Skip to main content

Asymptotic Equations for Nonlinear Hyperbolic Waves

  • Chapter
Surveys in Applied Mathematics

Abstract

Universal asymptotic equations. It is a remarkable fact that, in suitable asymptotic limits, the behavior of almost all nonlinear waves is described by a few rather simple looking nonlinear equations. Examples include Burgers equation, the Kortewegde Vries (KdV) equation, and the nonlinear Schrodinger equation. These equations are “universal” or “canonical” because their applicability depends only on a few, very general features of the wave motion, such as the form of the linearized dispersion relation and the type of nonlinearity acting on the wave. Universal equations thus provide a common theoretical core for the study of nonlinear waves in an enormous number of diverse physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Abdelouhab, J. L. Bona, M. Felland, and J. C. Saut, “Nonlocal models for nonlinear dispersive waves,” Physica D, 40,360–392 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. J. Ablowitz and P. A. Clarkson, Solitons,Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series 149, Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  3. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Book  MATH  Google Scholar 

  4. M. S. Alber, R. Camassa, D. D. Holm, and J. E. Marsden, “The geometry of peaked solitons and billiard solutions of a class of integrable PDEs,” to appear in: Lee. Math. Phys.

    Google Scholar 

  5. R. Almgren, “Modulated high-frequency waves,” Stud. Appl. Math., 83, 159–181 (1990).

    MathSciNet  MATH  Google Scholar 

  6. R. Almgren, A. Majda, and R. R. Rosales, “Rapid initiation in condensed phases through resonant nonlinear acoustics,” Phys. Fluids A, 2, 1014–1029 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  7. C. J. Amick and J. F. Toland, “Solitary waves with surface tension I. Trajectories homoclinic to periodic orbits in four dimensions,” Arch. Rat. Mech. Anal., 118, 37–69 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. M. Anile, Relativistic Fluids and Magneto-fluids, Cambridge University Press, Cambridge, 1989.

    MATH  Google Scholar 

  9. A. M. Anile, J. K. Hunter, P. Pantano, and G. Russo, Ray Methods for Nonlinear Waves in Fluids and Plasmas, Longman, London, 1993.

    MATH  Google Scholar 

  10. A. M. Anile and G. Russo, “Generalized wavefront expansion I. Higher order corrections for the propagation of weak shock waves,” Wave Motion 8, 243 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd Edition, Springer-Verlag, New York, 1989.

    Google Scholar 

  12. D. G. Aronson, “The porous medium equation,” in: Nonlinear Diffusion Problems, ed. A. Fasano, and M. Primicerio, Lecture Notes in Math. 1224, Springer-Verlag, New York, 1–44 (1985).

    Chapter  Google Scholar 

  13. M. Artola and A. J. Majda, “Nonlinear development of instabilities in supersonic vortex sheets I: the basic kink modes,” Physica D, 28, 253–281 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Artola and A. J. Majda, “Nonlinear development of instabilities in supersonic vortex sheets II: resonant interactions among kink modes,” SIAM.1 Appl. Math., 49, 1311–1349 (1989).

    MathSciNet  Google Scholar 

  15. V. M. Babie and V. S. Buldyrev, Short Wavelength Diffraction Theory, Springer Series on Wave Phenomena, Vol. 4, Springer-Verlag, New York, 1991.

    Google Scholar 

  16. N. S. Bakhvalov, Ya. M. Zhileikin, and E. A. Zabolotskaya, Nonlinear Theory of Sound Beams, American Institute of Physics, Translation Series, New York, 1987.

    Google Scholar 

  17. J. D. Bdzill and D. S. Stewart, “Modeling two-dimensional detonations with detonation shock dynamics,” Phys. Fluids A, 1, 1261–1267 (1989).

    Article  MathSciNet  Google Scholar 

  18. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers,McGraw-Hill, New York, 1978.

    MATH  Google Scholar 

  19. M. Beals, Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems, Birkhauser, Boston, 1989.

    Book  MATH  Google Scholar 

  20. E. S. Benilov and E. M. Pelinovskii, “Dispersionless wave propagation in nonlinear fluctuating media,” Soy. Phys. JETP, 67, 1040–1052 (1986).

    Google Scholar 

  21. T. B. Benjamin, Internal waves of finite amplitude and permanent form, J. Fluid. Mech., 25, 559–592 (1966).

    Article  Google Scholar 

  22. T. B. Benjamin, J. G. Bona, and J. J. Mahoney, “Model equations for long waves in nonlinear dispersive systems,” Phil. Trans. Roy. Soc. London A, 272, 47–78 (1972).

    Article  MATH  Google Scholar 

  23. A. Bensoussan, J. L. Lions, and G. C. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  24. R. T. Beyer and S. V. Letcher, Physical Ultrasonics, Academic Press, New York, 1969.

    Google Scholar 

  25. R. T. Beyer, Nonlinear Acoustics, Naval Ship Systems Command, Washington, 1974.

    Google Scholar 

  26. J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena, Oxford University Press, Oxford, 1992.

    MATH  Google Scholar 

  27. N. Bleistein, Mathematical Methods for Wave Phenomena, Academic Press, Orlando, 1984.

    MATH  Google Scholar 

  28. J. L. Bona, V. A. Dougalis, O. A. Karakashian, and W. R. McKinney, “Computations of blow-up and decay for periodic solutions of the generalized Korteweg—de Vries—Burgers equation,” Applied Numerical Mathematics, 10, 335–355 (1992).

    MathSciNet  MATH  Google Scholar 

  29. J. L. Bona and J. C. Saut, “Dispersive blowup of solutions of generalized Korteweg—de Vries equations,” J. Dill Eq., 103, 3–57 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  30. J. L. Bona and M. Schonbek, “Travelling wave solutions to Korteweg—de Vries—Burgers equations,” Proc. Roy. Soc. Edinburgh A, 101, 207–226 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Bourgain, “On the Cauchy problem for the Kadomtsev-Petviashvili equation,” Geometric and Functional Analysis, 3, 315–341 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. P. Boyd, “New directions in solitons and nonlinear periodic waves,” in: Advances in Applied Mechanics, Vol. 27, ed. J. W. Hutchinson, and T. Y. Wu, Academic Press, New York, 1–82 (1989).

    Google Scholar 

  33. M. A. Breazeale and J. Philip,in: Physical Acoustics, Vol. XVII, ed. W. P. Mason, and R. N. Thurston, Academic Press, New York, 1–60 (1984).

    Google Scholar 

  34. F. P. Bretherton, “The general linearized theory of wave propagation,” in: Mathematical Problems in the Geophysical Sciences, ed. W. H. Reid, Amer. Math. Soc., Providence, 61–102 (1971).

    Google Scholar 

  35. M. Brio and J. K. Hunter, “Rotationally invariant hyperbolic waves,” Comm. Pure Appl. Math., 43, 1037–1053 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Brio and J. K. Hunter, “Asymptotic equations for conservation laws of mixed type,” Wave Motion, 16, 57–64 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Brio and J. K. Hunter, “Mach reflection for the two-dimensional Burgers equation,” Physica D, 60, 194–207 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  38. J. M. Burgers, The Nonlinear Diffusion Equation, Dordrecht-Holland, Amsterdam, 1974.

    MATH  Google Scholar 

  39. F. Calogero and A. Degasperis, Spectral Transform and Solitons. I., North-Holland, Amsterdam, 1982.

    Google Scholar 

  40. F. Calogero, “A solvable nonlinear wave equation,” Stud. Appl. Math., 70, 189–199 (1984).

    MathSciNet  MATH  Google Scholar 

  41. F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable?,” in: What is Integrability?, ed. V. E. Zakharov, Springer-Verlag, Berlin, 1991,1–62.

    Chapter  Google Scholar 

  42. R. Camassa and D. Holm, “An integrable shallow water equation with peaked solitons,” Phys. Rev. Lett., 71, 1661 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Camassa, D. D. Holm, and J. M. Hyman, “A new integrable shallow water equation,” to appear in: Adv. in Appl. Mech.

    Google Scholar 

  44. J. Canosa and J. Gazdag, “The Korteweg—de Vries—Burgers equation,” J. Comp. Phys., 23, 393–403 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  45. A. T. Cates and D. G. Crighton, “Nonlinear diffraction and caustic formation,” Proc. Roy. Soc. Lond. A, 430, 69–88 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  46. P. Cehelsky and R. R. Rosales, “Resonantly interacting weakly nonlinear waves in the presence of shocks: a single space variable in a homogeneous time independent medium,” Stud. Appl. Math. 74, 117–138 (1986).

    MathSciNet  MATH  Google Scholar 

  47. C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences Vol. 67, Springer-Verlag, New York, 1988.

    Book  MATH  Google Scholar 

  48. F. E Chen, Introduction to Plasma Physics. Vol. I. Plasma Physics, 2nd ed., Plenum, New York, 1984.

    Google Scholar 

  49. G.-Q. Chen, D. Levermore, and T. P. Liu, “Hyperbolic conservation laws with stiff relaxation and entropy,” Comm. Pure Appl. Math., 47, 787–830 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  50. P. Chen, Selected Topics in Wave Propagation, Nordhoff, Leyden, 1976.

    MATH  Google Scholar 

  51. R. C. Y. Chin, J. C. Garrison, C. D. Levermore, and J. Wong, “Weakly nonlinear acoustic instabilities in inviscid fluids,” Wave Motion, 8, 537–559 (1986).

    Article  MATH  Google Scholar 

  52. Y. S. Choi and A. Majda, “Amplification of small-amplitude high-frequency waves in a reactive mixture,” SIAM Rev., 31, 401–427 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  53. Y. Choquet-Bruhat, “Construction de solutions radiative approchées des equations d’Einstein,” Commun. Math. Phys. 12, 16–35 (1969).

    Article  MathSciNet  Google Scholar 

  54. Y. Choquet-Bruhat, “Ondes asymptotique et approchees pour systèmes nonlineaires d’équations aux dérivées partielles nonlinéaires,” J. Math. Pure et Appl., 48, 117–158 (1969).

    MathSciNet  MATH  Google Scholar 

  55. P. A. Clarkson and S. Hood, “Nonclassical symmetry reductions and exact solutions of the Zabolotskaya—Khokhlov equation,” Euro. J. Appl. Math., 3, 381–415 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  56. J. D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics,” Quart. Appl. Math., 9, 225–236 (1951).

    MathSciNet  MATH  Google Scholar 

  57. J. D. Cole and L. P. Cook, Transonic Aerodynamics, Elsevier, Amsterdam, 1986.

    MATH  Google Scholar 

  58. L. P. Cook, ed., Transonic Aerodynamics: Problems in Asymptotic Theory, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1993.

    MATH  Google Scholar 

  59. R. Courant and D. Hilbert, Methods of Applied Mathematics, Vol. 2, Interscience, New York, 1962.

    Google Scholar 

  60. W. Craig, “Water waves theory,” Comm. Part. Diff. Eq., 10, 787–1003 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  61. A. D. D. Craik, Wave Interactions and Fluid Flows, Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  62. M. S. Cramer and A. R. Seebass, “Focusing of a weak shock wave at an arete,” J. Fluid. Mech. 88, 209–222 (1978).

    Article  MATH  Google Scholar 

  63. D. G. Crighton, “Model equations for nonlinear acoustics,” Ann. Rev. Fluid. Mech., 11, 11–33 (1979).

    Article  Google Scholar 

  64. D. G. Crighton, “Basic theoretical nonlinear acoustics,” Frontiers in Physical Acoustics, Proc. Int. School of Physics “Enrico Fermi, ” Course 93, Elsevier, Amsterdam, 1986.

    Google Scholar 

  65. D. G. Crighton, “Nonlinear acoustics of bubbly fluids,” Nonlinear Waves in Real Fluids, ed. A. Kluwick, CISM Courses and Lectures no. 315, Springer-Verlag, New York, 45–68 (1991).

    Google Scholar 

  66. D. G. Crighton and I. P. Lee-Bapty, “Spherical nonlinear wave propagation in a dissipative stratified atmosphere,” Wave Motion, 15, 315–331 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  67. C. M. Dafermos, “Hyperbolic systems of conservation laws,” in: Systems of Nonlinear Partial Differential Equations, ed. J. M. Ball, Reidel, Boston, 25–70 (1983).

    Chapter  Google Scholar 

  68. J. M. Delort, “Oscillations semi-lineaires multiphasees compatibles en dimension 2 et 3 d’espace,” J. Diff. Equations, 16, 845–872 (1991).

    MathSciNet  MATH  Google Scholar 

  69. R. DiPema and A. J. Majda, “The validity of nonlinear geometrical optics for weak solutions of conservation laws,” Commun. Math. Phys. 98, 313–347 (1985).

    Article  Google Scholar 

  70. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London, 1982.

    MATH  Google Scholar 

  71. P. Drazin and R. Johnson, Solitons: an Introduction, Cambridge University Press, Cambridge, 1989.

    Book  MATH  Google Scholar 

  72. W. E, “Propagation of oscillations in the solutions of 1-D compressible fluid equations,” Comm. Partial Differential Equations,17, 347–370 (1992).

    MathSciNet  Google Scholar 

  73. K. S. Eckhoff, “On the stability for symmetric hyperbolic systems,” I, Journal of Differential Equations,40, 94–115 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  74. P. Embid, J. K. Hunter, and A. Majda, “Simplified asymptotic equations for the transition to detonation in reactive granular materials,” SIAM J. Appl. Math., 52, 1199–1237 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  75. P. Embid and A. Majda, “An asymptotic theory for hot spot formation and transition to detonation for reactive granular material,” Comb. and Flame, 89, 17–36 (1992).

    Article  Google Scholar 

  76. L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Regional Conf. Series in Mathematics, Amer. Math. Soc., Providence, 1990.

    MATH  Google Scholar 

  77. L. C. Evans, Partial Differential Equations, Berkeley Mathematics Lecture Notes, Vol. 3A–3B, Berkeley, 1993.

    Google Scholar 

  78. H. Flaschka, M. G. Forest, and D. W. McLaughlin, “Multiphase averaging and the inverse spectral solution of the Korteweg—de Vries equation,” Comm. Pure Appl. Math., 33, 739–784 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  79. B. Fomberg and G. B. Whitham, “A numerical and theoretical study of certain nonlinear wave phenomena,” Phil. Trans. R. Soc. Lond. 289, 373–404 (1978).

    Article  Google Scholar 

  80. H. Freistiihler, Dynamical stability and vanishing viscosity: a case study of a non-strictly hyperbolic system, Comm. Pure Appl. Math., XLV, 561–582 (1992).

    Article  Google Scholar 

  81. H. Freistiihler, “Some remarks on the structure of intermediate magnetohydrodynamic shocks,” J. Geophys. Res.,96, 3825–3827 (1991).

    Article  Google Scholar 

  82. H. Fujita, “On the blowing up of solutions of the Cauchy problem for u t = △u+u l+α,“ J. Fac. Sci. Tokyo, Sect. IA, Math., 13, 109–124 (1966).

    MATH  Google Scholar 

  83. S. A. Gabov, “On Whitham’s equation,” Sov. Math. Dokl., 19, 1225–1229 (1978).

    MATH  Google Scholar 

  84. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Kortewegde Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).

    Article  MATH  Google Scholar 

  85. C. S. Gardner and G. M. Morikawa, “Similarity in the asymptotic behavior of collision free hydro-magnetic wave and water waves,” Report NYO-9082, Courant Institute of Mathematical Sciences, 1962.

    Google Scholar 

  86. P. Germain, “Progressive waves,” Jahrbuch DGLR,11–30 (1971).

    Google Scholar 

  87. S. Giambb, A. Greco, and P. Pantano, “Sur la methode perturbative et reductive a n-dimensions: le cas general,” Comptes Rendus Acad. Sci. Paris, Ser. A, 289, 553–556 (1979).

    Google Scholar 

  88. M.-J. Gionnoni, A. Voros, and J. Zinn-Justin, Eds, Chaos and Quantum Physics, Les Houches Ecole d’Ete de Physique Theorique, Session LII 1989, North-Holland, Amsterdam, 1991.

    Google Scholar 

  89. J. Glimm and P. Lax, “Decay of solutions of systems of nonlinear hyperbolic conservation laws,” Mem. Amer. Math. Soc., 101, (1970).

    Google Scholar 

  90. N. Goldenfeld, Lectures in Phase Transitions and the Renormalization Group, Frontiers in Physics, Vol. 85, Addison-Wesley, Reading Mass., 1992.

    Google Scholar 

  91. J. Goodman, “Stability of viscous scalar shock fronts in several space dimensions,” Trans. Amer. Math. Soc.,311, 683–695 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  92. J. Goodman, Stability of the Kuramoto—Sivashinsky and related systems, Commun. Pure Appl. Phys., Comm. Pure Appl. Math., 47, 293–306 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  93. K. A. Gorshkov, L. A. Ostrovsky, and A. S. Pikovsky, “On the existence of stationary multisolitons,” Phys. Lett. A, 74, 177–179 (1979).

    Article  MathSciNet  Google Scholar 

  94. R. Grimshaw, “Wave action and wave-mean flow interaction, with application to stratified shear flows,” in: Ann. Rev. Fluid Mech., 16, 11–44 (1984).

    Article  Google Scholar 

  95. R. Grimshaw, “Evolution equations for weakly nonlinear long internal waves in a rotating fluid,” Stud. Appl. Math., 73, 1–33 (1985).

    MathSciNet  MATH  Google Scholar 

  96. R. Grimshaw, “Theory of solitary waves in shallow fluids,” in: Encyclopedia of Fluid Mechanics, Vol. 2, ed. N. P. Cheremisinoff, Gulf Publication Co., Houston, 3–25 (1986).

    Google Scholar 

  97. R. Grimshaw and S. Tang, “The rotation modified Kadomtsev—Petviashvilli equation: an analytical and numerical study,” Stud. Appl. Math., 83, 223–248 (1990).

    MathSciNet  MATH  Google Scholar 

  98. O. Gues, “Développements asymptotiques de solutions exactes de systèmes hyperboliques quasilineaires,” Asymptotic Anal., 6, 241–269 (1993).

    MathSciNet  MATH  Google Scholar 

  99. J.-P. Guiraud, “Transonic degeneracy in systems of conservation laws,” Symposium Transonicum eds. J. Sierep and H. Oertel, Springer-Verlag, Berlin, 171–178 (1989).

    Chapter  Google Scholar 

  100. S. Gurbatov, A. Malakhov, and A. Saichev, Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays, and Particles, Manchester University Press, Manchester, 1991.

    Google Scholar 

  101. B. Gurevich, A. Jeffrey, and E. N. Pelinovsky, “A method for obtaining evolution equations for nonlinear waves in a random medium,” Wave Motion, 17, 287–296 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  102. M. E. Gurtin, Introduction to Continuum Mechanics, Academic Press, New York, 1981.

    MATH  Google Scholar 

  103. M. F. Hamilton, Fundamentals and applications of nonlinear acoustics, Nonlinear Wave Propagation in Mechanics, ed. T. W. Wright, AMD-77, 1–28 (1986).

    Google Scholar 

  104. J. L. Hammack, N. Scheffner, and H. Segur, “Periodic waves in shallow water,” in: Nonlinear Topics in Ocean Physics, Proceedings of the International School of Physics “Enrico Fermi, ” Course CIX, North-Holland, Amsterdam, 891–914 (1991).

    Google Scholar 

  105. J. L. Hammack and H. Segur, “The Korteweg—de Vries equation and water waves part 2. Comparison with experiments,” J. Fluid Mech., 84, 289–314 (1974).

    Article  MathSciNet  Google Scholar 

  106. E. Harabetian, “Diffraction of a weak shock by a wedge,” Comm. Pure Appl. Math., 40, 849–863 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  107. H. Hasimoto, Kagato, 40, 401 (1970).

    Google Scholar 

  108. W. D. Hayes, Introduction to wave propagation, in: Nonlinear Waves, ed. S. Leibovich and A. R. Seebass, Cornell Univ. Press, Ithica, 1–43 (1974).

    Google Scholar 

  109. E. J. Hinch, Perturbation Methods, Cambridge Texts in Applied Mathematics, Cambridge Univ. Press, Cambridge, 1991.

    MATH  Google Scholar 

  110. J. K. Hunter, Transverse diffraction of nonlinear waves and singular rays, SIAM J. Appl. Math, 48, 1–37 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  111. J. K. Hunter, “Hyperbolic waves and nonlinear geometrical acoustics,” ARO Report 89–1, in: Transactions of the Sixth Army Conference on Applied Mathematics and Computing Boulder, 527–570 (1989).

    Google Scholar 

  112. J. K. Hunter, Nonlinear surface waves, in: Contemporary Mathematics Vol. 100, ed. B. Lindquist, American Mathematical Society, 185–202 (1989).

    Google Scholar 

  113. J. K. Hunter, “Strongly nonlinear hyperbolic waves,” in Proceedings of the Second Intenational Conference on Nonlinear Hyperbolic Problems, Aachen, Notes on Numerical Fluid Mechanics, Vol. 24, ed. J. Ballmann and R. Jeltsch, Braunschweig, 257–268 (1989).

    Google Scholar 

  114. J. K. Hunter, “Nonlinear geometrical optics,” in: Multidimensional Hyperbolic Problems and Computations, Vol. 29, IMA Volumes in Mathematics and its Applications, ed. A. J. Majda and J. Glimm, Springer-Verlag, New York, 179–197 (1991).

    Chapter  Google Scholar 

  115. J. K. Hunter, “Interacting weakly nonlinear hyperbolic and dispersive waves,” in: Microlocal Analysis and Nonlinear Waves, Vol. 30, IMA Volumes in Mathematics and its Applications, ed. M. Beals, R. Melrose, and J. Rauch, Springer-Verlag, New York, 83–112 (1991).

    Chapter  Google Scholar 

  116. J. K. Hunter, “Numerical solutions of some nonlinear dispersive wave equations,” in: Lectures in Applied Mathematics 26, 301–316 (1990).

    Google Scholar 

  117. J. K. Hunter, “Interaction of elastic waves,” Stud. Appl. Math., 86, 281–314 (1992).

    MathSciNet  MATH  Google Scholar 

  118. J. K. Hunter and J. B. Keller, “Weakly nonlinear high frequency waves,” Comm. Pure Appl. Math., 36, 547–569 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  119. J. K. Hunter and J. B Keller, “Caustics of nonlinear waves,” Wave Motion 9, 429–443 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  120. J. K. Hunter and J. B. Keller, “Strongly nonlinear hyperbolic waves,” Proc. Roy. Soc. Lond. A, 417, 299–308 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  121. J. K. Hunter, A. J. Majda, and R. R. Rosales, “Resonantly interacting, weakly nonlinear, hyperbolic waves. II Several space variables,” Stud. Appl. Math.,75, 187–226 (1986).

    MathSciNet  MATH  Google Scholar 

  122. J. K. Hunter and R. Saxton, “Dynamics of director fields,” SIAM J. Appl. Math., 51, 1498–1521 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  123. J. K. Hunter and J. Scheurle, “Perturbed solitary wave solutions of a model equation for water waves,” Physica D, 32, 253–268 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  124. J. K. Hunter and K. Tan, “Weakly dispersive short waves,” in: Proceedings of the IVth international Congress on Waves and Stability in Continuous Media, Sicily, 181–209 (1987).

    Google Scholar 

  125. J. K. Hunter and Y. Zheng, “A nonlinear hyperbolic variational equation. I. Global existence of weak solutions,” Arch. Rat. Mech. Anal., 129, 305–353 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  126. J. K. Hunter and Y. Zheng, “A completely integrable nonlinear hyperbolic variational equation,” Physica D, 79, 361–386 (1994).

    MathSciNet  MATH  Google Scholar 

  127. J. M. Hyman and B. Nicolaenko, “The Kuramoto—Sivashinsky equation: a bridge between pdes and dynamical systems,” Physica D, 18, 113–126 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  128. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos,“Cambridge University Press,” Cambridge, 1990.

    Google Scholar 

  129. E. Isaacson, D. Marchesin, B. Plohr, and B. Temple, “The Riemann problem near a hyperbolic singularity: the classification of solutions of quadratic Riemann problems I, SIAM J. Appl. Math.,48, 1009–1032 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  130. R. A. Isaacson, “Gravitational radiation in the limit of high frequency,” II: nonlinear terms and the effective stress tensor. Phys. Rev., 166, 1272–1280 (1968).

    Article  Google Scholar 

  131. A. Jeffrey, “Breakdown of the solution to a completely exceptional system of hyperbolic equations,” J. Math. Anal. and Applies., 45, 375–381 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  132. A. Jeffrey, Quasilinear Hyperbolic Systems and Waves, Research Notes in Mathematics 5, Pitman, London, 1976.

    MATH  Google Scholar 

  133. A. Jeffrey and T. Kakutani, “Weak nonlinear dispersive waves: a discussion centered around the Korteweg—de Vries equation,” SIAM Rev., 14, 582–643 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  134. A. Jeffrey and T. Kawahara, Asymptotic Methods in Nonlinear Wave Theory, Pitman, London, 1982.

    MATH  Google Scholar 

  135. A. Jeffrey and Sq. Xu, “Exact solutions to the Korteweg—de Vries—Burgers equation,” Wave Motion, 11, 559–564 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  136. S. Jin and Z. Xin, “Relaxing schemes for systems of conservation laws in arbitrary space dimensions,” Comm. Pure Appl. Math., 48, 235–276 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  137. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, 2nd ed., Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  138. F. John, Nonlinear Wave Equations, Formation of Singularities, University Lecture Series, Vol. 2, Amer. Math. Soc., Providence, 1990.

    Google Scholar 

  139. J.-L. Joly, G. Metivier, and J. R. Rauch, “Resonant one dimensional nonlinear geometrical optics,” J. Funct. Analy., 114, 106–231 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  140. J.-L. Joly, G. Metivier, and J. R. Rauch, “Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves,” Duke Math. J,70, 373–404 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  141. J.-L. Joly, G. Metivier, and J. R. Rauch, “Coherent and focusing multidimensional nonlinear geometrical optics,” Centre de Recherche en Mathematiques de Bordeaux, Preprint no. 9205 (1992).

    Google Scholar 

  142. J.-L. Joly, G. Metivier, and J. R. Rauch, “Dense oscillations for the compressible 2d-Euler equations,” in: Nonlinear Partial Differential Equations and their Applications, College de France Seminar, 1993–1994, ed. H. Brezis and J. L. Lions, Longman.

    Google Scholar 

  143. J.-L. Joly, G. Metivier, and J. R. Rauch, “Nonlinear instability for 3 x 3 systems of conservation laws,” Comm. Math. Phys., 162, 147–149 (1994).

    Article  MathSciNet  Google Scholar 

  144. J.-L. Joly and J. Rauch, “Nonlinear resonance can create dense oscillations,” Microlocal Analysis and Nonlinear Waves, Vol. 30, IMA Volumes in Mathematics and its Applications, ed. M. Beals, R. Melrose, and J. Rauch, Springer-Verlag, New York, 113–124 (1991).

    Chapter  Google Scholar 

  145. J.-L. Joly and J. Rauch, “Justification of multidimensional single phase semilinear geometric optics,” Trans. Amer. Math. Soc.,330, 599–623 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  146. B. B. Kadomtsev and V. I. Petviashvilli, “On the stability of solitary waves in a weakly dispersive media,” Soy. Phys. Dokl. 15, 539–541 (1970).

    MATH  Google Scholar 

  147. T. Kakutani and H. Ono, “Weak nonlinear hydromagnetic waves in a cold collision free plasma,” J. Phys. Soc. Japan 26, 1305–131 (1969).

    Article  Google Scholar 

  148. T. Kato, “On the Cauchy problem for the (generalized) Korteweg-de Vries equation,” Adv. in Math. Suppl. Studies, Studies in Appl. Math., 8, 93–128 (1983).

    Google Scholar 

  149. C. Katsis and T. R. Akylas, “On the excitation of long nonlinear water waves by a moving pressure distribution,” Part 2. Three-dimensional effects, J. Fluid Mech., 177, 49–65 (1987).

    Article  MATH  Google Scholar 

  150. J. B. Keller, “Rays waves and asymptotics,” Bulletin of the AMS, 84, 727–750 (1978).

    Article  MATH  Google Scholar 

  151. J. B. Keller, “Semiclassical mechanics,” SIAM Review, 27, 485–504 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  152. C. F. Kennel, R. P. Blandford, and C. C. Wu, “Structure and evolution of small amplitude intermediate shock waves,” Phys. Fluids B, 2, 253 (1990).

    Article  Google Scholar 

  153. R. Kersell, Interaction between large and small scales in nonlinear dynamics, Masters Thesis, University of California at Berkeley, 1988.

    Google Scholar 

  154. J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1980.

    Google Scholar 

  155. S. Klainerman, “Mathematical theory of classical fields and general relativity,” in: Mathematical Physics X, ed. K. Schmiidgen, Springer-Verlag, New York, 213–236 (1992).

    Chapter  Google Scholar 

  156. A. Kluwick, “The analytical method of characteristics,” Prog. Aerospace Sc. 19, 197–313 (1981).

    Article  Google Scholar 

  157. A. Kluwick ed., Nonlinear Waves in Real Fluids, CISM Courses and Lectures no. 315, SpringerVerlag, New York, 1991.

    MATH  Google Scholar 

  158. Y. Kodama, A solution method for the dispersionless KP equation and its exact solutions, Phys. Lett. A, 135, 167–170 (1989).

    Article  MathSciNet  Google Scholar 

  159. Y. Kodama and J. Gibbons, “A solution method for the dispersionless KP equation and its exact solutions ff,” Prog. Theor. Phys. Supp., 94, 223–226 (1988).

    Article  Google Scholar 

  160. R. A. Kogelman and J. B. Keller, “Asymptotic theory of nonlinear wave propagation,” SIAM J. Appl. Math., 24, 352–361 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  161. V. E. Korepin, N. M. Bogoliubov, and A. G. Izegin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993.

    Book  MATH  Google Scholar 

  162. D. J. Korteweg and G. de Vries, “On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves,” Philos. Mag. 39, 422–443 (1895).

    Article  MATH  Google Scholar 

  163. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer Series on Wave Phenomena, Vol. 6, Springer-Verlag, New York, 1990.

    Book  Google Scholar 

  164. H.-O. Kreiss and J. Lorentz, Initial-Boundary Value Problems and the Navier—Stokes Equations, Academic Press, San Diego, 1989.

    MATH  Google Scholar 

  165. M. D. Kruskal, “Asymptotology,” in: Mathematical Models in Physical Sciences, ed. S. Drobot, Prentice-Hall, New Jersey, 1963.

    Google Scholar 

  166. M. D. Kruskal, “Nonlinear wave equations,” in: Dynamical Systems, Theory and Applications, Lecture Notes in Physics, Vol. 38, ed. J. Moser, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  167. M. D. Kruskal and H. Segur, “Asymptotics beyond all orders in a model of crystal growth,” Stud. Appl. Math., 85, 129–181 (1991).

    MathSciNet  MATH  Google Scholar 

  168. V. V. Krylov and D. E Parker, “Harmonic generation and parametric mixing in wedge acoustic waves,” Wave Motion, 15, 185–200 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  169. V. P. Kuznetsov, “Equations of nonlinear acoustics,” Soy. Phys. Acoustics, 16, 467–470 (1971).

    Google Scholar 

  170. E. W. Laedke and K. H. Spatschek, “Nonlinear ion acoustic waves in weak magnetic fields,” Phys. Fluids, 25, 985–989 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  171. N. A. Larkin, Smooth Solutions for Equations of Transonic Gas Dynamics, Nauka, Novosibirsk, 1991 (in Russian).

    Google Scholar 

  172. P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 11, SIAM, Philadelphia, 1973.

    Book  MATH  Google Scholar 

  173. P. D. Lax, “Shock waves, increase of entropy, and loss of information,” in: Wave Motion: Theory, Modelling,and Computation, ed. A. J. Chorin and A. J. Majda, Math. Sci. Res. Inst. Publications 7, Springer-Verlag, New York, 129–171 (1987).

    Google Scholar 

  174. P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg—de Vries equation,” Comm. Pure Appl. Math., 36: I, 253–290; II, 571–593; DI, 809–829 (1983).

    Google Scholar 

  175. S. B. Leble, Nonlinear Waves in Waveguides, Research Reports in Physics, Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  176. M. A. Leontovich and V. A. Fock, “Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equations,” Chapter 11, in: Electromagnetic Diffraction and Propagation Problems,ed. V. A. Fock, Pergamon Press, Oxford, 1965.

    Google Scholar 

  177. R. J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zürich, Birkhauser, Basel, 1992.

    Book  MATH  Google Scholar 

  178. M. J. Lighthill, “A technique for rendering approximate solutions to physical problems uniformly valid,” Phil. Mag., 44, 1179–1201 (1949).

    MathSciNet  Google Scholar 

  179. M. J. Lighthill, Viscosity effects in sound waves of finite amplitude, Surveys in Mechanics, eds. G. K. Batchelor and R. M. Davis, 255–351, Cambridge University Press, 1956.

    Google Scholar 

  180. M. J. Lighthill, Waves in Fluids, Cambridge University Press, Cambridge, 1978.

    MATH  Google Scholar 

  181. T. P. Liu, Linear and nonlinear large-time behavior of solutions of general systems of conservation laws, Comm. Pure Appl. Math., 30, 767–796 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  182. T. P. Liu, “Nonlinear stability of shock waves for viscous conservation laws,” Mem. Amer. Math. Soc., 328, Amer. Math. Soc., Providence, 1985.

    Google Scholar 

  183. T. P. Liu, “Hyperbolic conservation laws with relaxation,” Commun. Math. Phys., 108, 153–175 (1987).

    Article  MATH  Google Scholar 

  184. T. P. Liu, “On the viscosity criterion for hyperbolic conservation laws,” in: Viscous Profiles and Numerical Methods for Shock Waves, ed. M. Shearer, SIAM, Philadelphia, 105–114 (1991).

    Google Scholar 

  185. D. Ludwig, “Uniform asymptotic expansions at a caustic,” Comm. Pure Appl. Math., 19, 215–250 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  186. A. J. Majda, Compressible Fluid Flow and Conservation Laws in Several Space Dimensions, Appl. Math. Sci. Vol. 53, Springer-Verlag, New York, 1984.

    Book  Google Scholar 

  187. A. J. Majda, “Nonlinear geometrical optics for hyperbolic systems of conservation laws,” in: Oscillation Theory, Computation, and methods of Compensated Compactness, IMA Volume 2, Springer-Verlag, New York, 115–16 (1986)5

    Google Scholar 

  188. A. J. Majda, “The interaction of nonlinear analysis and modern applied mathematics,” in: Proceedings of the International Congress of Mathematicians, Kyoto, Japan, Springer-Verlag, Tokyo, 175–192 (1991).

    Google Scholar 

  189. A. J. Majda and M. Artola, “Nonlinear geometrical optics for hyperbolic mixed problems,” in: Analyse Mathematique et Applications, (Volume in honor of J.-L. Lions 60th birthday), ed. C. Agmon, A. V. Ballakrishnan, J. M. Ball, and L. Caffarelli, Gauthier-Villars, Paris, 229–262 (1988).

    Google Scholar 

  190. A. J. Majda and R. R. Rosales, “Resonantly interacting weakly nonlinear hyperbolic waves. I. A single space variable,” Stud, Appl. Math., 71, 149–179 (1984).

    MathSciNet  MATH  Google Scholar 

  191. A. J. Majda and R. R. Rosales, “A theory for spontaneous Mach stem formation in reacting shock fronts,” SIAM J. Appl. Math., 43,1310–1334 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  192. A. J. Majda, R. R. Rosales, and M. Schonbek, “A canonical system of integro-differential equations arising in resonant nonlinear acoustics,” Stud. Appl. Math., 79, 205–262 (1988).

    MathSciNet  MATH  Google Scholar 

  193. P. Manneville, Dissipative Structures and Weak Turbulence, Perspectives in Physics, Academic Press, San Diego, 1990.

    MATH  Google Scholar 

  194. V. P. Maslov, “Propagation of shock waves in an isentropic nonviscous gas,” J. Soviet Math., 13, 119–163 (1980).

    Article  Google Scholar 

  195. V. P. Maslov, Mathematical Aspects of Integral Optics, Moscow Institute of Electronic Machine-building, Moscow, 1983.

    Google Scholar 

  196. V. P. Maslov, Resonance Processes in the Wave Theory and Self-focalization, Moscow Institute of Electronic Machine-building, Moscow, 1983.

    Google Scholar 

  197. V. P. Maslov, Coherent structures, resonances, and asymptotic non-uniqueness for Navier–Stokes equations with large Reynolds numbers, Russ. Math. Surveys, 41, 23–42 (1986).

    Article  Google Scholar 

  198. W. D. McComb, The Physics of Fluid Turbulence, Oxford University Press, Oxford, 1990.

    Google Scholar 

  199. D. W. McLaughlin, G. Papanicolaou, and L. Tartar, “Weak limits of semilinear hyperbolic systems with oscillating initial data,” Lecture Notes in Physics 230, 277–289 (1985).

    Article  MathSciNet  Google Scholar 

  200. R. Menikoff and B. J. Plohr, “The Riemann problem of fluid flow of real materials,” Rev. Mod. Phy. 61, 75–130 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  201. R. E. Meyer and D. V. Ho, “Notes on nonuniform shock propagation,” J. Acous. Soc. Amer., 35, 1126–1132 (1963).

    Article  MathSciNet  Google Scholar 

  202. M. Miksis and L. Ting, “Effective equations for multiphase flow — waves in a bubbly liquid,” Adv. Appl. Mech. 28, 141–260 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  203. M. Mulase, “Algebraic theory of the KP equation,” to appear in: Interface Between Mathematics and Physics, ed. S. T. Yau, International Press Co., Harvard.

    Google Scholar 

  204. V. E. Nakoryakov, B. G. Pokusaev, and I. R. Sheiber, Wave Propagation in Gas–Liquid Media, CRC Press, Boca Raton, 1993.

    Google Scholar 

  205. K. A. Naugolnykh and L. A. Ostrovsky, Nonlinear Wave Processes in Acoustics, Cambridge University Press, Cambridge, to appear.

    Google Scholar 

  206. J. C. Neu, “Kinks and minimal surfaces in Minkowski space,” Physica D, 43,421–434 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  207. A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985.

    Book  Google Scholar 

  208. A. C. Newell and J. V. Moloney, Nonlinear Optics, Addison-Wesley, Redwood City, 1992.

    Google Scholar 

  209. A. C. Newell, T. Passot, and J. Lega, “Order parameter equations for patterns,” Ann. Rev. Fluid. Mech. 25, 399–453 (1993).

    Article  MathSciNet  Google Scholar 

  210. B. Nicolaenko, B. Scheurer, and R. Temam, “Some global dynamical properties of the KuramotoSivashinsky equations: Nonlinear stability and attractors,” Physica D, 16, 155–183 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  211. J. J. C. Nimmo and D. G. Crighton, “Backlund transformations for nonlinear parabolic equations: the general results,” Proc. Roy. Soc. Lond. A 384 381 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  212. J. J. C. Nimmo and D. G. Crighton, “Geometrical and diffusive effects in nonlinear acoustic propagation over long ranges,” Phil. Trans. R. Soc. Lond. A, 320, 1–35 (1986).

    Article  MATH  Google Scholar 

  213. B. K. Novikov, O. V. Rudenko, and V. I. Timoshenko, Nonlinear Underwater Acoustics, American Institute of Physics, Translation Series, New York, 1987.

    Google Scholar 

  214. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method, Plenum, New York, 1984.

    Google Scholar 

  215. L. A. Ostrovsky, Short wave asymptotics for weak shock waves and solitons in mechanics, Int. J. Non-Linear Mechanics, 129, 401–416 (1976).

    Article  MathSciNet  Google Scholar 

  216. L. A. Ostrovsky, “Nonlinear internal waves in a rotating ocean,” Oceanology, 18, 181–191 (1978).

    Google Scholar 

  217. L. A. Ostrovsky, S. A. Rybak, and L. Sh. Tsimring, “Negative energy waves in hydrodynamics,” Soy. Phys. Usp., 29, 1040–1052 (1986).

    Article  Google Scholar 

  218. L. A. Ostrovsky and Yu. A. Stepanyants, “Nonlinear surface and internal waves in rotating fluids,” in: Nonlinear Waves 3,ed. A. V. Gaponov-Grekhov, M. I. Rabinovich, and J. Engelbrecht, Research Reports in Physics, Springer-Verlag, New York, 106–128 (1990).

    Chapter  Google Scholar 

  219. D. Parker, “Waveform evolution for nonlinear surface waves,” Int. J. Engng. Sci. 26, 59–75 (1988).

    Article  MATH  Google Scholar 

  220. R. L. Pego, “Some explicit resonating waves in weakly nonlinear gas dynamics,” Stud. Appl. Math. 79, 263–269 (1988).

    MathSciNet  MATH  Google Scholar 

  221. Y. Pomeau, A. Ramani, and B. Grammaticos, “Structural stability of the Korteweg—de Vries solitons under a singular perturbation,” Physica D, 31,127–134 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  222. P. Prasad, Propagation of a Curved Shock and Nonlinear Ray Theory, Pitman Research Notes No. 292, Longman, 1993.

    MATH  Google Scholar 

  223. P. Prasad, “A nonlinear ray theory,” Wave Motion, 20, 21–31 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  224. E. Randall and R. R. Rosales, “A numerical and analytical study of the Resonant interaction equations for hyperbolic systems I: Classification of solutions,” to appear in: Stud. Appl. Math.

    Google Scholar 

  225. E. Randall and R. R. Rosales, “A numerical and analytical study of the Resonant interaction equations for hyperbolic systems II: A class of large time solutions,” to appear in: Stud. Appl. Math.

    Google Scholar 

  226. J. Rauch, Partial Differential Equations, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  227. M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations,Texts in Applied Mathematics, Vol. 13, Springer-Verlag, New York, 1993.

    Google Scholar 

  228. R. Ravindran and P. Prasad, “Kinematics of a shock front and resolution of a hyperbolic caustic,” in: Advances in Nonlinear Waves, ed. L. Debnath, Pitman Research Notes in Mathematics 111, Pitman, Boston, 77–99 (1985).

    Google Scholar 

  229. F. Rezakhanlou, “Hydrodynamic limit for attractive particle systems on Zd,“ Commun. Math. Phys., 140 (1991), 417–448 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  230. R. R. Rosales, “Stability theory for shocks in reacting media: Mach stems in detonation waves,” in: AMS Lectures in Applied Mathematics, 24, ed. G. Ludford, 431–465 (1986).

    Google Scholar 

  231. R. R. Rosales, “An introduction to weakly nonlinear geometrical optics,” in: Multidimensional Hyperbolic Problems and Computations,Vol. 29, IMA Volumes in Mathematics and its Applications, ed. A. J. Majda and J. Glimm, Springer-Verlag, New York, 281–310 (1991).

    Chapter  Google Scholar 

  232. R. R. Rosales, “Canonical equations of long wave weakly nonlinear asymptotics,” in: Continuum Mechanics and its Applications, ed. G. A. C. Graham and S. K. Malik, Hemisphere, New York, 365–397 (1989).

    Google Scholar 

  233. R. R. Rosales and A. J. Majda, “Weakly nonlinear detonation waves,” SIAM J. Appl. Math., 43, 1086–1118 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  234. P. Roseneau and J. M. Hyman, “Compactons: solitons with finite support,” Phys. Rev. Lett.,70, 564–567 (1993).

    Article  Google Scholar 

  235. O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, Consultants Bureau, Plenum, New York, 1977.

    MATH  Google Scholar 

  236. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tartarskii, Principles of Statistical Radiophysics, Vol. 4, Springer-Verlag, New York, 1987.

    Book  MATH  Google Scholar 

  237. P. L. Sachdev, Nonlinear Diffusive Waves, Cambridge University Press, Cambridge, 1987.

    Book  MATH  Google Scholar 

  238. J.-C. Saut, “Generalized Kadomtsev-Petviashvili equations,” Indiana Univ. Math. J.,42, 1011–1026 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  239. S. Schochet, “Resonant nonlinear geometrical optics for weak solutions of conservation laws,” J. Diff Eq., 113, 473–504 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  240. S. Schochet, “Fast singular limits of hyperbolic PDEs,” J. Dff Eq., 114, 476–512 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  241. D. G. Schaeffer and M. Shearer, “The classification of 2 x 2 systems of non-strictly hyperbolic conservation laws with applications to oil recovery,” Comm. Pure Appl. Math., 15, 141–178 (1987).

    Article  MathSciNet  Google Scholar 

  242. D. Serre, “Oscillations non-lineaires de haute frequence,” in: Nonlinear Partial Differential Equations and their Applications, College de France Seminar, Vol. 11, ed. H. Brezis and J.-L. Lions, Pitman Research Notes in Mathematics, Longman, New York, to appear.

    Google Scholar 

  243. D. Serre, “Oscillations non-lineaires de haute frequence; dim = 1,” Report de Recherche no. 18, Ecole Normale Superieure de Lyon (1989).

    Google Scholar 

  244. D. Serre, “Oscillations non-lineaires hyperbolic de grande amplitude; dim ≥ 2,” in: Nonlinear Variational Problems and Partial Differential Equations, ed. A. Mariano and M. K. Venkatesha Murthy, Pitman Research Notes in Mathematics 320, Longman, New York, 1995.

    Google Scholar 

  245. D. W. Schwendeman, “A new numerical method for shock wave propagation based on geometrical shock dynamics,” Proc. R. Soc. Lond. A,441, 331–341 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  246. Z.-S. She, E. Aurell, and U. Frisch, “The inviscid Burgers equation with initial data of Brownian type,” Commun. Math. Phys., 148, 623–641 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  247. V. A. Shutilov, Fundamental Physics of Ultrasound, Gordon and Breach, Glasgow, 1988.

    Google Scholar 

  248. Ya. G. Sinai, “Statistics of shocks in solutions of inviscid Burgers equation,” Commun. Math. Phys., 148, 601–621 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  249. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  250. K. Sobczyk, Stochastic Wave Propagation, Elsevier, Warszawa, 1985.

    MATH  Google Scholar 

  251. W. Strauss, Nonlinear Wave Equations, Conference Board of the Mathematical Sciences, AMS, Philadelphia, 1989.

    MATH  Google Scholar 

  252. J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadsworth, Belmont, 1989.

    MATH  Google Scholar 

  253. A. Szepessy and Z. Xin, “Nonlinear stability of viscous shock waves,” Arch. Rat. Mech. Anal.,122, 53–103 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  254. E. G. Tabak, “Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection,” Ph. D. thesis, Massachusetts Institute of Technology, 1992.

    Google Scholar 

  255. E. Tabak and R. R. Rosales, “Weak shock focusing and the von Neumann paradox of oblique shock reflection,” Phys. Fluids, 6, 1874–1892 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  256. T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. III Numerical, Korteweg–de Vries equation,” J. Comp. Phys., 55, 231–253 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  257. K. Tan, Weakly Dispersive Wave Equations, Ph. D. thesis, Colorado State University, 1991.

    Google Scholar 

  258. F. D. Tappert, “The parabolic approximation method,” in: Wave Propagation and Underwater Acoustics, ed. J. B. Keller, and J. S. Papadakis, Chapter V, Springer-Verlag, 1977.

    Google Scholar 

  259. T. Taniuti and C.-C. Wei, “Reductive perturbation method in nonlinear wave propagation,” J. Phys. Soc. Japan, 24, 941–946 (1968).

    Article  Google Scholar 

  260. T. Taniuti ed., “Reductive perturbation method for nonlinear wave propagation,” Prog. Theor. Phy. Suppl., 55, 1–306 (1974).

    Article  Google Scholar 

  261. T. Taniuti and K. Nishihara, Nonlinear Waves, Pitman, Boston, 1983.

    MATH  Google Scholar 

  262. L. Tartar, Compensated compactness and applications to PDEs, Nonlinear Analysis and Mechanics, Herriot-Watt symposium, Pitman (1979).

    Google Scholar 

  263. M. E. Taylor, Pseudodifferential Operators and Nonlinear Partial Differential Equations, Progress in Mathematics, Vol. 100, Birkhauser, Boston, 1991.

    Google Scholar 

  264. P. A. Thompson and K. C. Lambrakis, “Negative shock waves,” J. Fluid Mech., 60, 187–208 (1973).

    Article  MATH  Google Scholar 

  265. R. Timman, “Unsteady motion in transonic flow,” in: Symposium Transonicum, ed. K. Oswatitsch, Springer-Verlag, Aachen, 394–401 (1962).

    Google Scholar 

  266. S. Venakides, “The Korteweg–de Vries equation with small dispersion — higher order Lax-Levermore theory,” Comm. Pure Appl. Math., 43, 335–361 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  267. L. van Wijngaarden, “One dimensional flow of liquids containing small bubbles,” Ann. Rev. Fluid Mech., 4, 369–396 (1972).

    Article  Google Scholar 

  268. W. G. Vicenti and C. H. Kruger, Introduction to Physical Gas Dynamics, R. E. Kreiger Publication Co., 1982.

    Google Scholar 

  269. J. Wagner and J. Keizer, “Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations,” Biophysical Journal, 67, 447–456 (1994).

    Article  Google Scholar 

  270. X. P. Wang, M. J. Ablowitz, and H. Segur, “Wave collapse and instability of solitary waves of a generalized Kadomtsev-Petviashvili equation,” preprint (1994).

    Google Scholar 

  271. G. M. Webb and G. P. Zank, “Wave diffraction in weak cosmic-ray-modified shocks,” The Astrophysical Journal, 396, 549–574 (1992).

    Article  Google Scholar 

  272. G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.

    MATH  Google Scholar 

  273. Z. Xin, “The fluid dynamic limit of the Broadwell model of the nonlinear Boltzmann equation in the presence of shocks,” Comm. Pure AppL Math., 44, 679–713 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  274. H. Q. Yang and A. J. Przekwas, “A comparative study of advance shock capturing schemes applied to Burgers equation,” J. Comp. Phys., 102, 139–159 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  275. R. Young, “Sup-norm stability for Glimm’s scheme,” Comm. Pure AppL Math., 46, 903–948 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  276. E. A. Zabolotskaya and R. V. Kholchlov, “Quasi-plane waves in the nonlinear acoustics of confined beams,” Soy. Phys. Acoustics, 15, 35–40 (1969).

    Google Scholar 

  277. G. I. Zahalak and M. K. Myers, “Conical flow near singular rays,” J. Fluid Mech., 63, 537–561 (1974).

    Article  MATH  Google Scholar 

  278. V. E. Zakharov and E. A. Kuznetsov, “On three dimensional solitons,” Zh. Eksp. Teor. Fiz., 8, 285–286 (1974).

    Google Scholar 

  279. V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I, Springer-Verlag, Berlin, 1992.

    Book  MATH  Google Scholar 

  280. V. E. Zakharov and A. B. Shabat, “An exact theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in nonlinear media,” Soy. Phys. JETP, 34, 62–69 (1972).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hunter, J.K. (1995). Asymptotic Equations for Nonlinear Hyperbolic Waves. In: Surveys in Applied Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1991-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1991-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5821-3

  • Online ISBN: 978-1-4615-1991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics