Skip to main content

Effects of Tubificid Oligochaetes on Physical and Chemical Properties of Lake Erie Sediments

  • Chapter
Aquatic Oligochaete Biology

Abstract

Laboratory experiments and field observations show that tubificid oligochaetes have important effects on sediment properties. Tubificids pelletize the surface sediment of the western and central basins of Lake Erie and increase the median sediment grain size and settling velocity by two orders of magnitude. The thickness of the pelletized layer in the lake is about 1 – 2 cm. The critical entrainment stress of pelletized sediment in box cores from Lake Erie is about twice that of unpelletized sediment. The difference in entrainment rate of sediment may be even greater. In sandy sediments from the Vermilion River, tubificids have the opposite effect: ultimate grain size in the upper 1 cm of sediment is decreased, water content is increased, and surface sediments are more easily eroded than non-pelletized sediments because the tubificids feed selectively on clay and silt size sediments.

Tubificids pump little water through their burrows, but the creation of the pelletized layer enhances the diffusion of chloride in this zone by a factor of two over deeper regions of the sediment. The burrows of tubificids do increase the permeability of Lake Erie sediment by a factor of two to four.

Sediment particle reworking by tubificids is highly directional The worms feed at depth in the sediment and deposit material at the sediment surface. Continued feeding results in an organized vertical circulation and mixing of the top 5 – 10 cm of sediment. The depth of feeding and mixing may be density dependent. The rate of sediment mixing by tubificids exceeds the sedimentation rate of new material in the western and central basins of Lake Erie.

In the laboratory, tubificids can increase the oxygen demand of lake sediments by a factor of two. Their feeding activity produces a thickened, porous, and oxidized pelletai zone at the sediment surface and causes of flux of oxygen demanding materials from depth to the sediment surface. Fifty to seventy percent of the enchanced oxygen demand may be associated with the flux of FeS from depth to the surface. The mixing of sediment by tubificids inhibits the release of phosphorous (PO4 −3) from the sediment under anoxic conditions by preventing the formation of an iron rich surface layer of sediment and by decreasing the near surface phosphorous concentration gradient in interstitial water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aller, R., 1977, The influence of deposit feeding benthos on chemical diagenesis of marine sediments, Ph.D. Thesis, Yale University. 600 p.

    Google Scholar 

  • Appleby, A.D., and R.O. Brinkhurst, 1970, Defecation rate of three tubificid oligochaetes found in the sediment of Toronto Harbour, Ontario, J. Fish. Res. Bd. Can., 27:1971.

    Article  Google Scholar 

  • Austin, E.R., 1970, The relese of nitrogenous compounds from lake sediments, M.S. Thesis, Univ. of Wisconsin. 78 p.

    Google Scholar 

  • Belz, M., 1973, “Statistical Methods in the Process Industries,” J. Wiley, New York. 706 p.

    Google Scholar 

  • Bradshaw, J.S., 1961, Laboratory experiments on the ecology of foraminifera, Contrib. Cushman Found. Foraminiferal Res., 12:87–105.

    Google Scholar 

  • Brinkhurst, R.O., 1974, “The Benthos of Lakes,” St. Martin’s Press, New York. 190 p.

    Google Scholar 

  • Brinkhurst, R.O., and C.R. Kennedy, 1965, Studies on the biology of the Tubificidae (Annelida, Oligochaeta) in a polluted stream. J. Anim. Ecol., 34:429–443.

    Article  Google Scholar 

  • Brinkhurst, R.O., K.E. Chua, and N.K. Kaushik, 1972, Interspecific interactions and selective feeding of tubificid oligochaetes, Limnol. Oceanogr., 17:122–123.

    Google Scholar 

  • Burns, N.M., 1976, Temperature, oxygen, and nutrient distribution patterns in Lake Erie, 1970, J. Fish Res. Bd. Can., 33:485–511.

    Article  CAS  Google Scholar 

  • Burns, N.M., and C. Ross., p972, Oxygen - nutrient relationships in the Central Basin of Lake Erie, In: “Project Hypo,” N.M. Burns and C. Ross, eds., Can. Cent. Inland Waters. Pap.6, 180 pp.

    Google Scholar 

  • Byrnes, B.H., 1971, Ammonium-N released from lake sediments to water, M.S. Thesis, University of Wisconsin. 93 p.

    Google Scholar 

  • Carey, A.G., 1967, Energetics of the benthos of Long Island Sound. I. oxygen utilization by sediment. Bull. Bingham Oceanogr. Coll., 19:136–144.

    Google Scholar 

  • Chatarpaul, L., J.B. Robinson, and N.K. Kaushik, 1978, Role of oligochaete worms in nitrogen transformations in stream sediments, Abstracts, 26th Annual Meeting, N. Am. Benthological Soc., Winnipeg, Manitoba.

    Google Scholar 

  • Cole, G.A., 1953, Notes on the vertical distribution of organisms in the profundal sediment of Douglas Lake, Michigan, Am. Midl. Nat., 49:252–256.

    Article  Google Scholar 

  • Cullen, D.J., 1973, Bioturbation of superficial marine sediments by interstitial meiobenthos, Nature, 242:323–324.

    Article  Google Scholar 

  • Davis, R.B., 1974a, Stratigraphic effects of tubificids in profundal lake sediments, Limnol. Oceanogr., 19:466–488.

    Google Scholar 

  • Davis, R.B., 1974b, Tubificids alter profiles of redox potential and pH in profundal lake sediment, Limnol. Oceanogr., 19:342–346.

    Google Scholar 

  • Davis, R.B., D.L. Thurlow, and R.E. Brewster, 1975, Effects of burrowing tubificids on the exchange of phosphorous between lake sediment and water, Verh. Int. Verein, theor. angen. Limnol., 19:382–394.

    Google Scholar 

  • Dell, C.I., 1973, Vivianite: An authigenic phosphate mineral in Great Lakes Sediments, Proc. 16th Conf. Great Lakes Res., 1027–28.

    Google Scholar 

  • Dobson, H.H. and M. Gilbertson, 1972, oxygen depletion in the hypolimnion of the central basin of Lake Erie, 1929 to 1970, In: “Project Hypo,” M.N. Burns and C. Ross, eds., Canad. Cent. Inland Waters, Hamilton, Ontario. Pap. 6. 180 p.

    Google Scholar 

  • Doyle, R.W.S., 1967, Eh and thermodynamic equilibrium in environments containing dissolved ferrous iron, Ph.D. Thesis, Yale University.100 p.

    Google Scholar 

  • Edwards, R.W., 1958, The effect of larvae of Chironomus riparius Meigen on the redox potentials of settled activated sludge, Ann. Appl. Biol., 46:457–464.

    Article  CAS  Google Scholar 

  • Edwards, R.W., and H.L.J. Rolley, 1965, Oxygen consumption of river muds, J. Ecol., 53:1-19.

    Article  Google Scholar 

  • Fager, E.W., 1964, Marine sediments: Effects of a tube-building polychaete, Science, 135:356–359.

    Article  Google Scholar 

  • Finn, J.D., 1974, “A General Model for Multivariate Analysis,” Holt, Rinehart and Winston, New York. 423 p.

    Google Scholar 

  • Fisher, J.B., 1979, Effects of tubificid oligochaetes on sediment movement and the movement of materials across the sediment-water interface, Ph.D. Thesis, Case Western Reserve University, 132 pp.

    Google Scholar 

  • Fisher, J.A. and A.M. Beeton, 1975, The effect of dissolved oxygen on the burrowing behavior of Limnodrilus hoffmeisteri (oligochaeta), Hydrobiologia, 47:273–290.

    Article  Google Scholar 

  • Folk, R.L., 1965, “Petrology of Sedimentary Rocks,” University of Texas, Austin. 159 p.

    Google Scholar 

  • Fukuda, M.K., 1978, The entrainment of cohesive sediments in freshwater, Ph.D. Thesis, Case Western Reserve University, 210 pp.

    Google Scholar 

  • Gaudette, H.E., W.R. Flight, L. Toner, and D.W. Folger, 1974, An inexpensive titration method for the determination of organic carbon in recent sediments, J. Sedim. Petrol, 44:249–255.

    CAS  Google Scholar 

  • Gillot, J.K., 1968, “Clay in Engineering Geology,” Elsevier, Amsterdam. 296 p.

    Google Scholar 

  • Hargrave, B.T., 1972, Oxidation-reduction potentials, oxygen concentration and oxygen uptake of profundal sediments in a eutrophic lake, Oikos, 23:167–177.

    Article  Google Scholar 

  • Hayes, F.R., and M.A. MacAulay, 1959, Lake water and sediment. V. Oxygen consumed in water over sediment cores, Limnol. Oceanogr., 4:291–298.

    Google Scholar 

  • Holland, E.F., R.G. Zingmark, and M.J. Dean, 1974, Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms, Mar. Biol., 27:191–196.

    Article  Google Scholar 

  • Jernelov, A., 1970, Release of methyl mercury from sediments with layers containing inorganic mercury at different levels, Limnol. Oceanogr., 15:958–960.

    CAS  Google Scholar 

  • Jonasson, P.M., 1969, Bottom fauna and eutrophication, In: “Eutrophication: Causes, Consequences, Connectives”, Nat. Acad. Sci., Washington, D.C. 661 p.

    Google Scholar 

  • Kemp, A.L.W., R.L. Thomas, C.I.,and J.M. Jaquet, 1978, Cultural impacts on the geochemistry of sediments in Lake Erie, J. Fish. Res. Bd. Can., 33:440–462.

    Article  Google Scholar 

  • Kemp, A.L.W., G.A. MacInnis, and N.S. Harper, 1977, Sedimentation rates and a revised sediment budget for Lake Erie, J. Great Lakes Res., 3:221–233.

    Article  Google Scholar 

  • Kirchner, W.B., 1975, The effect of oxidized material on the vertical distribution of freshwater benthic fauna, Freshwat. Biol., 5:423 - 429.

    Article  Google Scholar 

  • Krezoski, J.R., 1976, Macrobenthos and mixing processes in Lake Huron sediments, M.S. Thesis, University of Michigan, Ann Arbor. 34 p.

    Google Scholar 

  • Kuznetsov, S.I., 1970, “The Microflora of Lakes and its Geochemical Activity,” University of Texas Press, Austin. 503 p.

    Google Scholar 

  • Lucas, A.M. and W.A. Thomas, 1972, Sediment oxygen demand in Lake Erie’s Central Basin, 1970, In: “Project Hypo,” N.M. Burns and C. Ross, eds., Can. Cent. Inland Waters Pap. 6, 180 pp.

    Google Scholar 

  • Manheim, F.T., 1970, The diffusion of ions in unconsolidated sediments, Earth. Planet, Sci. Lett., 9:307–309.

    Article  CAS  Google Scholar 

  • McCall, P.L., M.J. Tevesz, and S. Schwelgien, in press, Sediment mixing by Lampsilis radiata siliquoidea (Mollusca) from western Lake Erie, J. Great Lakes Res.

    Google Scholar 

  • Mendenhall, W., 1968, “Introduction to Linear Models and the Design and Analysis of Experiments,” Wadsworth, Belmont, California. 465 p.

    Google Scholar 

  • Milbrink, G., 1973, On the vertical distribution of oligochaetes in lake sediments, Rep. Inst. Freshwater Res. Drottingholm, 53:34–50.

    Google Scholar 

  • Mills, E., 1969, The community concept in marine zoology, with comments on continua and instability in some marine communities: a review, J. Fish. Res. Bd. Can., 26:1415–1428.

    Article  Google Scholar 

  • Mortimer, C.H., 1941, The exchange of dissolved substances between mud and water in lakes, J. Ecol., 29:280–329.

    Article  CAS  Google Scholar 

  • Mortimer, C.H., 1942, The exchange of dissolved substances between mud and water in lakes, J. Ecol., 30:147–201.

    Article  CAS  Google Scholar 

  • Mortimer, C.H., 1971, Chemical exchanges between sediments and water in the Great Lakes — Speculations on probable regulatory mechanisms, Limnol. Oceanogr., 16:387–404.

    CAS  Google Scholar 

  • Neame, P.A., 1975, Benthic oxygen and phosphorous dynamics in Castle Lake, California, Ph.D. Thesis, University of California, Davis. 234 p.

    Google Scholar 

  • Newell, R.C., 1965, The role of detritus in the nutrition of two marine deposit feeders, the prosobranch Hydrobia ulvae and the bivalve Macoma balthica, Proc. Zool. Soc. Lond., 144:25–45.

    Article  Google Scholar 

  • Nriagu, J.O. and C.I. Dell, 1974, Diagenetic formation of iron phosphates in recent lake sediments, Am. Mineralogist, 59:934–946.

    CAS  Google Scholar 

  • Palmer, M.F., 1968, Aspects of the respiratory physiology of Tubifex tubifex in relation to its ecology, J. Zool. (Lond.), 154:463 - 473.

    Article  Google Scholar 

  • Parthenaides, E.,and R.E. Passwell, 1968, Erosion of cohesive soil and channel stabilization, Civil Engineering Rept. 19., State Univ. of New York, Buffalo. 51 p.

    Google Scholar 

  • Petr, T., 1977, Bioturbation and exchange of chemicals in the mud-water interface, In: “Interactions between Sediments and Fresh Water,” H.L. Golterman, ed., Junk, The Hague. 473 p.

    Google Scholar 

  • Pliodzinskas, A.J., 1978, Aquatic oligochaetes in the open water sediments of western and central Lake Erie, Ph.D. Thesis, Ohio State University. 160 p.

    Google Scholar 

  • Poddubnaya, T.L., 1961, Concerning the feeding of the high density species of tubificids in the Rybinsk Reservoir, Tr. Inst. Biol. Vodokhran. Akad. Nauk. SSS, 4:219–231.

    Google Scholar 

  • Poddubnaya, T.L., and V.S. Sorokin, 1961, The thickness of the nutrient layer in connection with movements of the Tubificidae in the ground, Byull. Inst. biol. Vodokhr., 10:14–20.

    Google Scholar 

  • Postma, H., 1967, Sediment transport and sedimentation in the estuarine environment, In: “Estuaries,” G.H. Lauff, ed., AAAS, Washington, D.C. 757 p.

    Google Scholar 

  • Rhoads, D.C., 1970, Mass properties, stability, and ecology of marine muds related to burrowing activity, In: “Trace Fossils,” J.P. Crimes and J.C. Harper, eds., Geol. Jour. Spec. Issue, 3:391–406.

    Google Scholar 

  • Rhoads, D.C., 1974, Organism — sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Ann Rev., 12:263–300.

    CAS  Google Scholar 

  • Rhoads, D.C. and D.K. Young, 1970, The influence of deposit-feeding organisms on sediment stability and community trophic structure, J. Mar. Res., 28:150–178.

    Google Scholar 

  • Rhoads, D.C., J.Y. Yingst, and W.J. Ullman, 1978, Seafloor stability in Central Long Island Sound: Part I. Temporal changes in erodibility of fine-grained sediment, In: Estuarine Interactions,” M.L. Wiley, ed., Academic Press, New York. 603 pp.

    Google Scholar 

  • Robbins, J.A., and D.N. Edgington, 1975, Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137, Geochim. Cosmochim. Acta., 39:285–304.

    Article  CAS  Google Scholar 

  • Robbins, J.A., and D.N. Edgington, 1976, Depositional processes and the determination of recent sedimentation rates in Lake Michigan. Proc. Second Federal Conf. on the Great Lakes.

    Google Scholar 

  • Robbins, J.A., J.R. Krezoski, and S.C. Mozley, 1977, Radioactivity in sediments of the Great Lakes: Post-depositional redistribution by deposit feeding organisms, Earth Planet. Sci. Sett., 36:325–333.

    CAS  Google Scholar 

  • Robbins, J.A., P.L. McCall, J.B. Fisher, and J.R. Krezoski, 1979, Effect of deposit feeders on migration of cesium-137 in lake sediments, Earth Planet Sci. Lett., 42:277–287.

    CAS  Google Scholar 

  • Royse, C.F., 1970, “An Introduction to Sediment Analysis,” Arizona State University, Tempe. 180 p.

    Google Scholar 

  • Seal, H.L., 1964, “Multivariate Statistical Analysis for Biologists”, Meuthen and Co., London. 209 p.

    Google Scholar 

  • Scheffé, H., 1953, A method for judging all contrasts in the analysis of variance, Biometrika, 40:87–104.

    Google Scholar 

  • Scheffé, H., 1959, “The Analysis of Variance,” J. Wiley, New York. 477 p.

    Google Scholar 

  • Schumacher, A., 1963, Quantitative Aspekte der Beziehung Zwischen Starke der Tubificidenbesiedlung und Schichtdicke der Oxydationzone in den Susswasserwatten der unterelbe, Arch. Fischwiss., 14:48–51.

    Google Scholar 

  • Scoffin, T.P., 1970, The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini lagoon, Bahamas, J. Sedim. Petrol., 40:249–273.

    Google Scholar 

  • Sorokin, Yi. I., 1966, Carbon-14 method in the study of the nutrition of aquatic animals. Int. Rev, ges. Hydrobiol., 51:209–224.

    Article  CAS  Google Scholar 

  • Southard, J.B., 1974, Erodibility of fine abyssal sediments, In: “Deep Sea Sediments,” A.L. Inderbitzen, ed., Plenum Press, New York. 432 p.

    Google Scholar 

  • Stamm, H.H.,and H.W. Kohlschutter, 1965, Die Sorption von Phosphationene an Eisen (III) — Hydroxide, J. Inorg. Nucl. Chem., 27:2103–2108.

    Article  CAS  Google Scholar 

  • Stockner, J.G., and J.W.G, Lund, 1970, Live algae in postglacial lake sediments, Limnol. Oceanogr., 15:41–58.

    Google Scholar 

  • Sundborg, A., 1956, The River Klaralven: A study of fluvial processes, Geogrof. Ann., 38:127–136.

    Google Scholar 

  • Tevesz, M.J.S., F.M. Soster, and P.L. McCall, in press, The effects of size-selective feeding by oligochaetes on the physical properties of river sediments. J. Sedim. Petrol.

    Google Scholar 

  • Thomas, R.L., J.M. Jaquet, A.L.W. Kemp, and C.F.M. Lewis, 1976, Surficial sediments of Lake Erie, J. Fish Res. Bd. Can., 33:385–403.

    Article  CAS  Google Scholar 

  • Veal, D.M., and D.S. Osmond, 1968, Bottom fauna of the western basin and near-shore Canadian waters of Lake Erie, Proc. 11th Conf. Great Lakes Res.:151–160.

    Google Scholar 

  • Viner, A.B., 1975, The sediments of Lake George (Uganda) I: Redox potentials, oxygen consumption, and carbon dioxide output, Arch. Hydrobiol., 76:181–197.

    CAS  Google Scholar 

  • Wavre, M., and R.O. Brinkhurst, 1971, Interactions between some tubificid oligochaetes found in the sediments of Toronto Harbour, Ontario, Jour. Fish. Res. Bd. Can., 28:335–341.

    Article  Google Scholar 

  • Williams, J.D.H., J.M. Jaquet, and R.L. Thomas, 1976a, Forms of phosphorous in the surficial sediments of Lake Erie, J. Fish. Res. Bd. Can., 33:413–429.

    Article  CAS  Google Scholar 

  • Williams, J.D.H., T.P. Murphy, and T. Mayer, 1976b, Rates of accumulation of phosphorous forms in Lake Erie sediments, J. Fish. Res. Bd. Can., 33:430–439.

    Article  CAS  Google Scholar 

  • Wood, L.W., 1975, Role of oligochaetes in the circulation of water and solutes across the mud-water interface. Verh. Internat. Verein. Limnol., 19:1530–1533.

    Google Scholar 

  • Wyeth, R.K., 1977, Changes in sediment oxygen demand rates as a function of deposition of dredged materials, Abstracts 20th Conference on Great Lakes Research, Ann Arbor, Mich.

    Google Scholar 

  • Zobell, C.E., and J. Stadler, 1940, The effect of oxygen tension on the oxygen uptake of lake bacteria, J. Bacteriol., 39:307-322.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

McCall, P.L., Fisher, J.B. (1980). Effects of Tubificid Oligochaetes on Physical and Chemical Properties of Lake Erie Sediments. In: Brinkhurst, R.O., Cook, D.G. (eds) Aquatic Oligochaete Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3048-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3048-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3050-9

  • Online ISBN: 978-1-4613-3048-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics