, F. E. 1979. Thermorégulation in the muskrat (Ondatra zibethicus): the use of regional heterothermia. Comp. Biochem. Physiol. 64:391–397.

    Article  Google Scholar 

  • Fish, F. E. 1984. Mechanics, power output and efficiency of the swimming muskrat (Ondatra zibethicus). J. Exp. Biol. 110:183–201.

    PubMed  CAS  Google Scholar 

  • Fish, F. E. 1992. Aquatic locomotion, in: T. E. Tomasi and T. H. Horton (eds.), Mammalian Energetics: Interdisciplinary Views of Metabolism and Reproduction, pp. 34–63. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Fish, F. E. 1993a. Influence of hydrodynamic design and propulsive mode on mammalian swimming energetics. Aust. J. Zool. 42:79–101.

    Article  Google Scholar 

  • Fish, F. E. 1993b. Power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 185:179–193.

    Google Scholar 

  • Fish, F. E. 1993c. Comparison of swimming kinematics between terrestrial and semiaquatic opossums. J. Mammal. 74:275–284.

    Article  Google Scholar 

  • Fish, F. E. 1994. Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). J. Mammal. 75:989–997.

    Article  Google Scholar 

  • Fish, F. E. 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming. Am. Zool. 36:628–641.

    Google Scholar 

  • Fish, F. E., and Hui, C. A. 1991. Dolphin swimming—a review. Mammal Rev. 21:181–195.

    Article  Google Scholar 

  • Fish, F. E., Innes, S., and Ronald, K. 1988. Kinematics and estimated thrust production of swimming harp and ringed seals. J. Exp. Biol. 137:157–173.

    PubMed  CAS  Google Scholar 

  • Flower, W. H. 1883. On whales, past and present, and their probable origin. Nature 28:226–230.

    Google Scholar 

  • Folkens, P. A., and Barnes, L. G. 1984. Reconstruction of an archaeocete. Oceans 17:22–23.

    Google Scholar 

  • Fordyce, R. E. 1992. Cetacean evolution and Eocene/Oligocene environments, in: D. R. Prothero and W. A. Berggren (eds.), Eocene-Oligocene Climatic and Biotic Evolution, pp. 368–381. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406.

    Article  PubMed  CAS  Google Scholar 

  • Gingerich, P. D., Smith, B. H., and Simons, E. L. 1990. Hind limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science 249:154–157.

    Article  PubMed  CAS  Google Scholar 

  • Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Science 368:844–847.

    Google Scholar 

  • Goforth, H. W. 1990. Ergometry (exercise testing) of the bottlenose dolphin, in: S. Leatherwood (ed.), The Bottlenose Dolphin, pp. 559-574. Academic Press, San Diego.

    Google Scholar 

  • Gutmann, W. F. 1994. Konstruktionszwänge in der Evolution: schwimmende Vierfüsser. Nat. Mus. 124:165–188.

    Google Scholar 

  • Hickman, G. C. 1979. The mammalian tail: a review of functions. Mammal Rev. 9: 143–157.

    Article  Google Scholar 

  • Hoerner, S. F. 1965. Fluid-Dynamic Drag. Published by author, Brick Town, NJ.

    Google Scholar 

  • Howell, A. B. 1930. Aquatic Mammals. Thomas, Springfield, IL.

    Google Scholar 

  • Hurt, H. H., Jr. 1965. Aerodynamics for Naval Aviators. U.S. Navy, NAVWEPS 00-80T-80.

    Google Scholar 

  • Jenkins, F. A., Jr., and Goslow, G. E., Jr. 1983. The functional anatomy of the shoulder of the savannah monitor lizard (Varanus exanthematicus). J. Morphol. 175:195–216.

    Article  Google Scholar 

  • Karpouzian, G., Spedding, G., and Cheng, H. K. 1990. Lunate-tail swimming propulsion. Part 2. Performance analysis. J. Fluid Mech. 210:329–351.

    Article  Google Scholar 

  • Katz, J., and Weihs, D. 1978. Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. J. Fluid Mech. 88:485–497.

    Article  Google Scholar 

  • Küchermann, D. 1953. The distribution of lift over the surface of swept wings. Aeronaut. Q. 4:261–278.

    Google Scholar 

  • Lang, T. G. 1966. Hydrodynamic analysis of cetacean performance, in: K. S. Noms (ed.), Whales, Dolphins and Porpoises, pp. 410–432. University of California Press, Berkeley.

    Google Scholar 

  • Lang, T. G., and Daybell, D. A. 1963. Porpoise performance tests in a seawater tank. NOTS Technical Publication 3063. Naval Ordnance Test Station, China Lake, CA. NAVWEPS Report 8060.

    Google Scholar 

  • Lauder, G. V. 1995. On the inference of function from structure, in: J. J. Thomason (ed.), Functional Morphology in Vertebrate Paleontology, pp. 1–18. Cambridge University Press, London.

    Google Scholar 

  • Lighthill, J. 1969. Hydrodynamics of aquatic animal propulsion—a survey. Annu. Rev. Fluid Mech. 1:413–446.

    Article  Google Scholar 

  • Lighthill, J. 1970. Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44:265–301.

    Article  Google Scholar 

  • Lighthill, J. 1977. Introduction to scaling of aerial locomotion, in: T. J. Pedley (ed.), Scale Effects in Animal Locomotion, pp. 365–404. Academic Press, New York.

    Google Scholar 

  • Liu, P., and Bose, N. 1993. Propulsive performance of three naturally occurring oscillating propeller planforms. Ocean Eng. 20:57–75.

    Article  Google Scholar 

  • Long, J. H., Jr., Pabst, D. A., Shepherd, W. R., and McLellan, W. A. 1997. Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. J. Exp. Biol. 200:65–81.

    PubMed  Google Scholar 

  • Meyer, W., Neurand, K., and Klima, M. 1995. Prenatal development of the integument in Delphinidae (Cetacea: Odontoceti). J. Morphol. 223:269–287.

    Article  PubMed  CAS  Google Scholar 

  • Motani, R., You, H., and McGowan, C. 1996. Eel-like swimming in the earliest ichthyosaurs. Nature 382:347–348.

    Article  Google Scholar 

  • Norris, K. S., and Prescott, J. H. 1961. Observations on Pacific cetaceans of California and Mexican waters. Univ. Calif. Publ. Zool. 63:291–402.

    Google Scholar 

  • O’Leary, M., and Rose, K. D. 1995. Postcranial skeleton of the early Eocene mesonychid Pachyaena. J. Vertebr. Paleontol. 15:401–430.

    Article  Google Scholar 

  • Pabst, D. A. 1990. Axial muscles and connective tissues of the bottlenose dolphin, in: S. Leatherwood and R. R. Reeves (eds.), The Bottlenose Dolphin, pp. 51–67. Academic Press, San Diego.

    Google Scholar 

  • Parry, D. A. 1949a. The swimming of whales and a discussion of Gray’s paradox. J. Exp. Biol. 26:24–34.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. 1949b. Anatomical basis of swimming in whales. Proc. Zool. Soc. London 119:49–60.

    Article  Google Scholar 

  • Perrin, W. F. 1975. Variation of spotted and spinner porpoise (genus Stenella) in eastern tropical Pacific and Hawaii. Bull. Scripps Inst. Oceanogr. No. 21.

    Google Scholar 

  • Perrin, W. F. 1997. Development and homologies of head stripes in the delphinoid cetaceans. Mar. Mamm. Sci. 13:1–43.

    Article  Google Scholar 

  • Purves, P. E. 1963. Locomotion in whales. Nature 197:334–337.

    Article  Google Scholar 

  • Purves, P. E. 1969. The structure of the flukes in relation to laminar flow in cetaceans. Z. Saeugetierkd. 34:1–8.

    Google Scholar 

  • Rayner, J. M. V. 1985. Vorticity and propulsion mechanics in swimming and flying animals, in: J. Riess and E. Frey (eds.), Konstruktionsprinzipen lebender und ausgestorbener Reptilien, pp. 89–118. University of Tubingen, Tubingen, Germany.

    Google Scholar 

  • Rice, D. W, and Wolman, A. A. 1971. The Life History and Ecology of the Gray Whale (Eschrichtius robustus). Am. Soc. Mamm. Spec. Publ. No. 3.

    Google Scholar 

  • Romanenko, E. V. 1995. Swimming of dolphins: experiments and modelling, in: C. P. Ellington and T. J. Pedley (eds.), Biological Fluid Dynamics, pp. 21–33. The Company of Biologists, Cambridge.

    Google Scholar 

  • Rommel, S. 1990. Osteology of the bottlenose dolphin, in: S. Leatherwood and R. R. Reeves (eds.), The Bottlenose Dolphin, pp. 29–49. Academic Press, San Diego.

    Google Scholar 

  • Rowe, T. 1996. Coevolution of the mammalian middle ear and neocortex. Science 273:651–654.

    Article  PubMed  CAS  Google Scholar 

  • Ryder, J. A. 1885. On the development of the Cetacea, together with consideration of the probable homologies of the flukes of cetaceans and sirenians. Bull. U.S. Fish Comm. 5:427–485.

    Google Scholar 

  • Sanderson, I. T. 1956. Follow the Whale. Little, Brown, Boston.

    Google Scholar 

  • Slijper, E. J. 1961. Locomotion and locomotory organs in whales and dolphins (Cetacea). Symp. Zool. Soc. London 5:77–94.

    Google Scholar 

  • Slijper, E. J. 1979. Whales. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Smith, K. K. 1994. Are neuromotor systems conserved in evolution? Brain Behav. Evol. 43:293–305.

    Article  PubMed  CAS  Google Scholar 

  • Strickler, T. L. 1980. The axial musculature of Pontoporia blainvillei, with comments on the organization of this system and its effect on fluke-stroke dynamics in the Cetacea. Am. J. Anat. 157:49–59.

    Article  PubMed  CAS  Google Scholar 

  • Tarasoff, F. J., Bisaillon, A., Pierard, J., and Whitt, A. P. 1972. Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Can. J. Zool. 50:915–929.

    Article  PubMed  CAS  Google Scholar 

  • Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2:157–184.

    Article  Google Scholar 

  • Thewissen, J. G. M, and Fish, F. E. 1997. Locomotor evolution the earliest cetaceans: functional model, modern analogues, and paleontological evidence. Paleobiology 23:482–490.

    Google Scholar 

  • Thewissen, J G. M, and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.

    Article  PubMed  CAS  Google Scholar 

  • Thewissen, J. G. M, Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212.

    Article  PubMed  CAS  Google Scholar 

  • Thewissen, J. G. M, Madar, S. I., and Hussain, S. T. 1996a. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsck-Inst. Senckenberg 191:1–86.

    Google Scholar 

  • Thewissen, J. G. M., Roe, L. J., O’Neil, J. R., Hussain, S. T., Sahni, A., and Bajpal, S. 1996b. Evolution of cetacean osmoregulation. Nature 381:379–380.

    Article  CAS  Google Scholar 

  • Triantafyllou, M. S., and Triantafyllou, G. S. 1995. An efficient swimming machine. Sci. Am. 272:64–69.

    Article  Google Scholar 

  • van Dam, C. P. 1987. Efficiency characteristics of crescent-shaped wings and caudal fins. Nature 325:435–437.

    Article  Google Scholar 

  • Videler, J. 1993. Fish Swimming. Chapman & Hall, London.

    Book  Google Scholar 

  • Videler, J., and Kamermans, P. 1985. Differences between upstroke and downstroke in swimming dolphins. J. Exp. Biol. 119:265–274.

    PubMed  CAS  Google Scholar 

  • Vogel, S. 1994. Life in Moving Fluids. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • von Mises, R. 1945. Theory of Flight. Dover, New York.

    Google Scholar 

  • Watson, A. G., and Fordyce, R. E. 1993. Skeleton of two minke whales, Balaenoptera acutorostrata, stranded on the south-east coast of New Zealand. N. Z. Nat. Sci. 20:1–14.

    Google Scholar 

  • Webb, P. W. 1975. Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Bd. Can. 190:1–158.

    Google Scholar 

  • Webb, P. W. 1984. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24:107–120.

    Google Scholar 

  • Webb, P. W., and Buffrénil, V. de. 1990. Locomotion in the biology of large aquatic vertebrates. Trans. Am. Fish. Soc. 119:629–641.

    Article  Google Scholar 

  • Weihs, D. 1989. Design features and mechanics of axial locomotion in fish. Am. Zool. 29:151–160.

    Google Scholar 

  • Weihs, D., and Webb, P. W. 1983. Optimization of locomotion, in: P. W. Webb and D. Weihs (eds.), Fish Biomechanics, pp. 339–371. Praeger, New York.

    Google Scholar 

  • Williams, T. M. 1983. Locomotion in the North American mink, a semi-aquatic mammal. I. Swimming energetics and body drag. J. Exp. Biol. 103:155–168.

    PubMed  CAS  Google Scholar 

  • Williams, T. M. 1989. Swimming by sea otters: adaptations for low energetic cost locomotion. J. Comp. Physiol. A 164:815–824.

    Article  PubMed  CAS  Google Scholar 

  • Wu, T. Y. 1971a. Hydrodynamics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46:337–355.

    Article  Google Scholar 

  • Wu, T. Y. 1971b. Hydrodynamics of swimming propulsion. Part 2. Some optimum shape problems. J. Fluid Mech. 46:521–544.

    Article  Google Scholar 

  • Yanov, V. G. 1991. The systematic-functional organization of the kinematics of dolphin swimming. Rep. Acad. Sci. 317:1089–1093 (in Russian).

    Google Scholar 

  • Yates, G. T. 1983. Hydromechanics of body and caudal fin propulsion, in: P. W. Webb and D. Weihs (eds.), Fish Biomechanics, pp. 177–213. Praeger, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fish, F.E. (1998). Biomechanical Perspective on the Origin of Cetacean Flukes. In: Thewissen, J.G.M. (eds) The Emergence of Whales. Advances in Vertebrate Paleobiology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0159-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0159-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0161-3

  • Online ISBN: 978-1-4899-0159-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics