Skip to main content

Part of the book series: Comprehensive Treatise of Electrochemistry ((CTE,volume 2))

Abstract

In order to meet the anticipated enhanced demands for hydrogen as a chemical feedstock, as a process gas, and as a clean fuel, the development of techniques for bulk hydrogen generation from nonfossil primary energy sources is vital. With the continued increase in costs and dwindling availability of natural gas and oil, which are the major sources of hydrogen in most countries, the production of hydrogen from coal, or by water electrolysis using electricity derived from hydroelectric, nuclear, solar, geothermal, or fusion energy, will become quite attractive in the near future. Since the energy crisis of 1973, methods have been actively pursued for the production of electricity and/or heat (forms of energy which are not easily storable or transportable over long distances) from renewable sources. Even if such methods are found, there will still be a need for portable fluid fuels which will have to be manufactured on a large scale from the above-mentioned resources. Portable fuels will be most essential for transportation applications. Hydrogen, methanol, or ethanol are the most likely candidates for fluid fuels. Water electrolysis is the only proven technology for production of hydrogen from nonfossil fuel primary energy sources. Other methods such as thermochemical, photochemical, or biochemical are in the infant research stage and from an engineering and economic standpoint show little prospects of success for production of hydrogen on a commerical scale. Due to the intermittent nature of some of the renewable energy sources (solar, wind), energy storage in some other form becomes essential. Here again, electrolytic production of hydrogen is most attractive. H2 is ideal, whereas methanol or ethanol will be an alternative fuel for future transportation applications. In the nuclear, solar, or fusion era, the most convenient method of methanol production will be by the gas phase catalytic reaction of CO2 (from carbonate rocks, the atmosphere, or the ocean) and electrolytic hydrogen. Ethanol can be easily manufactured from any form of biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Wuellenweber and J. Mueller, Lurgi pressure electrolysis, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 1.

    Google Scholar 

  2. J. H. Russel, Design and development of solid polymer electrolyte water electrolyzers for large-scale hydrogen generation, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 77.

    Google Scholar 

  3. J. H. Perry, ed., Chemical Engineers Handbook, 3rd ed., McGraw-Hill, New York (1950), pp. 473–485.

    Google Scholar 

  4. J. H. Perry, ed., Chemical Engineers Handbook, 4th ed., McGraw-Hill, New York (1951), pp. 19–62, 19–67.

    Google Scholar 

  5. D. P. Gregory, A Hydrogen-Energy System, American Gas Association, Cat. No. L21173 (1973).

    Google Scholar 

  6. M. S. Casper, ed., Hydrogen Manufacture by Electrolysis, Thermal Decomposition and Unusual Techniques, Noyes Data Corporation, New Jersey (1978).

    Google Scholar 

  7. A. P. Fickett and F. R. Kaihammer, Water Electrolysis, in Hydrogen: Its Technology and Implications, Vol. 1 of Hydrogen Production Technology, K. E. Cox and K. D. Williamson, eds., Chemical Rubber Co., Cleveland, Ohio (1977).

    Google Scholar 

  8. J. Evangelista, B. Phillips, and L. Gordon, Electrolytic hydrogen production—an analysis and review, NASA Technical Memorandum No. TMX-71856, December 1975.

    Google Scholar 

  9. M. H. Miles, G. Kissel, P. W. T. Lu, and S. Srinivasan, Effect of temperature on electrode kinetic parameters for hydrogen and oxygen evolution reactions on nickel electrodes in alkaline solutions, J. Electrochem. Soc. 123, 332 (1976).

    Article  CAS  Google Scholar 

  10. R. L. Leroy, C. T. Bowen, and D. J. LeRoy, The thermodynamics of aqueous water electrolysis, J Electrochem. Soc. 127, 1954 (1980).

    Article  CAS  Google Scholar 

  11. R. L. Leroy, M. B. I. Janjua, R. Renaud, and U. Leuenberger, Time variations effects in unipolar water electrolyzers and their implications for efficiency improvement, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 63.

    Google Scholar 

  12. J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Vol. 2, Plenum, New York (1970).

    Google Scholar 

  13. A. J. Appleby, Electrocatalysis, Mod. Aspects Electrochem. 9, 369 (1974).

    Article  CAS  Google Scholar 

  14. E. W. Brooman and A. T. Kuhn, Correlations between the rate of the hydrogen electrode reaction and the properties of alloys, J. Electroanal. Chem. 49, 325 (1974).

    Article  CAS  Google Scholar 

  15. A. T. Kuhn, Surveying electrocatalysis, in Electrochemistry—the Past Thirty and the Next Thirty Years, H. Bloom and F. Gutman, eds., Plenum, New York (1977), p. 139.

    Google Scholar 

  16. B. V. Tilak, in A. J. Appleby’s Chapter on Electrocatalysis, Comprehensive Treatise of Electrochemistry, Vol. 5, J. O’M. Bockris, E. A. Yeager, and B. E. Conway, eds., Plenum, New York (1982).

    Google Scholar 

  17. M. H. Miles, Evaluation of electrocatalysis for water electrolysis in alkaline solution, J. Electroanal. Chem. 60, 89 (1975).

    Article  CAS  Google Scholar 

  18. S. Srinivasan and F. J. Salzano, Prospects for the hydrogen production by water electrolysis to be competitive with conventional methods, Int. J. Hydrogen Energy 2, 53 (1977).

    Article  Google Scholar 

  19. A. J. Appleby, G. Crepy, and J. Jacquelin, High efficiency water electrolysis in alkaline solutions, Int. J. Hydrogen Energy 3, 21 (1978).

    Article  CAS  Google Scholar 

  20. A. Nidola, P. M. Spaziante, and L. Giuffre, Electrolytic production of H2 from alkaline solutions, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 102–116.

    Google Scholar 

  21. A. J. Appleby and G. Crepy, New developments in alkaline electrolysis technology, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 150.

    Google Scholar 

  22. G. Kissel, F. Kulesa, C. R. Davidson, and S. Srinivasan, Selection and evaluation of materials for advanced alkaline water electrolyzers, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 218.

    Google Scholar 

  23. M. Prigent, L. J. Mas, and F. Verillon, Electrocatalysis in high performance alkaline water electrolysis, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 234.

    Google Scholar 

  24. P. J. Moran and G. E. Stoner, Energy losses occurring in alkaline electrolytes, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 169.

    Google Scholar 

  25. J. P. Hoare, The Electrochemistry of Oxygen, Wiley, New York (1968).

    Google Scholar 

  26. J. O’M. Bockris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York (1969).

    Google Scholar 

  27. G. Singh, M. H. Miles, and S. Srinivasan, Mixed oxides as oxygen electrodes, in “Electrocatalysis on non-metallic surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 455, 289 (1976).

    CAS  Google Scholar 

  28. S. Gottesfeld and S. Srinivasan, Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction, J. Electroanal. Chem. 86, 89 (1978).

    Article  CAS  Google Scholar 

  29. M. H. Miles, Y. H. Huang, and S. Srinivasan, The oxygen electrode reaction in alkaline solutions on oxide electrodes prepared by the thermal decomposition method, J. Electrochem. Soc. 125, 1931 (1978).

    Article  CAS  Google Scholar 

  30. P. W. T. Lu and S. Srinivasan, Nickel based alloys as electrocatalysts for oxygen evolution from alkaline solutions, J. Electrochem. Soc. 125, 265 (1978).

    Article  CAS  Google Scholar 

  31. P. W. T. Lu and S. Srinivasan, Electrochemical–ellipsometric studies of oxide film formed on nickel during oxygen evolution, J. Electrochem. Soc. 125, 1416 (1978).

    Article  CAS  Google Scholar 

  32. J. M. Gras and M. Pernot, Oxygen overvoltages on Ni–Fe 50–50 in KOH 40%, in Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, J. D. E. McIntyre, S. Srinvasan, and F. G. Will, eds., Electrochemical Society, Princeton, New Jersey (1977), p. 425.

    Google Scholar 

  33. P. W. T. Lu and S. Srinivasan, Advances water electrolysis: technology with emphasis on the use of solid polymer electrolyte, J. Appl. Electrochem. 9, 269 (1979).

    Article  CAS  Google Scholar 

  34. A. C. Tseung, S. Jasem, and M. N. Mahmood, Oxygen evolution on porous semiconducting oxide electrodes, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Langrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 161.

    Google Scholar 

  35. C. W. Tobias, Effect of gas evolution on current distribution and ohmic resistance in electrolyzers, J. Electrochem. Soc. 106, 833 (1959).

    Article  CAS  Google Scholar 

  36. R. E. Meredith and C. W. Tobias, Conduction in heterogeneous systems, Adv. Electrochem. Electrochem. Eng. 2, 15 (1966).

    Google Scholar 

  37. G. B. Wallis, One Dimensional Two-Phase Flow, McGraw-Hill, New York (1969).

    Google Scholar 

  38. W. C. Kincaide and J. N. Murray, Electrolytic hydrogen: a prognosis, in Proceedings of the First International Energy Agency Water Electrolysis Workshop, p. 90, BNL Publication No. 21165 (1975).

    Google Scholar 

  39. M. R. Yaffe and J. N. Murray, Aqueous caustic electrolyzers at high temperatures, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 132.

    Google Scholar 

  40. A. J. Konopka and D. P. Gregory, Hydrogen production by electrolysis: present and future, paper presented at the 10th Intersociety Energy Conversion Engineering Conference, University of Delaware, Newark, August 18, 1975.

    Google Scholar 

  41. L. Giuffre, P. M. Spaziante, and A. Nidola, Diaphragms and membranes for the production of hydrogen by electrolysis of alkaline and sulfuric acid solutions, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 190.

    Google Scholar 

  42. C. A. Hampel, ed., The Encyclopedia of Electrochemistry, Reinhold, New York (1964), pp. 1156–1160.

    Google Scholar 

  43. A. T. Kuhn, ed., Industrial Electrochemical Processes, Elsevier, Amsterdam (1971).

    Google Scholar 

  44. Commerical brochures from the Electrolyser Corporation entitled (i) Electrolytic hydrogen plants and generators and (ii) Electrolytic hydrogen generators for metereological stations.

    Google Scholar 

  45. A. K. Stuart, Modern electrolyzer technology in industry, paper presented at the American Chemical Society, Annual National Meeting, Symposium on Non-Fóssil Chemical Fuels, Boston, April 9–14, 1972.

    Google Scholar 

  46. A. K. Stuart, Electrolyzer technology for H2/O2 production, paper presented at the Symposium Course on Hydrogen Energy Fundamentals, University of Miami, Miami Beach, Florida, March 3–5, 1975.

    Google Scholar 

  47. R. L. LeRoy and A. K. Stuart, Present and future costs of hydrogen production by unipolar water electrolysis, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 117–127.

    Google Scholar 

  48. Private communication from The Electrolyser Corporation, Ltd., 1979.

    Google Scholar 

  49. Commercial brochures from Brown Boveri & Cie entitled (i) Electrolyzers for producing H2, publication No. CH-1S411–290-E; (ii) Electrolyzers type EBN (Oerlikon System, Publication No. CH-1S-411–811-E); (iii) BBC electrolyzers (Oerlikon System), publication No. CH-1S412–241E; (iv) Electrolyzers to produce pure H2 and 02—reference list, publication No. CH-1S411–557-D/E/F/S; (v) Electrolyzer type EBN, drawings No. 1SE 320001, 2, 3, 4, and 7; and (vi) Electrolyzer plants, drawings No. H1SE 320–048, 068, 049, 050, and 051.

    Google Scholar 

  50. M. J. Braun, Brown boveri electrolyzers today and in the near future, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 16–23.

    Google Scholar 

  51. Commercial brochures from Norsk Hydro Notodden Fabrikker, entitled (i) H2 and O2 by electrolysis of water; electrolyzers and electrolysis plants and (ii) Reference list hydrogen electrolyzer plants.

    Google Scholar 

  52. K. Christiansen and T. Grundt, Large-scale hydrogen production technology, experience and application, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 24–38.

    Google Scholar 

  53. Electrolytic hydrogen for NH3 syntheses-economics becoming more favorable as hydrocarbon prices rise, by The British Sulphur Corporation, Ltd., Nitrogen No. 97, September/October, 1975.

    Google Scholar 

  54. Pressure lowers electrolytic hydrogen cost, Chem. Eng. (March 7, 1960).

    Google Scholar 

  55. H. Wullenweber and J. Mueller, Lurgi pressure electrolysis, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 1–15.

    Google Scholar 

  56. The explosion at Laporte Industries Ltd., Ilford, April 5, 1975, Her Majesty’s Stationery Office, England, ISBN 011 880 3306, 1975.

    Google Scholar 

  57. Giant electrolyzers produce hydrogen, Chem. Eng. (December 14, 1959).

    Google Scholar 

  58. Commerical brochure from Panchlor Chemicals Ltd. (a subsidiary of DeNora), entitled Water electrolysis-a simple way to produce high purity hydrogen.

    Google Scholar 

  59. Private communication from Panchlor Chemicals, Ltd., June 25, 1979.

    Google Scholar 

  60. E. M. Dukson, J. W. Ryan, and M. H. Smulyon, A technology assessment of the hydrogen economy concept, Record of the 10th Intersociety Energy Conversion Engineering Conference, University of Delaware, Newark, Delaware, August 18–22, 1975.

    Google Scholar 

  61. R. L. LeRoy, Hydrogen in Canada’s energy future, in Hydrogen in Metals, The Metallurgical Society of CIM, annual volume, 1978, pp. 1–10.

    Google Scholar 

  62. F. C. Jensen and F. H. Schubert, Hydrogen generation through static feed water electrolysis, Hydrogen Energy, Part A, T. N. Veziroglu, ed. Plenum Press, New York (1975), pp. 425–439.

    Google Scholar 

  63. Private communication from Life Systems Inc., February 23, 1979.

    Google Scholar 

  64. J. N. Murray, J. B. Laskin, and W. C. Kincaide, The single irriguous approach to water electrolysis, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 39–53.

    Google Scholar 

  65. J. B. Laskin, Electrolytic hydrogen generators, Hydrogen Energy, Part A, T. N. Veziroglu, ed., Plenum Press, New York (1975), pp. 405–415.

    Google Scholar 

  66. Commerical brochures from Teledyne Energy Systems, entitled (i) The Teledyne electra cell and (ii) Hydrogen gas generators.

    Google Scholar 

  67. L. J. Nuttall, A. P. Fickett, and W. A. Titterington, Hydrogen generation by solid polymer electrolyte water electrolysis, paper presented at American Chemical Society Division of Fuel Chemistry Meeting, Chicago, Illinois, August 1973.

    Google Scholar 

  68. W. A. Titterington and A. P. Fickett, Electrolytic hydrogen production with solid polymer electrolyte technology, in Proceedings of the 8th Intersociety Energy Conversion Engineering Conference, Philadelphia, 1973.

    Google Scholar 

  69. L. J. Nuttall, A. P. Fickett, and W. A. Titterington, Hydrogen generation by solid polymer electrolyte water electrolysis, in Hydrogen Energy, Part A, T. N. Viziroglu, ed., Plenum Press, New York (1975), pp. 441–455.

    Chapter  Google Scholar 

  70. L. J. Nuttall and W. A. Titterington, General Electric’s solid polymer electrolyte water electrolysis, paper presented at the Conference on the Electrolytic Production of Hydrogen, City University, London, England, February 1975.

    Google Scholar 

  71. A. B. LaConti, A. R. Fragala, and J. R. Boyack, Solid polymer electrolyte electrochemical cells: electrodes and other materials considerations, in Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, J. D. E. McIntyre, S. Srinivasan, and F. G. Will, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 354–374.

    Google Scholar 

  72. B. D. McNicol, Electrocatalysis, Chem. Soc. Spec. Period. Rep. (1979).

    Google Scholar 

  73. J. O’M. Bockris and S. Srinivasan, Elucidation of the mechanism of electrolytic hydrogen evolution by the use of H-T separation factors, Electrochim. Acta 9, 31 (1964).

    Article  CAS  Google Scholar 

  74. L. Kandler, C. A. Knorr, and C. Schwitzer, The determinative process in the separation of hydrogen on active Pd and Pt cathodes, Z. Phys. Chem. A180, 281 (1937).

    Google Scholar 

  75. M. Breiter, Oxygen overvoltage, some problems in the study of, Adv. Electrochem. Electrochem. Eng. 1, 123 (1961).

    CAS  Google Scholar 

  76. J. P. Hoare, The Electrochemistry of Oxygen, Interscience, New York (1968), Chap. 3.

    Google Scholar 

  77. A. K. N. Reddy, M. A. V. Devanathan, and J. O’M. Bockris, Ellipsometric Study of Oxygen Containing Films on Platinum Electrodes, J. Electroanal. Chem. 8, 406 (1964)

    CAS  Google Scholar 

  78. A. K. N. Reddy, M. A. Genshaw, and J. O’M. Bockris, Ellipsometric study of oxygen containing films on platinum anodes, J. Chem. Phys. 48, 671 (1968).

    Article  CAS  Google Scholar 

  79. J. O’M. Bockris and A. K. M. S. Hug, The mechanism of electrolytic evolution of oxygen on platinum, Proc. R. Soc. London Ser. A 237, 277 (1956).

    Article  CAS  Google Scholar 

  80. J. O’M. Bockris, Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen, J. Chem. Phys. 24, 817 (1956).

    Article  CAS  Google Scholar 

  81. T. P. Hoar, Mechanism of the oxygen electrode in alkaline solutions, Proceedings of the 8th Meeting of CITCE, Madrid, 1956, Butterworths, London (1958), p. 439.

    Google Scholar 

  82. A. Damjanovic, A. Dey, and J. O’M. Bockris, Kinetics of oxygen evolution and dissolution on platinum electrodes, Electrochim. Acta 11, 791 (1966).

    Article  CAS  Google Scholar 

  83. J. J. MacDonald and B. E. Conway, The role of surface films in the kinetics of oxygen evolution at Pd + Au alloy electrodes, Proc. R. Soc. London Ser. A 269, 419 (1962).

    Article  Google Scholar 

  84. C. Iwakura, K. Hirao, and H. Tamura, Anodic evolution of oxygen on Ru in acidic solutions, Electrochim. Acta 22, 329 (1977).

    Article  CAS  Google Scholar 

  85. A. Damjanovic, A. Dey, and J. O’M. Bockris, Electrode kinetics of oxygen evolution and dissolution on Rh, Ir and Pt—Rh alloy electrodes, J. Electrochem. Soc. 113, 739 (1966).

    Article  CAS  Google Scholar 

  86. D. N. Buckley and L. D. Burke, Part 6, oxygen evolution and corrosion at iridium anodes, J. Chem. Soc. Faraday Trans. 1 72, Part 2, 2431 (1977).

    Google Scholar 

  87. L. J. Nuttall, Production and application of electrolytic hydrogen: present and future, in H2: Production and Marketing, M. W. Smith and J. G. Santagelo, eds., A.C.S. (1980), p. 191.

    Chapter  Google Scholar 

  88. D. J. Vaughan, Du Pont Innovation 4, 10 (Spring 1973).

    Google Scholar 

  89. S. Stuck and A. Menth, Electrochemical studies of noble metal alloys in contact with polymer electrolyte membranes, in Proceedings of the Symposium on Industrial Water Electrolyzers, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 180–189.

    Google Scholar 

  90. J. H. Russell, Design and development of solid polymer electrolyte water electrolyzers for large-scale hydrogen generation, in Proceedings of the Symposium on Industrial Water Electrolyzers, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 77–87.

    Google Scholar 

  91. J. H. Russell, The development of solid polymer electrolyte water electrolysis for large-scale hydrogen generation, paper presented at the IEEE Power Engineering Society Summer Meeting, Vancouver, Canada, July 15–20, 1979.

    Google Scholar 

  92. General Electric Direct Energy Conversion, Solid polymer electrolyte water electrolysis technology development for large-scale hydrogen production, proposal submitted to the American Gas Association, Lynn, Massachusetts, April 22, 1974.

    Google Scholar 

  93. Brookhaven National Laboratory, Hydrogen storage and production in utility system, BNL 50472, F. J. Salzano, ed., Upton, New York, 1975.

    Google Scholar 

  94. E. W. Brooman and T. P. Hoar, Platinum metal alloys in electrocatalysis, Platinum Met. Rev. 9, 122 (1965).

    CAS  Google Scholar 

  95. M. H. Miles, E. A. Klaus, B. P. Gunn, J. R. Locker, W. E. Serafin, and S. Srinivasan, The oxygen evolution reaction on Pt, Ir, Ru and their alloys in acid solutions, Electrochim. Acta 23, 521 (1978).

    Article  CAS  Google Scholar 

  96. J. Llopis and M. Vazquez, Passivation of Ru in hydrochloric acid solution, Electrochim. Acta 11, 633 (1966).

    Article  CAS  Google Scholar 

  97. L. D. Burke and T. O. O’Meara, Part 2—Behavior at Ru black electrodes, J. Chem. Soc. Faraday Trans 1 68, 839 (1972).

    Google Scholar 

  98. J. Llopis, I. M. Tordesillas, and J. M. Alfayate, Anodic corrosion of Ru in hydrochloric acid solution, Electrochim Acta 11, 623 (1966).

    Article  CAS  Google Scholar 

  99. P. W. T. Lu and S. Srinivasan, Ruthenium oxide anodes for solid electrolyte water electrolyzers: electrochemical and ellipsometric studies, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 88–101.

    Google Scholar 

  100. L. J. Nuttall, Solid polymer electrolyte water electrolysis development status, paper presented at the 9th Synthetic Pipeline Gas Symposium, Chicago, Illinois, October 31–November 2, 1977.

    Google Scholar 

  101. J. H. Russell and L. J. Nuttall, Development status of solid polymer electrolyte water electrolysis for large-scale hydrogen generation, paper presented at the DOE Chemical/Hydrogen Energy Systems Contractors’ Review Meeting, Washington, D.C., November 27–30, 1978.

    Google Scholar 

  102. R. M. Dempsey and A. B. Laconti, GE Memo Report No. 70–1, General Electric Company, DECP, Lynn, Massachusetts, 1970.

    Google Scholar 

  103. SPE water electrolysis technology development for bulk energy storage systems, GE Final Technical Report to Brookhaven National Laboratory, Contract No. 350400S, General Electric, DECP, Wilmington, Massachusetts, November, 1975.

    Google Scholar 

  104. H. E. Kroeger, Use of discounted cash-flow method, Chem. Eng. (May 16, 1960).

    Google Scholar 

  105. J. Linsby, Return on investment: discounted and undiscounted, Chem. Eng. (May 21, 1979).

    Google Scholar 

  106. C. G. Edge, A practical manual on the appraisal of capital expenditure, Special Study No. 1, Revised Edition, The Society of Industrial and Cost Accountants of Canada, April 1964.

    Google Scholar 

  107. D. P. Gregory, K. F. Blurton, and N. P. Biederman, Economic criteria for the improvement of electrolyzer technology, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), pp. 54–62.

    Google Scholar 

  108. M. J. Braun, Advanced alkaline water electrolysis cells: electrode and other material problems, in Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, Vol. 77–6, Electrochemical Society, Princeton, New Jersey (1977), pp. 375–381.

    Google Scholar 

  109. L. J. Nuttall, Solid polymer electrolyte water electrolysis status for large-scale hydrogen production, in Proceedings of the 14th Intersociety Energy Conversion Engineering Conference, Boston, August 6–7, 1979.

    Google Scholar 

  110. P. W. T. Lu and R. L. Ammon, New development in sulfur dioxide depolarized water electrolysis technology, in Extended Abstracts of the Fall 1979 Meeting of the Electrochemical Society, October 14–19, Electrochemical Society, Princeton, New Jersey (1979).

    Google Scholar 

  111. A. J. Smith and J. D. Hatfield, A new look at the electrolytic production of hydrogen for the manufacture of ammonia, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 143.

    Google Scholar 

  112. F. J. Salzano, private communication, 1979.

    Google Scholar 

  113. R. W. Coughlin and M. Farooque, Hydrogen production from coal, water and electrons, Nature 279, 301 (1979).

    Article  CAS  Google Scholar 

  114. L. Elikan, J. P. Morris, and C. K. Wu, Development of a solid electrolyte system for oxygen reclamation, report prepared under Contract No. NASI-8896 by Westinghouse Electric Corporation for NASA, 1971.

    Google Scholar 

  115. H. S. Spacil and C. S. Tedmon, Electrochemical dissociation of water vapor in solid oxide electrolyte cells, thermodynamics and materials: series connected multiple cell stacks, in Extended Abstracts of Spring Meeting of the Electrochemical Society, Vol. 68–1, Electrochemical Society, Princeton, New Jersey (1968), p. 194.

    Google Scholar 

  116. F. J. Rohr, High temperature solid oxide fuel cells: present status and problems of development, in Proceedings of the Workshop on High Temperature Solid Oxide Fuel Cells, May 5–6, 1977, Brookhaven National Laboratory, Upton, New York, 1978, p. 122.

    Google Scholar 

  117. W. Doenitz, W. Schmidberger, and E. Steinhell, Perspectives and problems of high temperature electrolysis of water vapor using solid electrolytes, in Proceedings of the Symposium on Industrial Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 266.

    Google Scholar 

  118. H. S. Isacs, J. A. Fillo, V. Dang, J. R. Powell, M. Steinberg, F. Salzano, and R. Benenati, Hydrogen production from fusion reactions coupled with high temperature electrolysis, in Proceedings of the Symposium on Water Electrolysis, Vol. 78–4, S. Srinivasan, F. J. Salzano, and A. R. Landgrebe, eds., Electrochemical Society, Princeton, New Jersey (1978), p. 249.

    Google Scholar 

  119. A. P. Isenberg, Thin film solid electrolyte fuel cells, in Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, Vol. 77–6, Spring 1977 Meeting of the Electrochemical Society, Philadelphia, J. D. E. McIntyre, S. Srinivasan, and F. G. Will, eds., Electrochemical Society, Princeton, New Jersey (1977), p. 682.

    Google Scholar 

  120. G. H. Farbman and G. H. Parker, The sulphur cycle hydrogen production process, in H 2 : Production and Marketing, M. W. Smith and J. G. Santagelo, eds., A.C.S. (1980), p. 359.

    Chapter  Google Scholar 

  121. D. VanVelzer, H. Langenkamp, A. Schutz, D. Lalonde, J. Flaen, and P. Feibelmann, Development, design and operation of a continuous laboratory scale plant for hydrogen production by the Mark 13 cycle, in Proceedings of the 2nd World Hydrogen Energy Conference, Zurich, Switzerland, August 21–24, 1978.

    Google Scholar 

  122. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  123. J. G. Mavroides, D. I. Tchernev, J. A. Kof alas, and D. F. Kolesar, Photoelectrolysis of water in cells in TiO2 anodes, Mat. Res. Bull. 10, 1023 (1975).

    Article  CAS  Google Scholar 

  124. J. O’M. Bockris and K. Uosaki, Theoretical treatment of the photoelectrochemical production of hydrogen, Int. J. Hydrogen Energy 2, 123 (1977).

    Article  CAS  Google Scholar 

  125. J. G. Mavroides, J. A. Kafalas, and D. F. Koselar, Photoelectrolysis of water in cells with Sr Ti 03 anode, Appl. Phys. Lett. 28, 241 (1976).

    Article  CAS  Google Scholar 

  126. J. O’M. Bockris, Hydrogen production in a solar energy economy, in Proceedings of the Symposium Electrode Materials and Processes for Energy Conversion and Storage, Vol. 77–6, Spring 1977 Meeting of the Electrochemical Society, Philadelphia, J. D. E. McIntyre, S. Srinivasan, and F. G. Will, eds., Electrochemical Society, Princeton, New Jersey (1977), p. 338.

    Google Scholar 

  127. M. Hammerli, Heavy water as a valuable by-product of electrolytic hydrogen, in Proceedings of the 2nd World Hydrogen Energy Conference, Zurich, Switzerland, August 21–24, 1978, p. 423.

    Google Scholar 

  128. J. O’M. Bockris, S. Srinivasan, and D. B. Matthews, Proton transfer across double layers, Discuss Faraday Soc. 39, 239 (1965).

    Article  Google Scholar 

  129. M. Hammerli, J. P. Butler, and W. H. Stevens, Peak power and heavy water production from nuclear electrolytic hydrogen and oxygen in Canada, Int. J. Hydrogen Energy 4, 85 (1979).

    Article  CAS  Google Scholar 

  130. J. P. Butler, J. H. Rolston, and W. H. Stevens, Novel catalysts for isotopic exchange between H2 and liquid water; M. Hammerli, W. H. Stevens, and J. P. Butler, Combined electrolysis catalytic exchange process for H2 isotope separation, in Separation of H2 Isotopes, H. K. Ray, ed., ACS Symposium Series No. 68, 1978.

    Google Scholar 

  131. A. J. Appleby and G. Crepy, Advanced electrolysis in alkaline solutions, in Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, Vol. 77–6, J. D. E. McIntyre, S. Srinivasan, and F. G. Will, eds., Electrochemical Society, Princeton, New Jersey, (1977), p. 382.

    Google Scholar 

  132. J. N. Murray and M. R. Yaffe, High efficiency alkaline water electrolysis technology, in Proceedings of the 14th IECEC Meeting, Boston, August, 1979, p. 749.

    Google Scholar 

  133. E. Hausmann, H. Will, and A. Belloni, Proceedings of the Oronzio denora Symposium on Chlorine Technology, Oronzio deNora Impianti Electrochimici S.P.A., Milano, 1979, p. 69.

    Google Scholar 

  134. Commercial brochure from Krebskosmo, Berlin, West Germany, entitled “Water Electrolysis.”

    Google Scholar 

  135. J. H. Russel, Development of solid polymer electrolyte water electrolysis for large scale H2 production, CONF-791127, Proceedings of the DOE Chemical Energy Storage and H2 Energy Systems Contracts Review, 13–14 November, 1979, Reston, Virginia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Tilak, B.V., Lu, P.W.T., Colman, J.E., Srinivasan, S. (1981). Electrolytic Production of Hydrogen. In: Bockris, J.O., Conway, B.E., Yeager, E., White, R.E. (eds) Comprehensive Treatise of Electrochemistry. Comprehensive Treatise of Electrochemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3785-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3785-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3787-4

  • Online ISBN: 978-1-4684-3785-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics