Skip to main content

Homeodomain Proteins in Pancreas Development

  • Chapter
  • First Online:
Molecular Basis of Pancreas Development and Function

Part of the book series: Endocrine Updates ((ENDO,volume 11))

Abstract

The pancreas derives from the upper, duodenal part of the foregut via a dorsal and ventral protrusion of the epithelium directly posterior to the developing stomach, and in the mouse, the early pancreatic buds become evident on embryonic day 9 (e9) (Figure 1). The part of the gut from which the pancreas originates becomes committed to a pancreatic fate already at the ∼10 somites stage, i.e. at e8.5 (1). A few somites later these regions of the duodenal epithelium will begin to evaginate, thus forming the dorsal and ventral pancreatic buds. During embryogenesis the pancreatic epithelium proliferates and invades the surrounding mesenchyme and the epithelial cells differentiate and segregate into duct, acinar and endocrine cells. As the stomach and duodenum rotates, the ventral bud will move around until it eventually comes in contact and fuses with its dorsal counterpart around e13-14 (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Golosow N and Grobstein C. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev Biol 1962;4:242–255.

    Article  PubMed  CAS  Google Scholar 

  2. Wessels NK and Cohen JH. Early pancreas organogenesis: morphogenesis, tissue interactions and mass effects. Dev Biol 1967;15:237–270.

    Article  Google Scholar 

  3. Fontaine J and Le Douarin NM. Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimeras. The problem of the neuroectodermal origin of the cells of the APUD series. J Embryol Morphol 1977;41:209–222.

    CAS  Google Scholar 

  4. Le Douarin NM. On origin of the pancreatic endocrine cells. Cell 1988;53:169–171.

    Article  PubMed  Google Scholar 

  5. Pictet RL, Rall LB, Phelps P, Rutter WJ. The neural crest and the origin of the insulin-producing and other gastrointestinal hormone producing cells. Science 1976;191:191–192.

    Article  PubMed  CAS  Google Scholar 

  6. Sander M and German S. The 13-cell transcription factors and development of the pancreas. J Mol Med 1997;75:327–340.

    Article  PubMed  CAS  Google Scholar 

  7. German M, Ashcroft S, Docherty K et al. The Insulin Promoter. Diabetes 1995;44:1002–1004.

    PubMed  CAS  Google Scholar 

  8. Jonsson J, Carlsson L, Edlund T, Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994;371:606–609.

    Article  PubMed  CAS  Google Scholar 

  9. Ahlgren U, Jonsson J, Edlund, H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in PDX1/IPFI-deficient mice. Development 1996;122:1409–1416.

    PubMed  CAS  Google Scholar 

  10. Ahlgren U, Pfaff S, Jessel TM, Edlund T, Edlund H. Independent requirement for ISL1 in the formation of the pancreatic mesenchyme and islet cells. Nature 1997;385:257–260.

    Article  PubMed  CAS  Google Scholar 

  11. Harrison KA, Druey KM, Deguchi Y, Tuscano JM, Kerhl JH. A novel human homeobox gene distantly related to proboscipedia is expressed in lymphoid and pancreatic tissues. J Biol Chem 1994;269:19968–19975.

    PubMed  CAS  Google Scholar 

  12. Li H, Arber S, Jessell TM, Edlund H. Selective Agenesis of the Dorsal Pancreas in Mice Lacking Homeobox Gene HB9. 1999;Submitted.

    Google Scholar 

  13. Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JLR, German MS. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 1998;125:2213–2221.

    PubMed  CAS  Google Scholar 

  14. Sander M, Kalamaras J, German MS. The homeobox gene Nkx6.1 is essential for differentiation of insulin-producing 13-cells in the mouse pancreas. Abstract from The Keystone Symposium on Vertebrate Development, Steamboat Springs, Colorado, April 3–8, 1998.

    Google Scholar 

  15. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 1997;386:399–402.

    Article  PubMed  CAS  Google Scholar 

  16. Sander M et al. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes & Dev 1997;11:1662–1673.

    Article  CAS  Google Scholar 

  17. Naya FJ et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes & Dev 1997;11:2323–2334.

    Article  CAS  Google Scholar 

  18. St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 1997;387:406–409.

    Article  PubMed  CAS  Google Scholar 

  19. Beatson W. Materials for the study of variation. MacMillan & Co 1894.

    Google Scholar 

  20. McGinnis W, Garber RL, Wirz J, Kuriowa A, Gehring WJ. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 1984;37:403–408.

    Article  PubMed  CAS  Google Scholar 

  21. Scott MP and Weiner AJ. Structural relationship between genes that control development: sequence homology between Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc Natl Acad Sci USA 1984;81:4115–4119.

    Article  PubMed  CAS  Google Scholar 

  22. Manak JR and Scott MP. A class act: conservation of homeodomain protein functions. Development Suppl 1994:61–71

    Google Scholar 

  23. McGinnis G and Krumlauf R. Homeobox genes and axial patterning. Cell 1992;63:969–976.

    Article  Google Scholar 

  24. Malicki J, Shcugart K, McGinnis W. A human HOX4B regulatory element provides head specific expression in Drosophila embryos. Nature 1990;358:345–347.

    Article  Google Scholar 

  25. Rosenfeld MG. POU domain transcription factors: Pou-er-ful developmental regulators. Genes & Dev 1991;5:897–907.

    Article  CAS  Google Scholar 

  26. Bopp D, Burn M, Baumgartner S, Frigerio G, Noll M. Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 1986;47:1033–1040.

    Article  PubMed  CAS  Google Scholar 

  27. Schonemann MD, Ryan AK, Erkman L, McEvilly RJ, Bermingham J, Rosenfeld MG. POU domain factors in neural development. Adv Exp Med Biol 1998;449:39–53.

    Article  PubMed  CAS  Google Scholar 

  28. Verrijzer CP, Van OJ, Van der Vliet PC. The Oct-1 POU domain mediates interactions between Oct-1 and other POU proteins. Mol Cell Biol 1992;12:542–551.

    PubMed  CAS  Google Scholar 

  29. Ritz-Laser B, Estreicher A, Klages N, Saule S, Philippe J. Pax-6 and Cdx-2/3 interact to activate glucagon gene expression on the G1 control element. J Biol Chem 1999;7:4124–4132.

    Article  Google Scholar 

  30. Ingraham HA, Flynn SE, Voss JW, Albert VR, Kapiloff MS, Wilson L, Rosenfeld MG. The POU-specific domain of Pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent Pit-I-Pit-1 interactions. Cell 1990;61:1021–1033.

    Article  PubMed  CAS  Google Scholar 

  31. Chan SK, Mann RS. A structural model for a homeotic protein-extradenticle-DNA complex accounts for the choice of HOX protein in the heterodimer. Proc Natl Acad Sci USA 1996;93:5223–5228.

    Article  PubMed  CAS  Google Scholar 

  32. Goudet G, Delhalle S, Biemar F, Martial JA, Peers B. Functional and cooperative interactions between the homeodomain PDX1, Pbx, and Prep1 factors on the somatostatin promoter. J Biol Chem 1999;274:4067–4073.

    Article  PubMed  CAS  Google Scholar 

  33. Freyd G, Kim S, Horowitz R. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature 1990;344:876–879.

    Article  PubMed  CAS  Google Scholar 

  34. Karlsson O, Thor S, Norberg T, Ohlsson H, Edlund T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a horneo-and a Cys-His domain. Nature 1990;344:879–882.

    Article  PubMed  CAS  Google Scholar 

  35. Dawid IB, Toyama R, Taira M. LIM domain proteins C R. Acad Sci III 1995;318:295–306.

    CAS  Google Scholar 

  36. Miller CP, McGehee Jr. RE, Habener JF. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J 1994;13:1145–1158.

    PubMed  CAS  Google Scholar 

  37. Leonard J, Peers B, Johnson T, Ferreri K, Lee S, Montminy MR. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrin 1993;7:1275–1283.

    Article  CAS  Google Scholar 

  38. Ohlsson H, Karlsson K, Edlund, T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO 1993;12:4251–4259.

    CAS  Google Scholar 

  39. Offield MF, Jetton TL, Labosky PA, Ray M, Stein R, Magnuson MA, Hogan BL M, Wright CVE. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983–995.

    PubMed  CAS  Google Scholar 

  40. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nature Genetics 1997;15:106–110.

    Article  PubMed  CAS  Google Scholar 

  41. Guz Y, Montminy MR, Stein R, Leonard J, Gamer LW, Wright, CVE and Teitelman G. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 1995;121:11–18.

    PubMed  CAS  Google Scholar 

  42. Gu H, Zou Y, and Rajewski K. Independent control of immunoglobulin switch recombination at individual swotch regions evidenced through Cre-loxP-mediated targeting. Cell 1993;73:1155–1164.

    Article  PubMed  CAS  Google Scholar 

  43. Kilby NJ, Snaith MR and Murray JAH. Site-specific recombinases: tools for genome engineering. TIG 1993;9:413–421.

    Article  PubMed  CAS  Google Scholar 

  44. Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, Mayford M, Kandel ER, and Tonegawa S. Subregion-and cell type-restricted gene knockout in mouse brain. Cell 1997;87:1317–1326.

    Article  Google Scholar 

  45. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. 0-cell specific inactivation of the mouse Ipfl/Pdx1 gene results in impaired glucose transporter expression and late onset diabetes. Genes & Dev 1998;12:1763–1768.

    Article  CAS  Google Scholar 

  46. Jensen J, Setup P, Karlsen C, Nielsen TF, Madsen OD. mRNA profiling of rat islet tumors reveals Nkx 6.1 as a beta-cell-specific homeodomain transcription factor. J Biol Chem 1996;271:18749–18758.

    Article  PubMed  CAS  Google Scholar 

  47. Komuro I, Schalling M, Jahn L, Bodmer R, Jenkins NA, Copeland NG, Izumo S. Gtx: a novel murine homeobox-containing gene, expressed specifically in glial cells of the brain and germ cells of testis, has a transcriptional repressor activity in vitro for a serum-inducible promoter. EMBO J 1993;12:1387–1401.

    PubMed  CAS  Google Scholar 

  48. Waeber G, Thompson N, Nicod P, and Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinology 1996;10:1327–1334.

    Article  CAS  Google Scholar 

  49. Watada H, Kajimoto Y, Umayahara Y, Matsuoka T, Kaneto H., Fujitani Y, Kamada T, Kawamori R, and Yamasaki Y. The human glucokinase gene a-cell-type promoter: An essential role of insulin promoter factor 1/PDX-1 in its activation in Hit-T15 cells. Diabetes 1996;45:1478–1488.

    Article  PubMed  CAS  Google Scholar 

  50. Guillam M T, Hümmler E, Schaerer E, Wu J Y, Birnbaum M J, Beermann F, Schmidt A, Dériaz N and Thorens B. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nature Genetics 1997;17:327–330.

    Article  PubMed  CAS  Google Scholar 

  51. Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, Butel MO, Lesage S, Vionnet N, Clement K, Fougerousse F, Tanizawa Y, Weissenbach J, Beckmann JS, Lathrop GM, Passa P, Permutt MA, Cohe D. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulindependent diabetes mellitus. Nature 1992;356:162–164.

    Article  PubMed  CAS  Google Scholar 

  52. Bali D, Svetlanov A, Lee HW, Fusco-DeMane D, Leiser M, Li B, Barzilai N, Surana M, Hou H, Fleischer N, DePinho R, Rossetti L, Efrat S. Animal model for maturity-onset diabetes of the young generated by disruption of the mouse glucokinase gene. J Biol Chem 1995;270:21464–21467.

    Article  PubMed  CAS  Google Scholar 

  53. Grupe A, Hultgren B, Ryan A, Ma YH, Bauer M, Stewart TA. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 1995;38:69–107.

    Article  Google Scholar 

  54. Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-II diabetes mellitus (MODY4) linked to IPFI. Nature Genetics 1997;17:138–139.

    Article  PubMed  CAS  Google Scholar 

  55. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young. Nature 1996;384:458–460.

    Article  PubMed  CAS  Google Scholar 

  56. Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le Beau MM, Yamada S, Nishigori H, Takeda J, Fajans SS, Hattersley AT, Iwasaki N, Hansen T, Pedersen O, Polonsky KS, Turner RC, Verlho G, Chevre J-C, Froeguel P, Bell GI. Mutations in the hepatocyte nuclear factor-lalpha gene in maturity-onset diabetes of the young. Nature 1996;384:455–458.

    Article  PubMed  CAS  Google Scholar 

  57. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahara T, Iwamoto Y, Bell GI. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 1997;17:384–385.

    Article  PubMed  CAS  Google Scholar 

  58. Thor S, Ericson J, Brannstrom T and Edlund T. The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 1991;7:881–889.

    Article  PubMed  CAS  Google Scholar 

  59. Ericson J, Thor S, Edlund T, Jessel TM and Yamada T. Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1. Science 1992;256:1555–1560.

    Article  PubMed  CAS  Google Scholar 

  60. Korzh V, Edlund T and Thor S. Zebrafish primary neurons initiate expression of the LIM homeodomain protein Isl-1 at the end of gastrulation. Development 1993;118:417–425.

    PubMed  CAS  Google Scholar 

  61. Pfaff SL, Mendelsohn M, Stewart CL, Edlund T and Jessell TM. Requirement for LIM homeobox gene Isll in motor neuron generation reveals a motomeuron-dependent step in interneuron differentiation. Cell 1996;84:309–320.

    Article  PubMed  CAS  Google Scholar 

  62. Way JC and Chalfie M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 1988;54:5–16.

    Article  PubMed  CAS  Google Scholar 

  63. Alpert S, Hanahan D, Teitelman G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 1988;53:295–308.

    Article  PubMed  CAS  Google Scholar 

  64. Herrera PL, Huarte J, Sanvito F, Meda P, Orci L, Vassalli JD. Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development 1991;113:1257–1265

    PubMed  CAS  Google Scholar 

  65. Teitelman G, Alpert S, Polak JM, Martinez A, Hanahan D. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon, and the neuronal proteins tyrosine hydroxylase and neuropeptide Y but not pancreatic polypeptide. Development 1993;118:1031–1039.

    PubMed  CAS  Google Scholar 

  66. Upchurch BH, Aponte GW, Leiter AB. Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-progenitor. Development 1994;120:245–252.

    PubMed  CAS  Google Scholar 

  67. Naya FJ, Stellrecht CM, Tsai Mi. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes & Dev 1995;9:1009–19.

    Article  CAS  Google Scholar 

  68. Lee JE, Hollenberg SM, Snider 1, Turner DL, Lipnick N, Weintraub H. Conversion of Xenopus into neurons by NeuroD, a basic helix-loop-helix protein. Science 1995;268:836–844.

    Article  PubMed  CAS  Google Scholar 

  69. Harrison, KA, Druey KM, Deguchi Y, Tuscano, JM, Kerhl, JH. A novel human homeobox gene distantly related to proboscipedia is expressed in lymphoid and pancreatic tissues. J Biol Chem 1994;269:19968–19975.

    PubMed  CAS  Google Scholar 

  70. Ross, AJ Ruiz-Perez V, Wang Y, et al. A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nature Genet 1998;20:358–361.

    Article  PubMed  CAS  Google Scholar 

  71. Slack JMW. Developmental biology of the pancreas. Development 1995;121:1569–1580.

    PubMed  CAS  Google Scholar 

  72. Edlund H. Transcribing Pancreas. Diabetes 1998;47:1817–1823.

    Article  PubMed  CAS  Google Scholar 

  73. Wildling, R et al. Agenesis of the dorsal pancreas in a woman with diabetes mellitus and in both her sons. Gastroenterology 1993;104:1182–1186.

    PubMed  CAS  Google Scholar 

  74. Clement K, Garner C, Hager J, Philippi A, LeDuc C, Carey A, Harris Ti, Jury C, Cardon LR, Basdevant A, Demenais F, Guy-Grand B, North M, Froguel P. Indication for linkage of the human OB gene region with extreme obesity. Diabetes 1996;45:687–690.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ahlgren, U., Edlund, H. (2001). Homeodomain Proteins in Pancreas Development. In: Habener, J.F., Hussain, M.A. (eds) Molecular Basis of Pancreas Development and Function. Endocrine Updates, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1669-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1669-9_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5669-1

  • Online ISBN: 978-1-4615-1669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics