Skip to main content

Computational Tools and Strategies to Develop Peptide-Based Inhibitors of Protein-Protein Interactions

  • Protocol
  • First Online:
Computational Peptide Science

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2405))

Abstract

Protein-protein interactions play crucial and subtle roles in many biological processes and modifications of their fine mechanisms generally result in severe diseases. Peptide derivatives are very promising therapeutic agents for modulating protein-protein associations with sizes and specificities between those of small compounds and antibodies. For the same reasons, rational design of peptide-based inhibitors naturally borrows and combines computational methods from both protein-ligand and protein-protein research fields. In this chapter, we aim to provide an overview of computational tools and approaches used for identifying and optimizing peptides that target protein-protein interfaces with high affinity and specificity. We hope that this review will help to implement appropriate in silico strategies for peptide-based drug design that builds on available information for the systems of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ryan DP, Matthews JM (2005) Protein-protein interactions in human disease. Curr Opin Struct Biol 15:441–446

    Article  CAS  PubMed  Google Scholar 

  2. Milroy L-G, Grossmann TN, Hennig S, Brunsveld L, Ottmann C (2014) Modulators of protein–protein interactions. Chem Rev 114:4695–4748

    Article  CAS  PubMed  Google Scholar 

  3. Archakov AI, Govorun VM, Dubanov AV, Ivanov YD, Veselovsky AV, Lewi P, Janssen P (2003) Protein-protein interactions as a target for drugs in proteomics. Proteomics 3:380–391

    Article  CAS  PubMed  Google Scholar 

  4. Sheng C, Dong G, Miao Z, Zhang W, Wang W (2015) State-of-the-art strategies for targeting protein–protein interactions by small-molecule inhibitors. Chem Soc Rev 44:8238–8259

    Article  CAS  PubMed  Google Scholar 

  5. Modell AE, Blosser SL, Arora PS (2016) Systematic targeting of protein–protein interactions. Trends Pharmacolog Sci 37:702–713

    Article  CAS  Google Scholar 

  6. Wichapong K, Poelman H, Ercig B, Hrdinova J, Liu X, Lutgens E, Nicolaes GA (2019) Rational modulator design by exploitation of protein–protein complex structures. Future Med Chem 11:1015–1033

    Article  CAS  PubMed  Google Scholar 

  7. Yugandhar K, Gromiha MM (2016) Analysis of protein-protein interaction networks based on binding affinity. Current Protein Peptide Sci 17:72–81

    Article  CAS  Google Scholar 

  8. Nevola L, Giralt E (2015) Modulating protein–protein interactions: the potential of peptides. Chem Commun 51:3302–3315

    Article  CAS  Google Scholar 

  9. Cunningham AD, Qvit N, Mochly-Rosen D (2017) Peptides and peptidomimetics as regulators of protein–protein interactions. Current Opin Struct Biol 44:59–66

    Article  CAS  Google Scholar 

  10. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discovery Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  11. Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G (2015) Molecular fingerprint similarity search in virtual screening. Methods 71:58–63

    Article  PubMed  CAS  Google Scholar 

  12. Kaserer T, Beck K, Akram M, Odermatt A, Schuster D (2015) Pharmacophore models and pharmacophore-based virtual screening: concepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules 20:22799–22832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  14. Zhang R, Ou H-Y, Zhang C-T (2004) DEG: a database of essential genes. Nucleic Acids Res 32:D271–D272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rey S, Acab M, Gardy JL, Laird MR, deFays K, Lambert C, Brinkman FSL (2005) PSORTdb: a protein subcellular localization database for bacteria. Nucleic Acids Res 33:D164–D168

    Article  CAS  PubMed  Google Scholar 

  16. Gawade P, Ghosh P (2018) Genomics driven approach for identification of novel therapeutic targets in Salmonella enterica. Gene 668:211–220

    Article  CAS  PubMed  Google Scholar 

  17. Pirtskhalava M, Gabrielian A, Cruz P, Griggs HL, Squires RB, Hurt DE, Grigolava M, Chubinidze M, Gogoladze G, Vishnepolsky B, Alekseev V, Rosenthal A, Tartakovsky M (2016) DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 44:D1104–D1112

    Google Scholar 

  18. Minkiewicz P, Iwaniak A, Darewicz M (2019) BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci 20:5978

    Article  CAS  PubMed Central  Google Scholar 

  19. Chou K-C (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct Funct Genet 43:246–255

    Article  CAS  Google Scholar 

  20. Rao HB, Zhu F, Yang GB, Li ZR, Chen YZ (2011) Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 39:W385–W390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen W, Ding H, Feng P, Lin H, Chou K-C (2016) iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 7:16895–16909

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu L, Liang G, Wang L, Liao C (2018) A Novel hybrid sequence-based model for identifying anticancer peptides. Genes 9:158

    Article  PubMed Central  CAS  Google Scholar 

  23. Wei L, Zhou C, Chen H, Song J, Su R (2018) ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 34:4007–4016

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Blanco JL, Porto-Pazos AB, Pazos A, Fernandez-Lozano C (2018) Prediction of high anti-angiogenic activity peptides in silico using a generalized linear model and feature selection. Sci Rep 8:15688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Laengsri V, Nantasenamat C, Schaduangrat N, Nuchnoi P, Prachayasittikul V, Shoombuatong W (2019) TargetAntiAngio: a sequence-based tool for the prediction and analysis of anti-angiogenic peptides. Int J Mol Sci 20:2950

    Article  CAS  PubMed Central  Google Scholar 

  26. Bhadra P, Yan J, Li J, Fong S, Siu SWI (2018) AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep 8:1697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Khosravian M, Kazemi Faramarzi F, Mohammad Beigi M, Behbahani M, Mohabatkar H (2013) Predicting antibacterial peptides by the concept of Chou’s Pseudo-amino acid composition and machine learning methods. Protein Peptide Lett 20:180–186

    Article  CAS  Google Scholar 

  28. Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W (2019) Meta-iAVP: a sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation. Int J Mol Sci 20:5743

    Article  CAS  PubMed Central  Google Scholar 

  29. Tung C-W, Ziehm M, Kämper A, Kohlbacher O, Ho S-Y (2011) POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinf 12:446

    Article  CAS  Google Scholar 

  30. Jorgensen KW, Rasmussen M, Buus S, Nielsen M (2014) NetMHCstab - predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141:18–26

    Article  CAS  PubMed  Google Scholar 

  31. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell, JR, Wheeler DK, Sette A, Peters B (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343

    Article  CAS  PubMed  Google Scholar 

  32. Gupta S, Mittal P, Madhu MK, Sharma VK (2017) IL17eScan: a tool for the identification of peptides inducing IL-17 response. Front Immunol 8:1430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Manavalan B, Shin TH, Kim MO, Lee G (2018) AIPpred: sequence-based prediction of anti-inflammatory peptides using random forest. Front Pharmacol 9:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wei L, Zhou C, Su R, Zou Q (2019) PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Bioinf 35:4272–4280

    Article  CAS  Google Scholar 

  35. Tang H, Su, Z.-D., Wei, H.-H., Chen W, Lin H (2016) Prediction of cell-penetrating peptides with feature selection techniques. Biochem Biophys Res Commun 477:150–154

    Article  CAS  PubMed  Google Scholar 

  36. Wei L, Xing P, Su R, Shi G, Ma ZS, Zou Q (2017) CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. J Proteome Res 16:2044–2053

    Article  CAS  PubMed  Google Scholar 

  37. Pandey P, Patel V, George NV, Mallajosyula SS (2018) KELM-CPPpred: Kernel extreme learning machine based prediction model for cell-penetrating peptides. J Proteome Res 17:3214–3222

    Article  CAS  PubMed  Google Scholar 

  38. Arif M, Ahmad S, Ali F, Fang G, Li M, Yu, D-J (2020) TargetCPP: accurate prediction of cell-penetrating peptides from optimized multi-scale features using gradient boost decision tree. J Comput Aided Mol Des 34:841–856

    Article  CAS  PubMed  Google Scholar 

  39. Chen M, Ju C JT, Zhou G, Chen X, Zhang T, Chang K-W, Zaniolo C, Wang W (2019) Multifaceted protein–protein interaction prediction based on Siamese residual RCNN. Bioinformatics 35:i305–i314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hashemifar S, Neyshabur B, Khan AA, Xu J (2018) Predicting protein-protein interactions through sequence-based deep learning. Bioinformatics 34:i802–i810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tran L, Hamp T, Rost B (2018) ProfPPIdb: Pairs of physical protein-protein interactions predicted for entire proteomes. PLOS One 13:e0199988

    Article  PubMed  PubMed Central  Google Scholar 

  42. Romero-Molina S, Ruiz-Blanco YB, Harms M, Münch J, Sanchez-Garcia E (2019) PPI-detect: a support vector machine model for sequence-based prediction of protein-protein interactions: PPI-Detect: a support vector machine model for sequence-based prediction of protein-protein interactions. J Comput Chem 40:1233–1242

    Article  CAS  PubMed  Google Scholar 

  43. Eid F-E, ElHefnawi M, Heath LS (2016) DeNovo: virus-host sequence-based protein–protein interaction prediction. Bioinf 32:1144–1150

    Article  CAS  Google Scholar 

  44. Lian X, Yang S, Li H, Fu C, Zhang Z (2019) Machine-learning-based predictor of human-bacteria protein-protein interactions by incorporating comprehensive host-network properties. J Proteome Res 18:2195–2205

    Article  CAS  PubMed  Google Scholar 

  45. Kösesoy I, Gök M, Öz C (2019) A new sequence based encoding for prediction of host–pathogen protein interactions. Comput Biol Chem 78:170–177

    Article  PubMed  CAS  Google Scholar 

  46. Tan S-H, Hugo W, Sung, W-K, Ng S-K (2006) A correlated motif approach for finding short linear motifs from protein interaction networks. BMC Bioinf 7:502

    Article  CAS  Google Scholar 

  47. Leung HC-M, Siu M-H, Yiu S-M, Chin FY-L, Sung KW-K (2009) Clustering-based approach for predicting motif pairs from protein interaction data. J Bioinf Comput Biol 07:701–716

    Article  CAS  Google Scholar 

  48. Hugo W, Ng S-K, Sung W-K (2011) D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data. J Proteome Res 10:5285–5295

    Article  CAS  PubMed  Google Scholar 

  49. Disfani FM, Hsu W-L, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28:i75–i83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malhis N, Gsponer J (2015) Computational identification of MoRFs in protein sequences. Bioinformatics 31:1738–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He H, Zhao J, Sun G (2019) Computational prediction of MoRFs based on protein sequences and minimax probability machine. BMC Bioinf 20:529

    Article  CAS  Google Scholar 

  52. Chen JR, Chang BH, Allen JE, Stiffler MA, MacBeath G (2008) Predicting PDZ domain–peptide interactions from primary sequences. Nat Biotechnol 26:1041–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reimand J, Hui S, Jain S, Law B, Bader GD (2012) Domain-mediated protein interaction prediction: from genome to network. FEBS Lett 586:2751–2763

    Article  CAS  PubMed  Google Scholar 

  54. Sarkar D, Jana T, Saha S (2018) LMDIPred: a web-server for prediction of linear peptide sequences binding to SH3, WW and PDZ domains. PLOS One 13:e0200430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Xue LC, Dobbs D, Honavar V (2011) HomPPI: a class of sequence homology based protein-protein interface prediction methods. BMC Bioinf 12:244

    Article  CAS  Google Scholar 

  56. Garcia-Garcia J, Valls-Comamala V, Guney E, Andreu D, Muñoz FJ, Fernandez-Fuentes N, Oliva B (2017) iFrag: a protein–protein interface prediction server based on sequence fragments. J Mol Biol 429:382–389

    Article  CAS  PubMed  Google Scholar 

  57. Dhole K, Singh G, Pai PP, Mondal S (2014) Sequence-based prediction of protein–protein interaction sites with L1-logreg classifier. J Theoret Biol 348:47–54

    Article  CAS  Google Scholar 

  58. Jia J, Liu Z, Xiao X, Liu B, Chou, K-C (2016) iPPBS-Opt: a sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules 21:95

    Article  PubMed Central  Google Scholar 

  59. Hou Q, De Geest PFG, Griffioen CJ, Abeln S, Heringa J, Feenstra KA (2019) SeRenDIP: SEquential REmasteriNg to DerIve profiles for fast and accurate predictions of PPI interface positions. Bioinformatics 35:4794–4796

    Article  CAS  PubMed  Google Scholar 

  60. Afsar Minhas FuA, Geiss BJ, Ben-Hur A (2014) PAIRpred: partner-specific prediction of interacting residues from sequence and structure: interface prediction using PAIRpred. Proteins: Struct Funct Bioinf 82:1142–1155

    Article  CAS  Google Scholar 

  61. Meyer MJ, Beltrán JF, Liang S, Fragoza R, Rumack A, Liang J, Wei X, Yu H (2018) Interactome INSIDER: a structural interactome browser for genomic studies. Nat Methods 15:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sanchez-Garcia R, Sorzano COS, Carazo JM, Segura J (2019) BIPSPI: a method for the prediction of partner-specific protein-protein interfaces. Bioinf 35:470–477

    Article  CAS  Google Scholar 

  63. Taherzadeh G, Yang Y, Zhang T, Liew AW-C, Zhou Y (2016) Sequence-based prediction of protein-peptide binding sites using support vector machine. J Comput Chem 37:1223–1229

    Article  CAS  PubMed  Google Scholar 

  64. Zhao Z, Peng Z, Yang J (2018) Improving sequence-based prediction of protein–peptide binding residues by introducing intrinsic disorder and a consensus method. J Chem Inf Model 58:1459–1468

    Article  CAS  PubMed  Google Scholar 

  65. Dosztányi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434

    Article  PubMed  CAS  Google Scholar 

  66. Yugandhar K, Gromiha MM (2014) Feature selection and classification of protein–protein complexes based on their binding affinities using machine learning approaches. Proteins: Struct Funct Bioinf 82:2088–2096

    Article  CAS  Google Scholar 

  67. Srinivasulu Y, Wang, J-R, Hsu K-T, Tsai M-J, Charoenkwan P, Huang W-L, Huang H-L, Ho S-Y (2015) Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes. BMC Bioinf 16:S14

    Article  Google Scholar 

  68. Shao X, Tan CSH, Voss C, Li SSC, Deng N, Bader GD (2011) A regression framework incorporating quantitative and negative interaction data improves quantitative prediction of PDZ domain–peptide interaction from primary sequence. Bioinformatics 27:383–390

    Article  CAS  PubMed  Google Scholar 

  69. Moal IH, Agius R, Bates PA (2011) Protein–protein binding affinity prediction on a diverse set of structures. Bioinformatics 27:3002–3009

    Article  CAS  PubMed  Google Scholar 

  70. Luo J, Guo Y, Zhong Y, Ma D, Li W, Li M (2014) A functional feature analysis on diverse protein–protein interactions: application for the prediction of binding affinity. J Comput Aided Mol Design 28:619–629.

    Article  CAS  Google Scholar 

  71. Kamisetty H, Ghosh B, Langmead CJ, Bailey-Kellogg C (2015) Learning sequence determinants of protein:protein interaction specificity with sparse graphical models. J Comput Biol 22:474–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jemimah S, Yugandhar K, Michael Gromiha M (2017) PROXiMATE: a database of mutant protein–protein complex thermodynamics and kinetics. Bioinf 33:2787–2788

    Article  CAS  Google Scholar 

  73. Jankauskaitė J, Jiménez-García B, Dapkūnas J, Fernández-Recio J, Moal IH (2019) SKEMPI 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics 35:462–469

    Article  PubMed  CAS  Google Scholar 

  74. Geng C, Vangone A, Folkers GE, Xue LC, Bonvin AMJJ (2019) iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations. Proteins: Struct Funct Bioinf 87:110–119

    Article  CAS  Google Scholar 

  75. Rodrigues CHM, Myung Y, Pires DEV, Ascher DB (2019) mCSM-PPI2: predicting the effects of mutations on protein–protein interactions. Nucleic Acids Res 47:W338–W344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang N, Chen Y, Lu H, Zhao F, Alvarez RV, Goncearenco A, Panchenko AR, Li M (2020) MutaBind2: predicting the impacts of single and multiple mutations on protein-protein interactions. iScience 23:100939

    Google Scholar 

  77. Jemimah S, Sekijima M, Gromiha MM (2019) ProAffiMuSeq: sequence-based method to predict the binding free energy change of protein–protein complexes upon mutation using functional classification. Bioinformatics 36:1725–1730

    Google Scholar 

  78. Li G, Pahari S, Krishna Murthy A, Liang S, Fragoza R, Yu H, Alexov E (2020) SAAMBE-SEQ: a sequence-based method for predicting mutation effect on protein-protein binding affinity. Bioinformatics 37:btaa761

    Google Scholar 

  79. Massa SM, Xie Y, Longo FM (2003) Alzheimer’s therapeutics. J Mol Neurosci 20:323–326

    Article  CAS  PubMed  Google Scholar 

  80. Parthasarathi L, Casey F, Stein A, Aloy P, Shields DC (2008) Approved drug mimics of short peptide ligands from protein interaction motifs. J Chem Inf Model 48:1943–1948

    Article  CAS  PubMed  Google Scholar 

  81. Fayaz SM, Rajanikant GK (2015) Modelling the molecular mechanism of protein–protein interactions and their inhibition: CypD–p53 case study. Mol Diversity 19:931–943

    Article  CAS  Google Scholar 

  82. Caporuscio F, Tafi A, González E, Manetti F, Esté JA, Botta, M (2009) A dynamic target-based pharmacophoric model mapping the CD4 binding site on HIV-1 gp120 to identify new inhibitors of gp120–CD4 protein–protein interactions. Bioorganic Med Chem Lett 19:6087–6091

    Article  CAS  Google Scholar 

  83. Hall PR, Leitão A, Ye C, Kilpatrick K, Hjelle B, Oprea TI, Larson RS (2010) Small molecule inhibitors of hantavirus infection. Bioorganic Med Chem Lett 20:7085–7091

    Article  CAS  Google Scholar 

  84. Pihan E, Delgadillo RF, Tonkin ML, Pugnière M, Lebrun M, Boulanger MJ, Douguet D (2015) Computational and biophysical approaches to protein–protein interaction inhibition of Plasmodium falciparum AMA1/RON2 complex. J Comput Aided Mol Design 29:525–539

    Article  CAS  Google Scholar 

  85. Jesus Perez de Vega M, Martin-Martinez M, Gonzalez-Muniz R (2007) Modulation of protein-protein interactions by stabilizing/mimicking protein secondary structure elements. Current Topics Med Chem 7:33–62

    Google Scholar 

  86. Klein M (2017) Stabilized helical peptides: overview of the technologies and its impact on drug discovery. Expert Opin Drug Disc 12:1117–1125

    Article  CAS  Google Scholar 

  87. Guarracino DA, Riordan JA, Barreto GM, Oldfield AL, Kouba CM, Agrinsoni D (2019) Macrocyclic control in Helix Mimetics. Chem Rev 119:9915–9949

    Article  CAS  PubMed  Google Scholar 

  88. Khakshoor O, Nowick JS (2008) Artificial β-sheets: chemical models of β-sheets. Current Opin Chem Biol 12:722–729

    Article  CAS  Google Scholar 

  89. Laxio Arenas J, Kaffy J, Ongeri S (2019) Peptides and peptidomimetics as inhibitors of protein–protein interactions involving β-sheet secondary structures. Current Opin Chem Biol 52:157–167

    Article  CAS  Google Scholar 

  90. Tanaka M (2007) Design and synthesis of chiral α,α-disubstituted amino acids and conformational study of their oligopeptides. Chem Pharmaceut Bull 55:349–358

    Article  CAS  Google Scholar 

  91. Chatterjee J, Rechenmacher F, Kessler H (2013) N-Methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Edition 52:254–269

    Article  CAS  Google Scholar 

  92. Sarnowski MP, Pedretty KP, Giddings N, Woodcock HL, Del Valle JR (2018) Synthesis and β-sheet propensity of constrained N-amino peptides. Bioorganic Med Chem 26:1162–1166

    Article  CAS  Google Scholar 

  93. Matthes D, Groot BLd (2009) Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes. Biophys J 97:599–608

    Google Scholar 

  94. Rauscher S, Gapsys V, Gajda MJ, Zweckstetter M, de Groot BL, Grubmüller H (2015) Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J Chem Theory Comput 11:5513–5524

    Article  CAS  PubMed  Google Scholar 

  95. Chan-Yao-Chong M, Deville C, Pinet L, van Heijenoort C, Durand D, Ha-Duong T (2019) Structural characterization of N-WASP domain V using MD simulations with NMR and SAXS data. Biophys J 116:1216–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  97. Laio A and Parrinello M (2002). Escaping free-energy minima. Proc Natl Acad Sci 99:12562–12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Joseph TL, Lane DP, Verma CS (2012) Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations. PLOS One 7:e43985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Damas JM, Filipe LC, Campos SR, Lousa D, Victor BL, Baptista AM, Soares CM (2013) Predicting the thermodynamics and kinetics of Helix formation in a cyclic peptide model. J Chem Theory Comput 9:5148–5157

    Article  CAS  PubMed  Google Scholar 

  100. Cornillie SP, Bruno BJ, Lim CS, Cheatham TE (2018) Computational modeling of stapled peptides toward a treatment strategy for CML and broader implications in the design of lengthy peptide therapeutics. J Phys Chem B 122:3864–3875

    Article  CAS  PubMed  Google Scholar 

  101. Lama D, Quah ST, Verma CS, Lakshminarayanan R, Beuerman RW, Lane DP, Brown CJ (2013) Rational optimization of conformational effects induced by hydrocarbon staples in peptides and their binding interfaces. Sci Rep 3:3451

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhu J, Wei S, Huang L, Zhao Q, Zhu H, Zhang A (2020) Molecular modeling and rational design of hydrocarbon-stapled/halogenated helical peptides targeting CETP self-binding site: Therapeutic implication for atherosclerosis. J Mol Graph Modell 94:107455

    Article  CAS  Google Scholar 

  103. Tan YS, Lane DP, Verma CS (2016) Stapled peptide design: principles and roles of computation. Drug Discovery Today 21:1642–1653

    Article  CAS  PubMed  Google Scholar 

  104. Spitaleri A, Ghitti M, Mari S, Alberici L, Traversari C, Rizzardi G-P, Musco G (2011) Use of metadynamics in the design of isoDGR-based αvβ3 antagonists to fine-tune the conformational ensemble. Ang Chem Int Edition 50:1832–1836

    Article  CAS  Google Scholar 

  105. Yedvabny E, Nerenberg PS, So C, Head-Gordon T (2015) Disordered structural ensembles of vasopressin and oxytocin and their mutants. J Phys Chem B 119:896–905

    Article  CAS  PubMed  Google Scholar 

  106. Yu H, Lin, Y-S (2015) Toward structure prediction of cyclic peptides. Phys Chem Chem Phys 17:4210–4219

    Article  CAS  PubMed  Google Scholar 

  107. McHugh SM, Rogers JR, Solomon SA, Yu H, Lin Y-S (2016) Computational methods to design cyclic peptides. Current Opin Chem Biol 34:95–102

    Article  CAS  Google Scholar 

  108. Quartararo JS, Eshelman MR, Peraro L, Yu H, Baleja JD, Lin Y-S, Kritzer JA (2014) A bicyclic peptide scaffold promotes phosphotyrosine mimicry and cellular uptake. Bioorganic Med Chem 22:6387–6391

    Article  CAS  Google Scholar 

  109. Razavi AM, Wuest WM, Voelz VA (2014) Computational screening and selection of cyclic peptide hairpin mimetics by molecular simulation and kinetic network models. J Chem Inf Model 54:1425–1432

    Article  CAS  PubMed  Google Scholar 

  110. Wakefield AE, Wuest WM, Voelz VA (2015) Molecular simulation of conformational pre-organization in cyclic RGD peptides. J Chem Inf Model 55:806–813

    Article  CAS  PubMed  Google Scholar 

  111. Est CB, Mangrolia P, Murphy RM (2019) ROSETTA-informed design of structurally stabilized cyclic anti-amyloid peptides. Protein Eng Design Select 32:47–57

    Article  CAS  Google Scholar 

  112. Paissoni C, Ghitti M, Belvisi L, Spitaleri A, Musco G (2015) Metadynamics simulations rationalise the conformational effects induced by N-methylation of RGD cyclic hexapeptides. Chem A Europ J 21:14165–14170

    Article  CAS  Google Scholar 

  113. Slough DP, Yu H, McHugh SM, Lin Y-S (2017) Toward accurately modeling N-methylated cyclic peptides. Phys Chem Chem Phys 19:5377–5388

    Article  CAS  PubMed  Google Scholar 

  114. Lensink MF, Velankar S, Wodak SJ (2017) Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition: modeling protein-protein and protein-peptide complexes. Proteins Struct Funct Bioinf 85:359–377

    Article  CAS  Google Scholar 

  115. Gowthaman R, Miller SA, Rogers S, Khowsathit J, Lan L, Bai N, Johnson DK, Liu C, Xu L, Anbanandam A, Aubé J, Roy A, Karanicolas J (2016) DARC: mapping surface topography by ray-casting for effective virtual screening at protein interaction sites. J Med Chem 59:4152–4170

    Article  CAS  PubMed  Google Scholar 

  116. Binkowski TA, Naghibzadeh S, Liang J (2003) CASTp: computed atlas of surface topography of proteins. Nucleic Acids Res 31:3352–3355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinf 10:168

    Article  Google Scholar 

  118. Guo Z, Thorarensen A, Che J, Xing L (2016) Target the more druggable protein states in a highly dynamic protein–protein interaction system. J Chem Inf Model 56:35–45

    Article  CAS  PubMed  Google Scholar 

  119. Guo Z, Li B, Dzubiella J, Cheng L-T, McCammon JA, Che J (2013) Evaluation of hydration free energy by level-set variational implicit-solvent model with coulomb-field approximation. J Chem Theory Comput 9:1778–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu S, Liu C, Deng L (2018) Machine learning approaches for protein–protein interaction hot spot prediction: progress and comparative assessment. Molecules 23:2535

    Article  PubMed Central  CAS  Google Scholar 

  121. Tuncbag N, Gursoy A, Keskin O (2009) Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinf 25:1513–1520

    Article  CAS  Google Scholar 

  122. Xia J-F, Zhao X-M, Song J, Huang D-S (2010) APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinf 11:174

    Article  CAS  Google Scholar 

  123. Wang L, Liu Z-P, Zhang X-S, Chen L (2012) Prediction of hot spots in protein interfaces using a random forest model with hybrid features. Protein Eng Design Select 25:119–126

    Article  CAS  Google Scholar 

  124. Deng L, Guan J, Wei X, Yi Y, Zhang QC, Zhou S (2013) Boosting prediction performance of protein-protein interaction hot spots by using structural neighborhood properties. J Comput Biol 20:878–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qiao Y, Xiong Y, Gao H, Zhu X, Chen P (2018) Protein-protein interface hot spots prediction based on a hybrid feature selection strategy. BMC Bioinf 19:14

    Article  CAS  Google Scholar 

  126. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking11Edited by F. E. Cohen. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  127. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang L, Hou Y, Quan H, Xu W, Bao Y, Li Y, Fu Y, Zou S (2013) A compound-based computational approach for the accurate determination of hot spots. Protein Sci 22:1060–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kulp JL, Kulp JL, Pompliano DL, Guarnieri F (2011) Diverse fragment clustering and water exclusion identify protein hot spots. J Amer Chem Soc 133:10740–10743

    Article  CAS  Google Scholar 

  130. Kulp JL, Cloudsdale IS, Kulp JL, Guarnieri F (2017) Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. PLOS One 12:e0183327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244:1081–1085

    Article  CAS  PubMed  Google Scholar 

  132. Barlow KA, Ó Conchúir S, Thompson S, Suresh P, Lucas JE, Heinonen M, Kortemme T (2018) Flex ddG: Rosetta ensemble-based estimation of changes in protein-protein binding affinity upon mutation. J Phys Chem B 122:5389–5399

    Google Scholar 

  133. Ibarra AA, Bartlett GJ, Hegedüs Z, Dutt S, Hobor F, Horner KA, Hetherington K, Spence K, Nelson A, Edwards TA, Woolfson DN, Sessions RB, Wilson AJ (2019) Predicting and experimentally validating hot-spot residues at protein–protein interfaces. ACS Chem Biol 14:2252–2263

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Martins SA, Perez M AS, Moreira IS, Sousa SF, Ramos MJ, Fernandes PA (2013) Computational alanine scanning mutagenesis: MM-PBSA vs TI. J Chem Theory Comput 9:1311–1319

    Article  CAS  PubMed  Google Scholar 

  135. Yang XQ, Liu JY, Li XC, Chen MH, Zhang YL (2014) Key amino acid associated with acephate detoxification by cydia pomonella carboxylesterase based on molecular dynamics with alanine scanning and site-directed mutagenesis. J Chem Inf Model 54:1356–1370

    Article  CAS  PubMed  Google Scholar 

  136. Dapiaggi F, Pieraccini S, Sironi M (2015) In silico study of VP35 inhibitors: from computational alanine scanning to essential dynamics. Mol BioSyst 11:2152–2157

    Article  CAS  PubMed  Google Scholar 

  137. He L, Bao J, Yang Y, Dong S, Zhang L, Qi Y, Zhang JZH (2019) Study of SHMT2 inhibitors and their binding mechanism by computational alanine scanning. J Chem Inf Model 59:3871–3878

    Article  CAS  PubMed  Google Scholar 

  138. Laurini E, Marson D, Aulic S, Fermeglia M, Pricl S (2020) Computational Alanine scanning and structural analysis of the SARS-CoV-2 Spike protein/angiotensin-converting enzyme 2 complex. ACS Nano 14:11821–11830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhao J, Yin B, Sun H, Pang L, Chen J (2020) Identifying hot spots of inhibitor-CDK2 bindings by computational alanine scanning. Chem Phys Lett 747:137329

    Article  CAS  Google Scholar 

  140. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87

    Article  CAS  PubMed  Google Scholar 

  141. Baspinar A, Cukuroglu E, Nussinov R, Keskin O, Gursoy A (2014) PRISM: a web server and repository for prediction of protein–protein interactions and modeling their 3D complexes. Nucleic Acids Res 42:W285–W289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cheng TM-K, Blundell TL, Fernandez-Recio J (2007) pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 68:503–515

    Article  CAS  PubMed  Google Scholar 

  143. Degryse B, Fernandez-Recio J, Citro V, Blasi F, Cubellis MV (2008) In silico docking of urokinase plasminogen activator and integrins. BMC Bioinf 9:S8

    Article  CAS  Google Scholar 

  144. Lee H, Heo L, Lee MS, Seok C (2015) GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res 43:W431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yan Y, Wen Z, Wang X, Huang S-Y (2017) Addressing recent docking challenges: a hybrid strategy to integrate template-based and free protein-protein docking. Proteins Struct Funct Bioinf 85:497–512

    Article  CAS  Google Scholar 

  146. Johansson-Åkhe I, Mirabello C, Wallner B (2020) InterPep2: global peptide–protein docking using interaction surface templates. Bioinformatics 36:2458–2465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Schindler C, de Vries S, Zacharias M (2015) Fully blind peptide-protein docking with pepATTRACT. Structure 23:1507–1515

    Article  CAS  PubMed  Google Scholar 

  148. Yan C, Xu X, Zou X (2016) Fully blind docking at the atomic level for protein-peptide complex structure prediction. Structure 24:1842–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O (2017) High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLOS Comput Biol 13:e1005905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Zhou P, Jin B, Li H, Huang S-Y (2018) HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Res 46:W443–W450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78:2029–2040

    Article  CAS  PubMed  Google Scholar 

  152. Ben-Shimon A, Niv MY (2015). AnchorDock: blind and flexible anchor-driven peptide docking. Structure 23:929–940

    Article  CAS  PubMed  Google Scholar 

  153. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res 43:W419–W424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Antunes DA, Moll M, Devaurs D, Jackson KR, Lizée G, Kavraki LE (2017) DINC 2.0: a new protein-peptide docking webserver using an incremental approach. Cancer Res 77:e55–e57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Peterson LX, Roy A, Christoffer C, Terashi G, Kihara D (2017) Modeling disordered protein interactions from biophysical principles. PLOS Comput Biol 13:e1005485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O (2010) Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins 78:3140–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. London N, Raveh B, Schueler-Furman O (2013) Druggable protein-protein interactions? from hot spots to hot segments. Current Opin Chem Biol 17:952–959

    Article  CAS  Google Scholar 

  158. Nomme J, Takizawa Y, Martinez SF, Renodon-Cornière A, Fleury F, Weigel P, Yamamoto K-i, Kurumizaka H, Takahashi M (2008) Inhibition of filament formation of human Rad51 protein by a small peptide derived from the BRC-motif of the BRCA2 protein. Genes Cells 13:471–481

    Article  CAS  PubMed  Google Scholar 

  159. Nomme J, Renodon-Cornière A, Asanomi Y, Sakaguchi K, Stasiak AZ, Stasiak A, Norden B, Tran V, Takahashi M (2010) Design of potent inhibitors of human RAD51 recombinase based on BRC motifs of BRCA2 protein: modeling and experimental validation of a chimera peptide. J Med Chem 53:5782–5791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jafary F, Ganjalikhany MR, Moradi A, Hemati M, Jafari S (2019) Novel peptide inhibitors for lactate dehydrogenase a (LDHA): a survey to inhibit ldha activity via disruption of protein-protein interaction. Sci Rep 9:4686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Gavenonis J, Jonas NE, Kritzer JA (2014) Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix. Bioorganic Med Chem 22:3989–3993

    Article  CAS  Google Scholar 

  162. Bopp B, Ciglia E, Ouald-Chaib A, Groth G, Gohlke H, Jose J (2016) Design and biological testing of peptidic dimerization inhibitors of human Hsp90 that target the C-terminal domain. Biochim et Biophys Acta 1860:1043–1055

    Article  CAS  Google Scholar 

  163. Sedan Y, Marcu O, Lyskov S, Schueler-Furman O (2016) Peptiderive server: derive peptide inhibitors from protein–protein interactions. Nucleic Acids Res 44:W536–W541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Horita S, Nomura Y, Sato Y, Shimamura T, Iwata S, Nomura N (2016) High-resolution crystal structure of the therapeutic antibody pembrolizumab bound to the human PD-1. Sci Rep 6:35297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Li D, Song H, Mei H, Fang E, Wang X, Yang F, Li H, Chen Y, Huang K, Zheng L, Tong Q (2018) Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun 9:2829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Tarsia C, Danielli A, Florini F, Cinelli P, Ciurli S, Zambelli B (2018) Targeting Helicobacter pylori urease activity and maturation: in-cell high-throughput approach for drug discovery. Bioch et Biophys Acta 1862:2245–2253

    Article  CAS  Google Scholar 

  167. Geppert T, Bauer S, Hiss JA, Conrad E, Reutlinger M, Schneider P, Weisel M, Pfeiffer B, Altmann K-H, Waibler Z, Schneider G (2012) Immunosuppressive small molecule discovered by structure-based virtual screening for inhibitors of protein–protein interactions. Angew Chem Int Edition 51:258–261

    Article  CAS  Google Scholar 

  168. Johnson DK, Karanicolas J (2016) Ultra-high-throughput structure-based virtual screening for small-molecule inhibitors of protein–protein interactions. J Chem Inf Model 56:399–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Koes DR, Dömling A, Camacho CJ (2018) AnchorQuery: rapid online virtual screening for small-molecule protein–protein interaction inhibitors. Protein Sci 27:229–232

    Article  CAS  PubMed  Google Scholar 

  170. Wu H, Liu Y, Guo M, Xie J, Jiang X (2014) A virtual screening method for inhibitory peptides of angiotensin i–converting enzyme J Food Sci 79:C1635–C1642

    CAS  PubMed  Google Scholar 

  171. Yu Z, Fan Y, Zhao W, Ding L, Li J, Liu J (2018) Novel angiotensin-converting enzyme inhibitory peptides derived from oncorhynchus mykiss nebulin: virtual screening and in silico molecular docking study. J Food Sci 83:2375–2383

    Article  CAS  PubMed  Google Scholar 

  172. Yu Z, Kan R, Wu S, Guo H, Zhao W, Ding L, Zheng F, and Liu, J. (2020). Xanthine oxidase inhibitory peptides derived from tuna protein: virtual screening, inhibitory activity, and molecular mechanisms. J Sci Food Agric

    Google Scholar 

  173. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Duffy FJ, Verniere M, Devocelle M, Bernard E, Shields DC, Chubb AJ (2011) CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids. J Chem Inf Model 51:829–836

    Article  CAS  PubMed  Google Scholar 

  175. Huang P-S, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327

    Article  CAS  PubMed  Google Scholar 

  176. Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL, Baker D (2004) Computational redesign of protein-protein interaction specificity. Nat Struct Mol Biol 11:371–379

    Article  CAS  PubMed  Google Scholar 

  177. Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR (2012) Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLOS Comput Biol 8:e1002477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sharabi O, Shirian J, Shifman J (2013) Predicting affinity- and specificity-enhancing mutations at protein–protein interfaces. Biochem Soc Trans 41:1166–1169

    Article  CAS  PubMed  Google Scholar 

  179. Simonson T, Gaillard T, Mignon D, Schmidt am Busch M, Lopes A, Amara N, Polydorides S, Sedano A, Druart K, Archontis G (2013) Computational protein design: the Proteus software and selected applications. J Comput Chem 34:2472–2484

    Google Scholar 

  180. Frappier V, Jenson JM, Zhou J, Grigoryan G, Keating AE (2019) Tertiary structural motif sequence statistics enable facile prediction and design of peptides that bind anti-apoptotic Bfl-1 and Mcl-1. Structure 27:606–617.e5

    Google Scholar 

  181. Poole AM, Ranganathan R (2006) Knowledge-based potentials in protein design. Current Opin Struct Biol 16:508–513

    Article  CAS  Google Scholar 

  182. Boas FE, Harbury PB (2007) Potential energy functions for protein design. Current Opin Struct Biol 17:199–204

    Article  CAS  Google Scholar 

  183. Mackenzie CO, Zhou J, Grigoryan G (2016) Tertiary alphabet for the observable protein structural universe. Proc Natl Acad Sci 113:E7438–E7447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zheng F, Zhang J, Grigoryan G (2015) Tertiary structural propensities reveal fundamental Sequence/structure relationships. Structure 23:961–971

    Article  CAS  PubMed  Google Scholar 

  185. Grigoryan G, Reinke AW, Keating AE (2009) Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen TS, Reinke AW, Keating AE (2011) Design of peptide inhibitors that bind the bZIP Domain of Epstein–barr virus protein BZLF1 J Mol Biol 408:304–320

    CAS  PubMed  Google Scholar 

  187. Smith CA, Kortemme T (2010) Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. J Mol Biol 402:460–474

    Article  CAS  PubMed  Google Scholar 

  188. Zheng F, Jewell H, Fitzpatrick J, Zhang J, Mierke DF, Grigoryan G (2015) Computational design of selective peptides to discriminate between similar PDZ domains in an oncogenic pathway. J Mol Biol 427:491–510

    Article  CAS  PubMed  Google Scholar 

  189. Sievers SA, Karanicolas J, Chang HW, Zhao A, Jiang L, Zirafi O, Stevens JT, Münch J, Baker D, Eisenberg D (2011) Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475:96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang C, Shen Q, Tang B, Lai L (2013) Computational design of helical peptides targeting TNFα. Angew Chem Int Edition 52:11059–11062

    Google Scholar 

  191. Yang W, Zhang Q, Zhang C, Guo A, Wang Y, You H, Zhang X, Lai L (2019) Computational design and optimization of novel d-peptide TNFα inhibitors. FEBS Lett 593:1292–1302

    Article  CAS  PubMed  Google Scholar 

  192. Foight GW, Ryan JA, Gullá SV, Letai A, Keating AE (2014) Designed BH3 peptides with high affinity and specificity for targeting Mcl-1 in cells. ACS Chem Biol 9:1962–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Berger S, Procko E, Margineantu D, Lee EF, Shen BW, Zelter A, Silva D-A, Chawla K, Herold MJ, Garnier J-M, Johnson R, MacCoss MJ, Lessene G, Davis TN, Stayton PS, Stoddard BL, Fairlie WD, Hockenbery DM, Baker D (2016) Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. eLife 5:e20352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tâp Ha-Duong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Delaunay, M., Ha-Duong, T. (2022). Computational Tools and Strategies to Develop Peptide-Based Inhibitors of Protein-Protein Interactions. In: Simonson, T. (eds) Computational Peptide Science. Methods in Molecular Biology, vol 2405. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1855-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1855-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1854-7

  • Online ISBN: 978-1-0716-1855-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics