Skip to main content

The Effects of Benthos on Physical Properties of Freshwater Sediments

  • Chapter
Animal-Sediment Relations

Part of the book series: Topics in Geobiology ((TGBI,volume 100))

Abstract

In this chapter we review the effects of freshwater benthos on the physical (as opposed to chemical) properties of the bottom. Specifically, we will focus our discussion on the effects of macrobenthos (adult length >1 mm) on fine-grained bottoms (sediments that contain approximately 50% by weight silt—clay-sized particles) of lakes and slow-flowing rivers. There are three reasons for this approach. The first is that there is simply too little known about freshwater meio- and microbenthos to merit a review of their effects on sediment properties. More importantly, the macrobenthos are probably the most potent modifiers of sediment properties by virtue of their size relative to sediment grains, their population density, their ability to move through a relatively large volume of sediment, and their feeding and respiratory habits. Finally, we have restricted ourselves to fine-grained bottoms because these comprise the bulk of freshwater lake sediments and because the structure of this sediment is more easily altered than is that of sediments with larger grain size. Some information from slow-flowing river bottoms is included with lakes because their sediments and faunas are very much alike (Hynes, 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, C. E., and Kregar, R. D., 1969, Sedimentary and faunal environment of eastern Lake Superior, in: Proceedings of the 12th Conference on Great Lakes Research, pp. 1 - 20, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Alley, W. P., and Anderson, R. F., 1968, Small scale patterns of spatial distribution of the Lake Michigan Macrobenthos, in: Proceedings of the 11th Conference on Great Lakes Research, pp. 1 - 10, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Alley, W. P., and Chin, J. J., 1978, Length—biomass relationships of the amphipod, Pontoporeia affinis of Lake Michigan, in: Abstracts of the 20th Conference on Great Lakes Research, p. 2, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Alsterberg, G., 1925, Die Nahrungszirkulation einiger Binnensetypen, Arch. Hydrobiol. 15: 291 - 338.

    Google Scholar 

  • Appleby, A. G., and Brinkhurst, R. 0., 1970, Defecation rate of three tubificid oligochaetes found in the sediment of Toronto Harbour, Ontario, J. Fish. Res. Board Can. 27: 1971 - 1982.

    Google Scholar 

  • Baker, F. C., 1928, The freshwater mollusca of Wisconsin. Part II. Pelecypods, Wisc. Geol. Nat. Hist. Surv. Bull. 70.

    Google Scholar 

  • Berg, K., 1938, Studies on the bottom animals of Esrom Lake, K. Dan. Vidensk. Selsk. Skr. 8: 1 - 255.

    Google Scholar 

  • Birtwell, I. R., and Arthur, D. R., 1980, The ecology of tubificids in the Thames estuary with particular reference to Tubifex costatus (Clapanedi), in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 331 - 382, Plenum Press, New York.

    Chapter  Google Scholar 

  • Bonomi, G., and DiCola, G., 1980, Population dynamics of Tubifex tubifex, studied by means of a new model, in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 185 - 204, Plenum Press, New York.

    Chapter  Google Scholar 

  • Bousfield, E. L., 1958, Freshwater amphipod Crustacea of glaciated North America, Can. Field Nat. 72: 55 - 113.

    Google Scholar 

  • Boyer, L. F., 1980, Production and preservation of surface traces in the intertidal zone, Ph.D. dissertation, Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois.

    Google Scholar 

  • Brinkhurst, R. 0., 1964, Observations on the biology of lake-dwelling Tubificidae, Arch. Hydrobiol. 60: 385 - 418.

    Google Scholar 

  • Brinkhurst, R. 0., 1965, The use of sludge worms (Tubificidae) in the detection and as-sessment of pollution, in: Proceedings of the 8th Conference on Great Lakes Research,

    Google Scholar 

  • pp. R09-10, International Association for Great Lakes Research, Ann Arbor, Michigan. Brinkhurst, R. O., 1974, The Benthos of Lakes, St. Martin’s Press, New York.

    Google Scholar 

  • Brinkhurst, R. O., and Chua, K. E., 1969, A preliminary investigation of some potential nutritional resources by three sympatric tubificid oligochaetes, J. Fish. Res. Board Can. 26: 2659 - 2668.

    Article  Google Scholar 

  • Brinkhurst, R. O., and Jamieson, B. G. M., 1971, Aquatic Oligochaeta of the World, University of Toronto Press, Toronto.

    Google Scholar 

  • Brinkhurst, R. O., and Kennedy, C. R., 1965, Studies on the biology of the Tubificidae (Annelida, Oligochaeta) in a polluted stream, J. Anim. Ecol. 34: 429 - 443.

    Article  Google Scholar 

  • Brinkhurst, R. O., Chua, K. E., and Kaushik, N. K., 1972, Interspecific interactions and selective feeding of tubificid oligochaetes, Limnol. Oceanogr. 17: 122 - 133.

    Google Scholar 

  • Burgis, M. J., Darlington, J. P. E. C., Dunn, I. G., Ganf, G. G., Gwahba, J. J., and McGowan, L. M., 1973, The biomass and distribution of organisms in Lake George, Uganda, Proc. R. Soc. London Ser. B 184: 271 - 298.

    Article  Google Scholar 

  • Calow, P., 1975, Defecation strategies of two freshwater gastropods, Ancylus fluviatilis Mull and Planorbis contortus Linn. (Pulmonata) with a comparison of field and laboratory estimates of food absorption rates, Oecologia (Berlin) 20: 51 - 63.

    Google Scholar 

  • Caspers, H., 1980, The relationship of saprobial conditions to massive populations of tubificids, in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 503 - 506, Plenum Press, New York.

    Chapter  Google Scholar 

  • Coker, R. E., Clark, H. W., Shira, A. F., and Howard, A. D., 1921, Natural history and propagation of freshwater mussels, Bull. U. S. Bur. Fish. 37: 77 - 181.

    Google Scholar 

  • Cole, G. A., 1953, Notes on the vertical distribution of organisms in the profundal sediments of Douglas Lake, Michigan, Am. Midl. Nat. 49: 252 - 56.

    Article  Google Scholar 

  • Colquhoun, 0., 1971, Lectures on Biostatistics, Clarendon Press, Oxford.

    Google Scholar 

  • Crowley, T. E., 1957, Age determination in Anodonta, J. Conchol. 24: 201 - 207.

    Google Scholar 

  • Cullen, D. J., 1973, Bioturbation of superficial marine sediments by interstitial meiobenthos, Nature 242: 323 - 324.

    Article  Google Scholar 

  • Cummins, K. W., and Lauff, G. H., 1969, The influence of substrate particle size on the microdistribution of stream macrobenthos, Hydrobiologia 34: 145 - 181.

    Article  Google Scholar 

  • Curds, C. R., 1963, The flocculation of suspended matter by Paramecium caudatum, J. Gen. Microbiol. 33: 363 - 375.

    Google Scholar 

  • Davis, R. B., 1974, Stratigraphic effects of tubificids in profundal lake sediments, Limnol. Oceanogr. 19: 466 - 488.

    Google Scholar 

  • Dunbar, M. J., 1960, The evolution of stability in marine environments; natural selection at the level of the ecosystem, Am. Nat. 94: 129 - 136.

    Article  Google Scholar 

  • Edwards, R. W., 1958, Vernal sloughing of sludge deposits in a sewage effluent channel, Nature 180: 100.

    Article  Google Scholar 

  • Eggleton, F. E., 1937, Productivity of the profundal benthic zone in Lake Michigan, Pap. Mich. Acad. Sci. 22: 593 - 611.

    Google Scholar 

  • Eggleton, F. E., 1939, The deep water bottom fauna of Lake Michigan, Pap. Mich. Acad. Sci. 21: 599 - 612.

    Google Scholar 

  • Fehrmann, R. C., and Weaver, R. W., 1978, Scanning electron microscopy of Rhizobium spp. adhering to fine silt particles, Soil. Sci. Am. J. 42: 279-281.

    Google Scholar 

  • Ferrante, J. G., and Parker, J. I., 1977, Transport of diatom frustules by copepod fecal pellets to the sediments of Lake Michigan, Limnol. Oceanogr. 22: 92 - 98.

    Google Scholar 

  • Fisher, J. A., and Beeton, A. M., 1975, The effect of dissolved oxygen on the burrowing behavior of Limnodrilus hoffmeisteri (Oligochaeta), Hydrobiologia 47: 273 - 290.

    Article  Google Scholar 

  • Fisher, J. B., and Tevesz, M. J. S., 1976, Distribution and population density of Elliptio complanata (Mollusca) in Lake Pocotopaug, Connecticut, Veliger 18: 332 - 338.

    Google Scholar 

  • Fisher, J. B., Lick, W. J., McCall, P. L., and Robbins, J. A., 1980, Vertical mixing of lake sediments by tubificid oligochaetes, J. Geophys. Res. 85: 3997 - 4006.

    Google Scholar 

  • Ford, J. B., 1967, The vertical distribution of larval Chironomidae in the mud of a stream, Hydrobiologia 19: 262 - 272.

    Article  Google Scholar 

  • Foster, T. D., 1932, Observations on the life history of a fingernail shell of the genus Sphaerium, J. Morphol. 53: 473 - 497.

    Article  Google Scholar 

  • Frankel, L., and Mead, D. J., 1973, Mucilaginous matrix of some estuarine sands in Connecticut, J. Sediment. Petrol. 43: 1090 - 1095.

    Google Scholar 

  • Freitag, R., Fung, P., Mothersill, J. S., and Prouty, G. K., 1976, Distribution of benthic macroinvertebrates in Canadian waters of Northern Lake Superior, J. Great Lakes Res. 2: 177 - 192.

    Article  Google Scholar 

  • Fukuda, M. K., 1978, The entrainment of cohesive sediments in freshwater, Ph.D. dissertation, Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 210 pp.

    Google Scholar 

  • Fukuda, M. K., and Lick, W., 1980, The entrainment of cohesive sediments in fresh water, J. Geophys. Res. 85: 2813 - 2824.

    Article  Google Scholar 

  • Fukuhara, H., Kikuchi, E., and Kurichara, Y., 1980, The effect of Branchiura sowerbyi on bacterial populations in submerged ricefield soil, Oikos 34: 88 - 93.

    Article  Google Scholar 

  • Gale, W. F., 1976, Vertical distribution and burrowing behavior of the fingernail clam, Sphaerium transversum, Malacologia 15: 401 - 409.

    Google Scholar 

  • Ganf, G. G., and Viner, S. B., 1973, Ecological stability in a shallow equatorial lake (Lake George, Uganda), Proc. R. Soc. London Ser. B 184: 321 - 346.

    Article  Google Scholar 

  • Geoghegan, M. J., and Brian, R. C., 1948, Aggregate formation in soil. 1. Influence of some bacterial polysaccharides on the binding of soil particles, Biochem. J. 43: 5 - 13.

    Google Scholar 

  • Gray, J. S., 1974, Animal—sediment relationships, Oceanogr. Mar. Biol. Annu. Rev. 12: 223 - 261.

    Google Scholar 

  • Hâkanson, L., and Källström, A., 1978, An equation of state for biologically active lake sediments and its implications for interpretations of sediment data, Sedimentology 25: 205 - 226.

    Article  Google Scholar 

  • Hamilton, A. L., 1971, Zoobenthos of fifteen lakes in the experimental lakes area, Northwestern Ontario, J. Fish. Res. Board Canada 28: 257 - 263.

    Article  Google Scholar 

  • Haranghy, L., 1971, Investigations on the life-span limitation of mussels as example of telometric growing animals, Acta. Biol. Acad. Sci. Hung. 22: 3 - 7.

    Google Scholar 

  • Hargrave, B. T., 1970a, Distribution, growth, and seasonal abundance of Hyalella azteca (Amphipoda) in relation to sediment microflora, J. Fish. Res. Board Can. 27: 685 - 699.

    Article  Google Scholar 

  • Hargrave, B. T., 1970b, The utilization of benthic microflora by Hyalella azteca (Amphipoda), J. Anim. Ecol. 34: 424 - 437.

    Google Scholar 

  • Hargrave, B. T., 1970c, The effect of a deposit-feeding amphipod on the metabolism of benthic microflora, Limnol. Oceanogr. 15: 21 - 30.

    Google Scholar 

  • Hargrave, B. T., 1976, The central role of invertebrate feces in sediment decomposition, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes ( J. M. Anderson and A. MacFayden, eds.), pp. 301 - 321, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Harris, R. H., and Mitchell, R., 1973, The role of polymers in microbial aggregation, Annu. Rev. Microbiol. 27: 27 - 50.

    Article  Google Scholar 

  • Heard, W. H., 1977, Reproduction of fingernail clams (Sphaeriidae: Sphaerium and Musculium), Malacologia 16: 421 - 455.

    Google Scholar 

  • Hendelberg, J., 1960, The fresh-water pearl mussel, Margaritifera margaritifera (L.), Rep. Inst. Freshwater Res. Drottningholm 41: 149 - 171.

    Google Scholar 

  • Henson, E. B., 1962, Notes on the distribution of the benthos in the Straits of Mackinac region, in: Proceedings of the 5th Conference on Great Lakes Research, p. 174, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Henson, E. B., 1970, Pontoporeia affinis (Crustacea, Amphipoda) in the Straits of Mackinac region, in: Proceedings of the 13th Conference on Great Lakes Research, pp. 601 - 610, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Herdendorf, C. E., and Reutter, J. M., 1976, Pre-operational aquatic ecology monitoring program for the Davis—Besse nuclear power station, Unit 1. Progress Report July 1—December 31, 1975, CLEAR, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Heuschele, S., 1980, Vertical distribution of benthos in profundal Lake Superior sediments, in: Titles and Abstracts, North American Benthological Society, 28th Annual Meeting, Savannah, Georgia, p. 22.

    Google Scholar 

  • Hilsenoff, W. L., 1966, The biology of Chironomus plumosus in Lake Winnebago, Wisconsin, Ann. Entomol. Soc. Am. 59: 465 - 473.

    Google Scholar 

  • Hilsenoff, W. L., 1967, Ecology and population dynamics of Chironomus plumosus (Diptera, Chironomidae) in Lake Winnebago, Wisconsin, Ecology 60: 1183-1194.

    Google Scholar 

  • Holland, E. F., Zingmark, R. G., and Dean, J. M., 1974, Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms, Mar. Biol. 27: 191 - 196.

    Google Scholar 

  • Howard, J. D., and Elders, C. A., 1970, Burrowing patterns of haustoriid amphipods from Sapelo Island, Georgia, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 243 - 262, Seel House Press, Liverpool.

    Google Scholar 

  • Hung, B. P., 1953, The life history and economic importance of a burrowing mayfly, Hexagenia limbata, in southern Michigan lakes, Bulletin of the Institute of Fisheries Research, Michigan Conservation Department, No. 4, p. 151, Ann Arbor.

    Google Scholar 

  • Hunt, S., 1970, Polysaccharide—Protein Complexes in Invertebrates, Academic Press, London.

    Google Scholar 

  • Hynes, H. B. N., 1955, The reproduction cycle of some British freshwater Gammaridae, J. Anim. Ecol. 24: 352 - 360.

    Article  Google Scholar 

  • Hynes, H. B. N., 1970, The Ecology of Running Waters, University of Toronto Press, Toronto. Iovino, S. J., and Bradley, W. N., 1969, The role of larval chironomidae in the production of lacustrine copropel in Mud Lake, Marion County, Florida, Limnol. Oceanogr. 14: 898 - 905.

    Google Scholar 

  • Ivlev, V. S., 1939, Transformation of energy by aquatic animals, coefficient of energy con- sumption by Tubifex tubifex (Oligochaeta), Int. Rev. Ges. Hydrobiol. 38: 449 - 458.

    Article  Google Scholar 

  • Johnson, M. G., and Brinkhurst, R. 0., 1971, Benthic community metabolism in Bay of Quinte and Lake Ontario, J. Fish. Res. Board Can. 28: 1715 - 1726.

    Article  Google Scholar 

  • Johnson, M. S., and Munger, F., 1930, Observations on excessive abundance of the midge Chironomus plumosus at Lake Pepin, Ecology 11: 110 - 126.

    Article  Google Scholar 

  • Johnson, R. I., 1970, The systematics and zoogeography of the Unionidae (Mollusca: Bivalvia) of the southern Atlantic slope region, Harv. Univ. Mus. Comp. Zool. Bull. 140: 263 - 450.

    Google Scholar 

  • Jonasson, P. M., 1972, Ecology and production of the profundal benthos in relation to phytoplankton in Lake Esrom, Oikos Suppl. 14: 1 - 148.

    Google Scholar 

  • Jonasson, P. M., 1978, Zoobenthos of lakes, Verh. Int. Verein. Limnol. 20: 13 - 37.

    Google Scholar 

  • Jonasson, P. M., and Thorhauge, F., 1972, Life cycle of Pomatothrix hammoniensis (Tubificidae) in the profundal of a eutrophic lake, Oikos 23: 151 - 158.

    Article  Google Scholar 

  • Jonasson, P. M., and Thorhauge, F., 1976a, Population dynamics of Pomatothrix hammoniensis in the profundal of Lake Esrom with special reference to environmental and competitive factors, Oikos 27: 193 - 203.

    Article  Google Scholar 

  • Jonasson, P. M., and Thorhauge, F., 1976b, Production of Pomatothrix hammoniensis in the profundal of eutrophic Lake Esrom, Oikos 27: 204 - 209.

    Article  Google Scholar 

  • Jones, B. F., and Bouser, C. J., 1978, The mineralogy and related chemistry of lake sediments, in: Lakes: Chemistry, Geology, Physics ( A. Lerman, ed.), pp. 179 - 236, Springer-Verlag, New York.

    Google Scholar 

  • Juday, C., and Birge, E. A., 1927, Pontoporeia and Mysis in Wisconsin lakes, Ecology 7: 445 - 452.

    Article  Google Scholar 

  • Kennedy, C. R., 1966, The life history of Limnodrilus hoffmeisteri Clap. (Oligochaeta: Tubificidae) and its adaptive significance, Oikos 17: 158 - 168.

    Article  Google Scholar 

  • Kikuchi, E., and Kurihara, Y., 1977, In vitro studies on the effects of tubificids on the biological, chemical and physical characteristics of submerged ricefield soil and overlying water, Oikos 29: 248 - 356.

    Article  Google Scholar 

  • Kleckner, J. F., 1967, The role of the bottom fauna in mixing lake sediments, M. S. thesis, University of Washington, Seattle.

    Google Scholar 

  • Konstantinov, A. S., 1969, Feeding of chironomid larvae and means of improving the food base of water bodies, in: Transactions of the 6th Conference on Biology of Inland Waters (N. S. Akatora and B. K. Shtegman, eds.), pp. 274-284, Israel Program for Scientific Translation, IPSP No. 5136, Jerusalem.

    Google Scholar 

  • Kovacik, T. L., and Walters, L. J., Jr., 1973, Mercury distribution in sediment cores from western Lake Erie, in: Proceedings of the 15th Conference on Great Lakes Research, pp. 252 - 259, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Kraft, K. J., 1979, Pontoporeia distribution along the Keweenaw shore of Lake Superior affected by copper tailings, J. Great Lakes Res. 5: 28 - 35.

    Article  Google Scholar 

  • Krezoski, J. R., and Robbins, J. A., 1980, Radiotracer studies of solute and particle transport in sediments by freshwater macrofauna, in: Abstracts, International Association for Great Lakes Research Meeting, Kingston, Ontario.

    Google Scholar 

  • Krezoski, J. R., Mozley, S. C., and Robbins, J. A., 1978, Influence of benthic macroinvertebrates on mixing of profundal sediments in southeastern Lake Huron, Limnol. Oceanogr. 23: 1011 - 1016.

    Google Scholar 

  • Ladle, M., 1971, The biology of Oligochaeta from Dorset Chalk streams, Freshwater Biol. 1: 83 - 79.

    Article  Google Scholar 

  • Lang, C., and Lang-Dobler, B., 1980, Structure of tubificid and lumbriculid worm communities, and three indices of trophy based on these communities, as descriptors of eutrophication level of Lake Geneva (Switzerland), in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 457 - 470, Plenum Press, New York.

    Chapter  Google Scholar 

  • Lautenschlager, K. P., Kaushik, N. K., and Robinson, J. B., 1978, The peritrophic membrane and fecal pellets of Gammarus lacustris limnoeus Smith, Freshwater Biol. 8: 207 - 211.

    Article  Google Scholar 

  • LeFevre, G., and Curtis, W. C., 1912, Studies on the reproduction and artificial propagation of freshwater mussels, Bull. Bur. Fish. 30: 109 - 201.

    Google Scholar 

  • Lellak, J., 1969, The regeneration rate of bottom fauna populations of fish ponds after wintering or summering, Verh. Int. Verein. Limnol. 17: 560 - 569.

    Google Scholar 

  • Lyman, F. E., 1943, Swimming and burrowing activities of mayfly nymphs of the genus Hexagenia, Ann. Entomol. Soc. Am. 36: 250 - 256.

    Google Scholar 

  • Macan, T. T., and Mackereth, J. C., 1951, Notes on Gammarus pulex in the English lake district, Hydrobiologia 9: 1 - 12.

    Article  Google Scholar 

  • McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221 - 266.

    Google Scholar 

  • McCall, P. L., 1978, Spatial—temporal distributions of Long Island Sound infauna: The role of bottom disturbance in a nearshore marine habitat, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 191 - 219, Academic Press, New York.

    Google Scholar 

  • McCall, P. L., 1979, The effects of deposit feeding oligochaetes on particle size and settling velocity of Lake Erie sediments, J. Sediment. Petrol. 49: 813 - 818.

    Google Scholar 

  • McCall, P. L., and Fisher, J. B., 1980, Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments, in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 253 - 317, Plenum Press, New York.

    Chapter  Google Scholar 

  • McCall, P. L., Tevesz, M. J. S., and Schwelgien, S. F., 1979, Sediment mixing by Lampsilis radiata siliquoidea (Mollusca) from western Lake Erie, J. Great Lakes Res. 5: 105 - 111.

    Article  Google Scholar 

  • Mackey, A. P., 1977, Growth and development of larval chironomidae, Oikos 28: 270275.

    Google Scholar 

  • McLachlan, A. J., 1974, Development of some small lake ecosystems in tropical Africa, with special reference to the invertebrates, Biol. Rev. 49: 365 - 397.

    Google Scholar 

  • McLachlan, A. J., 1977, Some effects of tube shape on the feeding of Chironomus plumosus L. (Diptera: Chironomidae), J. Anim. Ecol. 46: 139 - 146.

    Google Scholar 

  • McLachlan, A. J., and Cantrell, M. A., 1976, Sediment development and its influence on the distribution and tube structure of Chironomus plumosus L. (Chironomidae, Diptera) in a new impoundment, Freshwater Biol. 6: 437 - 443.

    Article  Google Scholar 

  • McLachlan, A. J., and McLachlan, J. M., 1976, Development of the mud habitat during the filling of two new lakes, Freshwater Biol. 6: 59 - 67.

    Article  Google Scholar 

  • Mackie, G. L., Qadri, S. U., and Clarke, A. H., 1976, Intraspecific variations in growth, birth periods, and longevity of Musculium securis (Bivalvia: Sphaeriidae) near Ottawa, Canada, Malacologia 15: 433 - 446.

    Google Scholar 

  • Margalef, R., 1968, Perspectives in Ecological Theory, University of Chicago Press, Chicago. Martin, J. P., 1946, Microorganisms and soil aggregation. II. Influence of bacterial polysaccharides on soil structure, Soil Sci. 61: 157-166.

    Google Scholar 

  • Martin, J. P., and Richards, S. J., 1963, Decomposition and binding action of a polysaccharide from Chromobacterium violaceum in soil, J. Bacterial. 85: 1288 - 1294.

    Google Scholar 

  • Marzolf, G. R., 1965, Substrate relations of the burrowing amphipod Pontoporeia affinis in Lake Michigan, Ecology 46: 579 - 591.

    Article  Google Scholar 

  • Matteson, M. R., 1948, Life history of Elliptia complanatus (Dillwyn, 1917), Am. Midi. Nat. 40: 690 - 723.

    Google Scholar 

  • Meier-Brook, C., 1969, Substrate relations in some Pisidium species (Eulamellibranchiata: Sphaeriidae ), Malacologia 9: 121-125.

    Google Scholar 

  • Milbrink, G., 1973, On the vertical distribution of oligochaetes in lake sediments, Rep. Inst. Freshwater Res. Drottningholm 53: 34-50.

    Google Scholar 

  • Milbrink, G., 1980, Oligochaete communities in pollution biology: The European situation with special reference to lakes in Scandinavia, in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 433 - 455, Plenum Press, New York.

    Chapter  Google Scholar 

  • Mills, E., 1969, The community concept in marine zoology, with comments on continua and instability in some marine communities: A review, J. Fish. Res. Board Can. 26: 1415 - 1428.

    Article  Google Scholar 

  • Mitropolsky, V. I., 1966, Notes on the life cycle and nutrition of Sphaerium corneum L. (Mollusca, Lamellibranchia ), Trans. Inst. Biol. Inland Waters Acad. Sci. USSR 12: 125-128.

    Google Scholar 

  • Monakov, A. V., 1972, Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of Inland Waters, Academy of Science, U.S.S.R., J. Fish. Res. Board Can. 29: 363 - 383.

    Article  Google Scholar 

  • Moore, D. G., and Scruton, P. C., 1957, Minor internal structures of some recent unconsolidated sediments, A.A.P.G. Bull. 41: 2723 - 2751.

    Google Scholar 

  • Moore, J. W., 1979, Ecology of a subarctic population of Pontoporeia affinis Lindstrom (amphipoda), Crustaceana 36 (3): 267 - 276.

    Article  Google Scholar 

  • Mozley, S. C., and Alley, W. P., 1973, Distribution of benthic invertebrates in the south end of Lake Michigan, in: Proceedings of the 16th Conference on Great Lakes Research, pp. 87 - 96, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Mozley, S. C., and Garcia, L. C., 1972, Benthic macrofauna in the coastal zone of southeastern Lake Michigan, in: Proceedings of the 15th Conference on Great Lakes Research, pp. 102 - 116, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Mundie, J. H., 1959, The diurnal activity of the larger invertebrates at the surface of Lac la Ronge, Saskatchewan, Can. J. Zool. 37: 945 - 956.

    Google Scholar 

  • Myers, A. C., 1977, Sediment processing in a marine subtidal sand bottom community. I. Physical aspects, J. Mar. Res. 35: 609 - 632.

    Google Scholar 

  • Nalepa, T. F., and Thomas, N. A., 1976, Distribution of macrobenthic species in Lake Ontario in relation to sources of pollution and sediment parameters, J. Great Lakes Res. 2: 150 - 163.

    Article  Google Scholar 

  • Negus, C. L., 1963, A quantitative study of growth and production of unionid mussels in the river Thames at Reading, J. Anim. Ecol. 35: 513-532.

    Google Scholar 

  • Nittrouer, C. A., and Sternberg, R. W., 1981, The formation of sedimentary strata in an allochthonous shelf environment: The Washington continental shelf, Mar. Geol. 42: 201 - 232.

    Google Scholar 

  • Okland, J., 1963, Notes on the population density, age distribution, growth, and habitat of Anodonta piscinalis rilss. (Moll. Lamellibr.) in a eutrophic Norwegian lake, Nytt Mag. Zool. 11: 19 - 43.

    Google Scholar 

  • Oliver, D. R., 1971, Life history of the chironomidae, Annu. Rev. Entomol. 16:211-230. Palmer, M. F., 1968, Aspects of the respiratory physiology of Tubifex tubifex in relation to its ecology, J. Zool. 154: 463 - 473.

    Google Scholar 

  • Parthenaides, E., and Passwell, R., 1968, Erosion of cohesive soil and channel stabilization, Civil Engineering Report No. 19, State University of New York, Buffalo, 119 pp. Paterson, C. G., and Fernando, C. H., 1969, The macro-invertebrate colonization of a small reservoir in eastern Canada, Verh. Int. Verein. Limnol. 17: 126 - 136.

    Google Scholar 

  • Pavoni, J. L., Tenney, M. W., and Echelberger, W. F., Jr., 1972, Bacterial exocellular polymers and biological flocculation, J. Water Poll. Cont. Fed. 44: 414 - 431.

    Google Scholar 

  • Pennak, R. W., 1978, Freshwater Invertebrates of the United States, John Wiley and Sons, New York.

    Google Scholar 

  • Pillai, S. C., 1941, The function of Protozoa in the activated sludge process, Curr. Sci. 10: 84 - 92.

    Google Scholar 

  • Poddubnaya, T. L., 1961, Data on the nutrition of the prevalent species of tubificids in the Rybinsk basin, Tr. Inst. Biol. Vodokhran Akad. Nauk SSSR 4: 219 - 231.

    Google Scholar 

  • Poddubnaya, T. L., 1980, Life cycles of mass species of tubificidae (Oligochaeta), in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 175 - 184, Plenum Press, New York.

    Chapter  Google Scholar 

  • Postma, H., 1967, Sediment transport and sedimentation in the estuarine environment, in: Estuaries ( G. H. Lauff, ed.), pp. 158 - 179, American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Potter, D. W. B., and Learner, M. A., 1974, A study of the benthic macro-invertebrates of a shallow euthrophic reservoir in South Wales with emphasis on the Chironomidae (Diptera); their life-histories and production, Arch. Hydrobiol. 74: 186 - 226.

    Google Scholar 

  • Pringle, C., 1980, Effects of chironomid tube-building activities and resultant floral changes upon the feeding behavior of Baetis, in: Titles and Abstracts, North American Benthological Society, 28th Annual Meeting, Savannah, Georgia, p. 36.

    Google Scholar 

  • Prokopovich, N. P., 1969, Deposition of clastic sediment by clams, J. Sediment. Petrol. 39: 891 - 901.

    Google Scholar 

  • Rayera, 0., 1955, Amount of mud displaced by some freshwater Oligochaeta in relation to depth, Mem. Ist. Ital. Idrobiol. 8 (suppl.): 247 - 264.

    Google Scholar 

  • Rawson, D. S., 1953, The bottom fauna of Great Slave Lake, J. Fish. Res. Bd. Can. 10: 486 - 520.

    Article  Google Scholar 

  • Reigle, N. J., 1967, An occurrence of Anodonta (Mollusca, Pelecypoda) in deep water, Am. Midl. Nat. 78: 530 - 531.

    Article  Google Scholar 

  • Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Mar. Biol. Annu. Rev. 12: 263 - 300.

    Google Scholar 

  • Rhoads, D. C., 1975, The paleoecologic and environmental significance of trace fossils, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 147 - 160, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Rhoads, D. C., and Young, D. K., 1970, The influence of deposit-feeding organisms on sediment stability and community trophic structure, J. Mar. Res. 28: 150 - 178.

    Google Scholar 

  • Rhoads, D. C., Yingst, J. Y., and Ullman, W. J., 1978, Seafloor stability in central Long Island Sound. Part I. Temporal changes in erodibility of fine-grained sediment, in: Estuarine Interactions ( M. Wiley, ed.), pp. 221 - 244, Academic Press, New York.

    Google Scholar 

  • Robbins, J. A., Krezoski, J. R., and Mozley, S. C., 1977, Radioactivity in sediments of the Great Lakes: Post-depositional redistribution by deposit-feeding organisms, Earth Planet. Sci. Lett. 36: 325 - 333.

    Google Scholar 

  • Robbins, J. A., Edgington, D. N., and Kemp, A. L. W., 1978, Comparative lead-210, cesium-137, and pollen geochronologies of sediments from Lakes Ontario and Erie, Quat. Res. 10: 256 - 278.

    Google Scholar 

  • Robbins, J. A., McCall, P. L., Fisher, J. B., and Krezoski, J. R., 1979, Effect of deposit feeders on migration of 137Cs in lake sediments, Earth Planet. Sci. Lett. 42: 277 - 287.

    Google Scholar 

  • Sanders, H. L., 1956, Oceanography of Long Island Sound. X. The biology of marine bottom communities, Bull. Bingham Oceanogr. Coll. 15: 245 - 258.

    Google Scholar 

  • Sanders, H. L., 1968, Marine benthic diversity in a comparative study, Am. Nat. 102: 224282.

    Google Scholar 

  • Sanders, H. L., and Hessler, R. R., 1969, Ecology of the deep-sea benthos, Science 162: 1419 - 1424.

    Article  Google Scholar 

  • Scoffin, T. P., 1970, The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas, J. Sediment. Petrol. 40: 249 - 273.

    Article  Google Scholar 

  • Segerstrale, S. G., 1967, Observations of summer breeding in populations of the glacial relict Pontoporeia affinis Lindstr. (Crustacea, Amphipoda) living at greater depths in the Baltic sea, with notes on the reproduction of P. femorata Kröyer, J. Exp. Mar. Biol. Ecol. 1: 55 - 64.

    Article  Google Scholar 

  • Sephton, T. W., and Paterson, C. G., 1980, Bivalve–non-bivalve relationships in a small reservoir in New Brunswick, Canada, in: Titles and Abstracts, North American Benthological Society, 28th Annual Meeting, Savannah, Georgia, p. 39.

    Google Scholar 

  • Sly, P. G., 1978, Sedimentary processes in Lakes, in: Lakes—Chemistry, Geology, Physics (A. Lerman, ed.,), pp. 65 - 89, Springer-Verlag, New York.

    Google Scholar 

  • Smith, W. E., 1972, Culture, reproduction, and temperature tolerance of Pontoporeia affinis in the laboratory, Tr. Am. Fish. Soc. 101: 253 - 256.

    Article  Google Scholar 

  • Sorokin, J. I., 1966, Carbon-14 method in the study of the nutrition of aquatic animals, Int. Rev. Geol. Hydrobiol. 51: 209 - 224.

    Article  Google Scholar 

  • Southard, J. B., 1974, Erodibility of fine abyssal sediments, in: Deep-Sea Sediments ( A. L. Inderbitzen, ed.), pp. 367 - 379, Plenum Press, New York.

    Chapter  Google Scholar 

  • Stanczykowska, A., 1978, Occurrence and dynamics of Dreissena polymorpha, Verh. Internat. Verein. Limnol. 20: 2431 - 2434.

    Google Scholar 

  • Stansbery, D. H., 1967, Growth and longevity of naiads from Fishery Bay in western Lake Erie, Am. Malacol. Union. Inc. Bull. 35: 10 - 11.

    Google Scholar 

  • Stansbery, D. H., 1970, A study of the growth rate and longevity of the naiad Amblema plicate (Say, 1817) in Lake Erie (Bivalvia: Unionidae), Am. Malacol. Union. Inc. Bull. 37: 78 - 79.

    Google Scholar 

  • Stober, Q. J., 1972, Distribution and age of Margaritifera margaritifera (L.) in a Madison river (Montana, U.S.A.) mussel bed, Malacologia 11: 343-350.

    Google Scholar 

  • Stockner, J. G., and Lund, J. W. G., 1970, Live algae in postglacial lake deposits, Limnol. Oceanogr. 15: 41 - 58.

    Google Scholar 

  • Sundborg, A., 1956, The River Klavalven: A study of fluvial processes, Geogr. Ann. 38: 127 - 316.

    Google Scholar 

  • Sweeney, R., Foley, R., Merckel, C., and Wyeth, R., 1975, Impacts of the deposition of dredged spoils on Lake Erie sediment quality and associated biota, J. Great Lakes Res. 1: 162 - 170.

    Article  Google Scholar 

  • Tenore, K., 1968, Accumulation of detritus and phosphate from the sediments by the brackish water bivalve, Rangia cuneata, U. S. Fish Wildl. Serv. Circ. 289:7-8.

    Google Scholar 

  • Tevesz, M. J. S., and McCall, P. L., 1979, Evolution of substratum preference in bivalves (Mollusca), J. Paleontol. 53: 112 - 120.

    Google Scholar 

  • Tevesz, M. J. S., Soster, F. M., and McCall, P. L., 1980, The effects of size-selective feeding by oligochaetes on the physical properties of river sediments, J. Sediment. Petrol. 50: 561 - 568.

    Google Scholar 

  • Thomas, G. J., 1965, Growth in one species of sphaerid clam, Nautilus 79: 47 - 58.

    Google Scholar 

  • Thut, R. N., 1969, A study of the profundal bottom fauna of Lake Washington, Ecol. Monogr. 39: 79 - 100.

    Article  Google Scholar 

  • Timm, T., 1975, Zoobenthos of Lake Vortsjary in 1964-1972, Hydrobiol. Res. Tartu. 6: 165 - 200.

    Google Scholar 

  • Tudorancea, C., 1969, Comparison of the populations of Unio tumidus Philipsson from the complex of Crapina—Dijila marshes, Ekol. Pol. Ser. A 27: 185 - 204.

    Google Scholar 

  • Tudorancea, C., and Gruia, L., 1969, Observations on the Unio crassus Philipsson population from the Nera River, Muz. Nat. Natur. Grig. Antipa. 8: 381 - 394.

    Google Scholar 

  • Unz, R. F., and Farrah, S. R., 1976, Exopolymer production and flocculation by Zoogloea MP6, Appl. Environ. Microbiol. 31: 623 - 626.

    Google Scholar 

  • Van Cleave, H. J., 1940, Ten years observation on a fresh-water mussel population, Ecology 21: 363 - 370.

    Article  Google Scholar 

  • Van Valen, L. M., 1980, Patch selection, benefactors, and a revitalization of ecology, Evol. Theory 4: 231-233.

    Google Scholar 

  • Wachs, B., 1967, Die Oligochaeten-Fauna der Fleissgewasser unter besonderer Berücksichtigung der Beziehungen zwischen der Tubificiden-Besiedlung und dem Substrat, Arch. Hydrobiol. 63: 310 - 386.

    Google Scholar 

  • Walshe, B. M., 1947, Feeding mechanisms of Chironornus larvae, Nature 16: 474.

    Article  Google Scholar 

  • Walshe, B. M., 1951, The feeding habits of certain chironomid larvae subfamily Tendipedinae, Proc. Zool. Soc. 121: 63 - 79.

    Google Scholar 

  • Walters, L. J., Wolery, T. J., and Myser, R. D., 1974, Occurrences of As, Cd, Co, Cr, Cu, Fe, Hg, Ne, Sb, and Zn in Lake Erie sediments, in: Proceedings of the 17th Conference on Great Lakes Research, pp. 219 - 234, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Wavre, M., and Brinkhurst, R. 0., 1971, Interactions between some tubificid oligochaetes found in the sediments of Toronto Harbour, Ontario, J. Fish. Res. Board Can. 28: 335 - 341.

    Google Scholar 

  • Wetzel, R. G., 1975, Limnology, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Wiederholm, T., 1978, Long term changes in profundal benthos of Lake Malaren, Verh. Int. Verein. Limnol. 20: 818 - 824.

    Google Scholar 

  • Wilson, D. S., 1980, The Natural Selection of Populations and Communities, Benjamin/ Cummings, Menlo Park, California.

    Google Scholar 

  • Wood, K., 1953, Distribution and ecology of certain bottom-living invertebrates of the western basin of Lake Erie, Ph.D. dissertation, Ohio State University, Columbus, Ohio, 145 pp.

    Google Scholar 

  • Yingst, J. Y., and Rhoads, D. C., 1978, Seafloor stability in central Long Island Sound. II. Biological interactions and their importance for seafloor erodibility, in: Estuarine Interactions ( M. Wiley, ed.), pp. 245 - 260, Academic Press, New York.

    Google Scholar 

  • Yokley, P., 1972, Life history of Pleurobema cordatum (Rafinesque 1820) (Bivalvia: Unionacea), Malacologia 11: 351 - 364.

    Google Scholar 

  • Young, R. A., and Southard, J. B., 1978, Erosion of fine-grained marine sediments: Sea-floor and laboratory experiments, Geol. Soc. Am. Bull. 89: 663 - 672.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCall, P.L., Tevesz, M.J.S. (1982). The Effects of Benthos on Physical Properties of Freshwater Sediments. In: McCall, P.L., Tevesz, M.J.S. (eds) Animal-Sediment Relations. Topics in Geobiology, vol 100. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1317-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1317-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1319-0

  • Online ISBN: 978-1-4757-1317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics