Skip to main content

Cerebrovascular Response to Acute Metabolic Acidosis in Humans

  • Chapter
Oxygen Transport to Tissue XXIV

Abstract

Objectives: Evaluation of the cerebrovascular response (∆CBV/∆Paco2)during baseline metabolic conditions and acute metabolic acidosis. Methods: 15 healthy subjects, 5 m, 10 f, 56±10 yrs were investigated. For acidification, NH4CI was given orally. CBV was measered using Near Infrared Spectroscopy (OXYMON) during normo-, hyper- and hypocapnia. Results: Acute metabolic acidosis was realised: mean ΔBE -2.7 mEq.L-1 (p<0.001) with mean ∆Paco2-0.2 kPa (p<0.01). During normo-, hyper- and hypocapnia, CBV values of 3.51, 4.82 and 2.55 mL.100g-1 were calculated during baseline metabolic conditions and 3.70, 4.86 and 2.63 niL.100g-1 during acute metabolic acidosis. The CBV/Paco2 response showed a hockeystick configuration with the point of infliction around normocapnia. ∆CBV/∆Paco2 reactivity from normo-to hypercapnia and from normo-to hypocapnia was calculated; no significant differences in ∆CBV/∆Paco2 were found in both metabolic conditions. Conclusion: Cerebrovascular reactivity to CO2 does not alter during acute metabolic acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stanton BA, Koeppen BM. Role of kidneys in the regulation of acid-base balance. In: Berne RM, Levy MN, eds. Physiology Mosby, Inc., St. Louis. 1998; pp. 763–776.

    Google Scholar 

  2. Lerche D, Katsaros B, Lerche G, Loeschke HH. Vergleich der Wirkung verschiedener Acidosen (NH4C1, CaCl2, Acetazolamid) auf die Lungenbelüftung beim Menschen. Pflügers Arch 1960; 270:450–460.

    Article  CAS  Google Scholar 

  3. Tojima H, Kunitomo F, Okita S, Yuguchi Y, Tatsumi K, Kimura H, Kuriyama T, Watanabe S, Honda Y. Difference in the effects of acetazolamide and ammonium chloride acidosis on ventilatory responses to CO2 and hypoxia in humans. Jpn J Physiol 1986;36: 511–521.

    Article  PubMed  CAS  Google Scholar 

  4. van de Ven MJT, Colter WNJM, Kersten BTP, Oeseburg B, Folgering H. Cerebral blood volume responses to acute Paco2 changes in humans, assessed with near infrared spectroscopy. Adv Exp Med Biol 1999; 471:199–207.

    Article  PubMed  Google Scholar 

  5. Brun NC, Greisen G. Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures. Pediatr Res 1994;36: 20–24.

    Article  PubMed  CAS  Google Scholar 

  6. Javaheri S, Herrera L, Kazemi H. Ventilatory drive in acute metabolic acidosis. J Appl Physiol 1979; 46:913–918.

    PubMed  CAS  Google Scholar 

  7. Teppema L. Effects of metabolic arterial pH changes on medullary ECF-pH, CSF-pH and ventilation in peripherally chemodenervated cats with intact blood-brain barrier. Respir Physiol 1984;58:123–136.

    Article  PubMed  CAS  Google Scholar 

  8. Wolff CB. Long term respiratory control - Metabolic acidosis. The physiological control of respiration Pergamon Press Ltd., U.K., 1993; pp. 529–539.

    Google Scholar 

  9. Baarends EM. Peak exercise response in relation to tissue depletion in patients with chronic obstructive pulmonary disease. Eur Respir J 1997; 10: 2807–2813.

    Article  PubMed  CAS  Google Scholar 

  10. Rose BD. The total body water and the plasma sodium concentration. Clinical physiology of acid-base and electrolyte disorders. McGraw-Hill International Editions, Singapore.1989; pp. 211–215.

    Google Scholar 

  11. Martindale. Ammoniumchloride (NH4C1), drug information. In: Reynolds JEF, eds. The extra pharmacopoeia. London Royal Pharmaceutical Society, 1996; pp. 1063.

    Google Scholar 

  12. van de Ven MJT, Colier WNJM, Oeseburg B, Folgering H. Induction of acute metabolic acid/base changes in humans. Clin Physiol 1999; 19:290–293.

    Article  PubMed  Google Scholar 

  13. Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977; 198:1264–1267.

    Article  PubMed  Google Scholar 

  14. Van der Sluijs MC, Colier WNJM, Houston RJF, Oeseburg B. A new and highly sensitive continuous wave near infrared spectrophotometer with multiple detectors. SPIE 1997;3194: 63–82.

    Google Scholar 

  15. Harris DN, Cowans FM, Wertheim DA, Hamid S. NIRS in adults--effects of increasing optode separation. Adv Exp Med Biol 1994; 345:837–840.

    Article  PubMed  CAS  Google Scholar 

  16. Wyatt JS, Cope M, Delpy DT, Richardson CE, Edwards AD, Wray S, Reynolds EO. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol 1990; 68:1086–1091.

    PubMed  CAS  Google Scholar 

  17. Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT, Reynolds EO. Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J Appl Physiol 1994; 77:2753–2760.

    PubMed  CAS  Google Scholar 

  18. Newton CR, Wilson DA, Gunnoe E, Wagner B, Cope M, Traystman RJ. Measurement of cerebral blood flow in dogs with near infrared spectroscopy in the reflectance mode is invalid [see comments]. J Cereb Blood Flow Metab 1997;17:695–703.

    Article  PubMed  CAS  Google Scholar 

  19. van de Ven MJ, Colier WN, Walraven D, Oeseburg B, Folgering H. Cerebral blood flow in humans measured with near infrared spectroscopy is not reproducible. Adv Exp Med Bio1 1999;471:749–758.

    Article  Google Scholar 

  20. van de Ven MJT, Colier WNJM, van der Sluijs MC, Walraven D, Oeseburg B, Folgering H. Can cerebral blood volume be measured reproducibly with an improved near infrared spectroscopy system? J Cereb Blood Flow Metab 2001; 21:110–113.

    PubMed  Google Scholar 

  21. Shockley RP, LaManna JC. Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation. Brain Res 1988; 454:170–178.

    Article  PubMed  CAS  Google Scholar 

  22. Edvinsson L, MacKenzie ET, McCulloch J. Fundamental responses of the cerebral circulation. Cerebral blood flow and metabolism. Raven Press, New York. 1993; pp. 553580.

    Google Scholar 

  23. Berne RM, Levy MN. Special circulations. In: Berne RM, Levy MN, eds. Physiology Mosby, Inc., St. Louis. 1998; pp. 478–501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

van de Ven, M., Colier, W.N.J.M., Kersten, B.T.P., Oeseburg, B., Folgering, H. (2003). Cerebrovascular Response to Acute Metabolic Acidosis in Humans. In: Dunn, J.F., Swartz, H.M. (eds) Oxygen Transport to Tissue XXIV. Advances in Experimental Medicine and Biology, vol 530. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0075-9_71

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0075-9_71

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4912-9

  • Online ISBN: 978-1-4615-0075-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics