Skip to main content

Mechanisms Controlling the Air-Sea Flux of CO 2 in the North Atlantic

  • Conference paper
The Ocean Carbon Cycle and Climate

Part of the book series: NATO Science Series ((NAIV,volume 40))

Abstract

The air-sea flux of carbon is controlled by the disequilibrium in partial pressure of carbon dioxide between the atmosphere and surface ocean. This disequilibrium is a consequence of the interactions of physical, chemical and biological processes in the ocean and, today, includes a response to the anthropogenic increase of atmospheric pCO 2. Fig. 1 illustrates the annual mean airsea flux of carbon, F, estimated from a knowledge of the atmospheric partial pressure, pCO at2 and compilation of surface pCO 2 observations by Takahashi et al. (1999). The air-sea flux of carbon is determined by

$$ F = - {K_g}{K_0}(pC{O_2} - pCO_2^{at} $$
((1))

where K 0 is the solubility of CO 2 at local temperature and salinity. K g is the air-sea gas transfer coefficient, which is dependent on local environmental conditions and is usually parameterized as a function of wind speed, sea-surface temperature and sea-surface salinity (Wanninkhof, 1992). The major global scale features in Fig. 1 are the outgassing of CO 2 from the tropical oceans, and the influx at mid and high latitudes. In this chapter we focus on understanding what sets the basin wide, and regional patterns of air-sea carbon flux in the North Atlantic basin. While we focus on the North Atlantic, some of the concepts and discussions are also relevent to other regions of the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, T. and I. Totterdell (2003) Modelling the response of the oceans biological pump to climate change. This volume.

    Google Scholar 

  • Andersson, L.G. and A. Olsen (2002) Air-sea flux of anthropogenic carbon dioxide in the North Atlantic Geophys. Res. Lett., 29(19), 10.1029/2002GL014820.

    Google Scholar 

  • Bates, N.R. (2000) Interannual Variability of Oceanic CO2 and Biogeochemical Properties in the Western North Atlantic Subtropical Gyre Deep-Sea Research II, 48, 1507–1528.

    Article  Google Scholar 

  • Bates N.R., A. C. Pequignet, R. J. Johnson and N. Gruber (2002) A Variable Sink for Atmospheric CO 2 in Subtropical Mode Water of the North Atlantic Ocean, Nature, 420, 489–493.

    Article  Google Scholar 

  • Broecker, W. S., Peng, T- H., (1974). Gas exchange rates between air and sea. Tellus, 26, 21–35.

    Article  Google Scholar 

  • Brostrom, G. (1997) Air-sea flux of CO 2 — can we shortcut the annual cycle? A Norwegian Sea case study. Phys. Chem. Earth, 21, 517–522.

    Google Scholar 

  • Brostrom, G. (2000) The role of annual cycles for the air-sea exchange of CO 2. Marine Chem., 72, 151–169.

    Article  Google Scholar 

  • Cipollini, P., D. Cromwell, P.G. Challenor and S. Raffaglio, (2001). Rossby waves detected in global ocean colour data. Geophys. Res. Lett., 28, 323–326.

    Article  Google Scholar 

  • Conkright, M.E., R.A. Locarnini, H.E. Garcia, T.D. O’Brien, T.P. Boyer, C. Stephens, J.I. Antonov (2002) World Ocean Atlas 2001: Objective analyses, Data Statistics and Figures. CD-ROM Documentation. National Oceanographic Data Center, Silver Spring, Maryland.

    Google Scholar 

  • Dickson, R., J. Lazier, J. Meinke, P. Rhines and J. Swift (1996) Long term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38, 241–295.

    Article  Google Scholar 

  • Emerson, S., P. Quay, D. Karl, C. Winn, L. Tupas, and M. Landry (1997) The carbon pump in the Subtropical Pacific Ocean: Implications for the Global Carbon Cycle, Nature, 389, 951–954.

    Google Scholar 

  • Follows, M. J., T Ito and J. Marotzke (2002) The ocean’s subtropical gyres and Atmospheric pCO2. Global Biogeochem. Cycles, 16, 1113, doi:10.1029/2001GB001786.

    Article  Google Scholar 

  • Follows, M.J., Williams, R.G., Marshall, J.C., (1996). The solubility pump of carbon in the subtropical gyre of the North Atlantic. J. Mar. Res., 54, 605–630.

    Article  Google Scholar 

  • Gruber, N., (1998). Anthropogenic CO 2 in the Atlantic Ocean. Glob. Biogeochem. Cycles, 12, 165–191.

    Article  Google Scholar 

  • Gruber, N., N.Bates, and C.D. Keeling (2002) Interannual variability in the North Atlantic Ocean carbon sink, Science, 298, 2374–2378.

    Article  Google Scholar 

  • Hanawa, K. and L.D. Talley (2001) Mode Waters. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, Eds. G. Siedler, J. Church and J. Gould, 373–387.

    Chapter  Google Scholar 

  • Hansell, D.A. and C.A. Carlson (1998) Deep ocean gradients in dissolved carbon concentrations. Nature, 395, 263–266.

    Article  Google Scholar 

  • Holfort, J., K.M. Johnson, B. Schneider, G. Siedler and D.W.R. Wallace, (1998) Meridional transport of dissolved inorganic carbon in the South Atlantic Ocean. Glob. Biogeochem. Cycles, 12, 479–499.

    Article  Google Scholar 

  • Hurrell, J.W., Y. Kushnir, M. Visbeck, and G. Ottersen (2003) An Overview of the North Atlantic Oscillation. in The North Atlantic Oscillation: Climate Significance and Environmental Impact J.W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, Eds. Geophysical Monograph Series, 134, pp. 1–35.

    Chapter  Google Scholar 

  • Ito, T., and M.J. Follows (2003) Upper ocean control of the solubility pump of CO 2. J. Marine Res., accepted for publication.

    Google Scholar 

  • Josey, S.A., E.C. Kent and P.K. Taylor, (1998). The Southampton Oceanography Centre (SOC) Ocean-Atmosphere Heat, Momentum and Freshwater Flux Atlas. Southampton Oceanography Centre, Reports 6, 3Opp.

    Google Scholar 

  • Lee, M.-M. and R.G. Williams, (2000). The role of eddies in the isopycnic transfer of nutrients and their impact on biological production. J. Mar. Res., 58, 895–917.

    Article  Google Scholar 

  • Lefevre, N, A.J. Watson, A. Olsen, A. Rios, F. Perez, T. Johannessen, R. Bellerby, I. Skjelvan, (2003). A decrease in the sink for atmospheric CO 2 in the North Atlantic, To be submitted to Geophs. Res. Lett.

    Google Scholar 

  • Levy, M., L. Memery and G. Madec, (1998). The onset of a bloom after deep winter convection in the northwest Mediterranean sea: mesoscale process study with a primitive equation model. J. Mar. Sys., 16, 7–21.

    Article  Google Scholar 

  • Levy, M., P. Klein and A-M. Treguier, (2001). Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535–565.

    Article  Google Scholar 

  • Lewis, M.R. (1992) Satellite ocean color observations of global biogeochemical cycles. In Primary Productivity and Biogeochemical Cycles in the Sea. Ed. P.G. Falkowski and A.D. Woodhead, Plenum Press, New York.

    Google Scholar 

  • Lundberg, L. and P.M. Haugan (1996) A Nordic Seas — Arctic Ocean Carbon Budget from Volume Flows and Inorganic Carbon Data. Global Biogeochem. Cycles, 10, 493–510.

    Article  Google Scholar 

  • Mahadevan, A. and D. Archer, (2000). Modelling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res., 105, 1209–1225.

    Article  Google Scholar 

  • Mahadevan, A., M. Levy, and L. Memery (2002) Mesoscale variability of sea surface pCO2: What does it respond to? Global Biogeochem. Cycles, submitted.

    Google Scholar 

  • Marshall, D., (1997). Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201–222.

    Article  Google Scholar 

  • Marshall, J.C., A.J.G. Nurser and R.G. Williams, (1993). Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr, 23, 1315–1329.

    Article  Google Scholar 

  • Marshall, J. and E Schott, (1999). Open-ocean convection: observations, theory and models. Rev. Geophysics, 37, 1, 1–64.

    Article  Google Scholar 

  • McGillicuddy, D.J. and A.R. Robinson, (1997). Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I, 44, 1427–1449.

    Article  Google Scholar 

  • McGillicuddy, D.J., A.R. Robinson, D.A. Siegel, H.W. Jannasch, R. Johnson, T. Dickeys, J. McNeil, A.F. Michaels and A.H. Knap, (1998), New evidence for the impact of mesoscale eddies on biogeochemical cycling in the Sargasso Sea. Nature, 394, 263–266.

    Article  Google Scholar 

  • McKinley, G.A. (2002) Interannual variability of the air-sea fluxes of carbon and oxygen. Ph.D. thesis. Massachusetts Institute of Technology.

    Google Scholar 

  • McKinley, G.A., M.J. Follows and J.C. Marshall (2003) Mechanisms of interannual variability of the air-sea flux of CO 2. Submitted to Global Biogeochem. Cycles.

    Google Scholar 

  • Murray, J. (2003) Ocean carbonate chemistry. This volume.

    Google Scholar 

  • Nurser, A.J.G. and J.W. Zhang, (2000), Eddy-induced mixed-layer shallowing and mixed-layer/ thermocline exchange. J. Geophys. Res., 105, 21851–21868.

    Article  Google Scholar 

  • Orr, J. (2002) Global Ocean Storage of Anthropogenic CO 2: Final Report. EC Environment and Climate Program.

    Google Scholar 

  • Oschlies, A., (2002) Can eddies make ocean deserts bloom? Global Biogeochem. Cycles, 16, 1106, doi :10.1029/2001 GB 001830.

    Article  Google Scholar 

  • Sabine, C.L., R.M. Key, K. Johnson, F.J. Millero, J. Sarmiento, D. Wallace and C. Winn (1999) Anthropogenic CO2 inventory of the Indian Ocean, Global Biogeochem. Cycles, 13, 179–198.

    Article  Google Scholar 

  • Sarmiento, J.L., Murnane, R., Le Quere, C., (1995). Air-sea CO 2 transfer and the carbon budget of the North Atlantic. Phil. Trans. Roy. Soc. Lond., B348, 211–219.

    Article  Google Scholar 

  • Sarmiento, J.L., N. Gruber, M.A. Brzezinski, and J.P. Dunne (2003) High latitude controls of the global nutricline and low latitude biological productivity. Nature, in press.

    Google Scholar 

  • Sathyendranath, S., R.S.A. Longhurst, C.M. Caverhill, and T. Platt, (1995). Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Res. I., 42, 1773–1802.

    Google Scholar 

  • Schmitz, W.J. and M.S. McCartney, (1993). On the North Atlantic circulation. Rev. Geophysics., 31, 29–49.

    Article  Google Scholar 

  • Stumm, W. and J. J. Morgan (1996) Aquatic Chemistry. Third Edition. John Wiley and Sons., N.Y., 1022pp.

    Google Scholar 

  • Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W., Sutherland, S.C., 1993. Seasonal variation of CO 2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles, 7, 843–878.

    Article  Google Scholar 

  • Takahashi, T., Wanninkhof, R.H., Feely, R.A., Weiss, R.F., Chipman, D.W., Bates, N., Olafsson, J., Sabine, C., Sutherland, S.C., (1999). Net sea-air CO 2 flux over the global ocean: An improved estimate based on the sea-air pCO 2 difference. Proceedings of the 2nd International Symposium CO 2 in the Oceans, Ed. Y. Nojiri, Center for Global Environmental Research, CGER-1037-’ 99, Tsukuba, Japan, 9–15.

    Google Scholar 

  • Uz, B.M, J.A. Yoder and V. Osychny, (2001). Pumping of nutrients to ocean surface waters by the action of propagating planetary waves, Nature, 409, 597–600.

    Article  Google Scholar 

  • Volk T., and M.I. Hoffert (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO 2 changes. Geophys. Monogr., 32, 99–110.

    Google Scholar 

  • Wallace, D.W.R., (2001). Storage and transport of excess CO 2 in the oceans: the JGOFS/WOCE Global CO 2 survey. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, Eds. G. Siedler, J. Church and J. Gould, 489–521.

    Chapter  Google Scholar 

  • Wanninkhof, R. (1992) Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373–7382.

    Article  Google Scholar 

  • Watson, A.J., P.D. Nightingale and D.J. Cooper, (1995) Modelling atmosphere-ocean CO2 transfer. Phil. Trans. Roy. Soc. Lond., B348, 125–132.

    Article  Google Scholar 

  • Williams, R.G., (2001). Ocean Subduction. In Encyclopedia of Ocean Sciences, Eds. J.H. Steele, K.K. Turekian and S. A. Thorpe, Academic Press, 1982–1992.

    Chapter  Google Scholar 

  • Williams R.G. and M.J. Follows, (2003). Physical transport of nutrients and the maintenance of biological production. In Ocean Biogeochemistry: a JGOFS synthesis. Ed. M. Fasham, Springer, pp. 19–51.

    Chapter  Google Scholar 

  • Williams, R.G., McLaren, A.J., Follows, M.J., (2000). Estimating the convective supply of nitrate and implied variability in export production over the North Atlantic. Global Biogeochem. Cycles, 14, 1299–1313.

    Article  Google Scholar 

  • Xu, Y-F. (1990) A Study of the Biogeochemical Cycle of CO 2 in the Ocean Using a Parcel Model. Ph.D. thesis. 160 pp. University of East Anglia, Norwich, U.K.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Follows, M., Williams, R.G. (2004). Mechanisms Controlling the Air-Sea Flux of CO 2 in the North Atlantic. In: Follows, M., Oguz, T. (eds) The Ocean Carbon Cycle and Climate. NATO Science Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2087-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2087-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2086-5

  • Online ISBN: 978-1-4020-2087-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics