Skip to main content

Raman Imaging of Plant Cell Walls

  • Protocol
  • First Online:
The Plant Cell Wall

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2149))

Abstract

Raman imaging is a microspectroscopic approach revealing the chemistry and structure of plant cell walls in situ on the micro- and nanoscale. The method is based on the Raman effect (inelastic scattering) that takes place when monochromatic laser light interacts with matter. The scattered light conveys a change in energy that is inherent of the involved molecule vibrations. The Raman spectra are thus characteristic for the chemical structure of the molecules and can be recorded spatially ordered with a lateral resolution of about 300 nm. Based on thousands of acquired Raman spectra, images can be assessed using univariate as well as multivariate data analysis approaches. One advantage compared to staining or labeling techniques is that not only one image is obtained as a result but different components and characteristics can be displayed in several images. Furthermore, as every pixel corresponds to a Raman spectrum, which is a kind of “molecular fingerprint,” the imaging results should always be evaluated and further details revealed by analysis (e.g., band assignment) of extracted spectra. In this chapter, the basic theoretical background of the technique and instrumentation are described together with sample preparation requirements and tips for high-quality plant tissue sections and successful Raman measurements. Typical Raman spectra of the different plant cell wall components are shown as well as an exemplified analysis of Raman data acquired on the model plant Arabidopsis. Important preprocessing methods of the spectra are included as well as single component image generation (univariate) and spectral unmixing by means of multivariate approaches (e.g., vertex component analysis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AsLS:

Asymmetric least squares

CCD:

Charge-coupled detector

CRM :

Confocal Raman microscopy

HCA:

Hierarchical cluster analysis

MCR-ALS:

Multivariate curve resolution alternating least squares

NMF:

Nonnegative matrix factorization

PCA :

Principal component analysis

PEG:

Polyethylene glycol

S/G ratio:

Syringyl–guaiacyl ratio

S/N ratio:

Signal-to-noise ratio

VCA :

Vertex component analysis

References

  1. Graham LE, Cook ME, Busse JS (2000) The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci 97(9):4535–4540. https://doi.org/10.1073/pnas.97.9.4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agarwal UP, Atalla RH (1986) In situ Raman microprobe studies of plant-cell walls – macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill) Bsp. Planta 169(3):325–332

    Article  CAS  PubMed  Google Scholar 

  3. Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26(2):205–216. https://doi.org/10.1046/j.1365-313x.2001.01021.x

    Article  CAS  PubMed  Google Scholar 

  4. Jarvis MC, McCann MC (2000) Macromolecular biophysics of the plant cell wall: concepts and methodology. Plant Physiol Biochem 38(1/2):1–13

    Article  CAS  Google Scholar 

  5. Laschimke R (1989) Investigation of the wetting behavior of natural lignin — a contribution to the cohesion theory of water transport in plants. Thermochim Acta 151:35–56. https://doi.org/10.1016/0040-6031(89)85335-3

    Article  CAS  Google Scholar 

  6. Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, foramtion, structure, and reactions. In. Wiley-Intersci, New York, NY, p 916

    Google Scholar 

  7. Gindl W, Gupta HS, Schoberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A Mater 79(8):2069–2073. https://doi.org/10.1007/s00339-004-2864-y

    Article  CAS  Google Scholar 

  8. Salzer R, Steiner G, Mantsch HH, Mansfield J, Lewis EN (2000) Infrared and Raman imaging of biological and biomimetic samples. Fresenius J Anal Chem 366:712–726

    Article  CAS  PubMed  Google Scholar 

  9. Burrell M, Earnshaw C, Clench M (2007) Imaging matrix assisted laser desorption ionization mass spectrometry: a technique to map plant metabolites within tissues at high spatial resolution. J Exp Bot 58(4):757–763. https://doi.org/10.1093/jxb/erl139

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt U, Ibach W, Muller J, Weishaupt K, Hollricher O (2006) Raman spectral imaging – a nondestructive, high resolution analysis technique for local stress measurements in silicon. Vib Spectrosc 42(1):93–97. https://doi.org/10.1016/j.vibspec.2006.01.005

    Article  CAS  Google Scholar 

  11. Griffith PR (2009) Infrared and Raman instrumentation for mapping and imaging. In: Salzer R, Siesler HW (eds) Infrared and Raman spectroscopic imaging. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 3–64

    Google Scholar 

  12. Edwards HG (2005) In: Smith E, Dent G (eds) Modern Raman spectroscopy—a practical approach. John Wiley and Sons Ltd, Chichester, p 210

    Google Scholar 

  13. Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7(9):1694–1708. https://doi.org/10.1038/nprot.2012.092

    Article  CAS  PubMed  Google Scholar 

  14. Harris DC, Bertolucci MD (1989) Symmetry and spectroscopy. Dover Publications, Inc., New York

    Google Scholar 

  15. Griffiths PR, de Haseth JA (2007) Introduction to vibrational spectroscopy. In: Fourier transform infrared spectrometry. John Wiley & Sons, Inc., Hoboken, NJ

    Book  Google Scholar 

  16. Pelletier MJ, Pelletier CC (2010) Spectroscopic theory for chemical imaging. In: Šašić S, Ozaki Y (eds) Raman, infrared, and near-infrared chemical imaging. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  17. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to Infrared and Raman Spectroscopy. Academic Press Inc.

    Google Scholar 

  18. Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502. https://doi.org/10.1038/121501c0

    Article  CAS  Google Scholar 

  19. Miller FA, Mayo DW, Hannah RW (2003) Course notes on the interpretation of infrared and Raman spectra. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  20. Smith WE, Dent G (2005) Introduction, basic theory and principles. In: Modern Raman spectroscopy—a practical aproach. John Wiley & Sons, Chichester

    Google Scholar 

  21. Parson WW (2009) Modern optical spectroscopy. Springer, Dordrecht

    Google Scholar 

  22. Kip BJ, Meier RJ (1990) Determination of the local temperature at a sample during Raman experiments using stokes and anti-stokes raman bands. Appl Spectrosc 44(4):707–711. https://doi.org/10.1366/0003702904087325

    Article  CAS  Google Scholar 

  23. Reichenbächer M, Popp J (2012) Vibrational spectroscopy. In: Challenges in molecular structure determination. Springer, Berlin. https://doi.org/10.1007/978-3-642-24390-5_2

    Book  Google Scholar 

  24. Agarwal UP, Reiner RS, (2009) Near-IR surface-enhanced Raman spectrum of lignin. J Raman Spectrosc 40(11):1527–1534

    Google Scholar 

  25. Bock P, Gierlinger N (2019) Infrared and Raman spectra of lignin substructures: Coniferyl alcohol, abietin, and coniferyl aldehyde. J Raman Spectrosc

    Google Scholar 

  26. Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23(1):125–144. https://doi.org/10.1007/s10570-015-0788-7

    Article  CAS  Google Scholar 

  27. De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38(9):1133–1147. https://doi.org/10.1002/jrs.1734

    Article  CAS  Google Scholar 

  28. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46(1):4–20

    Google Scholar 

  29. Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476. https://doi.org/10.1104/pp.112.206359

    Article  CAS  PubMed  Google Scholar 

  30. Gierlinger N, Luss S, Konig C, Konnerth J, Eder M, Fratzl P (2010) Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J Exp Bot 61(2):587–595

    Article  CAS  PubMed  Google Scholar 

  31. Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17(4):721–733. https://doi.org/10.1007/s10570-010-9420-z

    Article  CAS  Google Scholar 

  32. Schenzel K, Fischer S, Brendler E (2003) New method for determining cellulose I crystallinity by means of FT raman spectroscopy. Abstr Pap Am Chem S225:U279–U279

    Google Scholar 

  33. Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129

    Article  CAS  Google Scholar 

  34. Schenzel K, Fischer S (2001) NIR FT Raman spectroscopy – a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 8(1):49–57. https://doi.org/10.1023/A:1016616920539

    Article  CAS  Google Scholar 

  35. Denise T. B. De Salvi, Hernane da S. Barud, Oswaldo Treu-Filho, Agnieszka Pawlicka, Ritamara I. Mattos, Ellen Raphael, Sidney J. L. Ribeiro, (2014) Preparation, thermal characterization, and DFT study of the bacterial cellulose. J Therm Anal Calorim 118(1):205–215

    Google Scholar 

  36. Barsberg S (2010) Prediction of Vibrational Spectra of Polysaccharides—Simulated IR Spectrum of Cellulose Based on Density Functional Theory (DFT). J Phys Chem B 114(36):11703–11708

    Google Scholar 

  37. Prats Mateu B, Hauser M-T, Heredia A, Gierlinger N (2016) Waterproofing in Arabidopsis: following phenolics and lipids in situ by confocal Raman microscopy. Front Chem 4. https://doi.org/10.3389/fchem.2016.00010

  38. Himmelsbach DS, Akin DE (1998) Near-infrared Fourier-transform Raman spectroscopy of flax (Linum usitatissimum L.) stems. J Agr Food Chem 46(3):991–998. https://doi.org/10.1021/Jf970656k

    Article  CAS  Google Scholar 

  39. Chu LQ, Masyuko R, Sweedler JV, Bohn PW (2010) Base-induced delignification of miscanthus x giganteus studied by three-dimensional confocal raman imaging. Bioresour Technol 101(13):4919–4925. https://doi.org/10.1016/j.biortech.2009.10.096

    Article  CAS  PubMed  Google Scholar 

  40. Kacuráková M, Wellner N, Ebringerova A, Hromádková Z, Wilson RH, Belton PS (1999) Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocoll 13:35–41

    Article  Google Scholar 

  41. Mathlouthi M, Koenig JL (1986) Vibrational spectra of carbohydrates. Adv Carbohydr Chem Biochem 44:7–89

    Article  CAS  PubMed  Google Scholar 

  42. Synytsya A, Copikova J, Matejka P, Machovic V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54(1):97–106

    Article  CAS  Google Scholar 

  43. Donaldson LA (2001) Lignification and lignin topochemistry – an ultrastructural view. Phytochemistry 57(6):859–873

    Article  CAS  PubMed  Google Scholar 

  44. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938

    Article  CAS  PubMed  Google Scholar 

  45. Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci U S A 109(25):10101–10106. https://doi.org/10.1073/pnas.1205726109

    Article  PubMed  PubMed Central  Google Scholar 

  46. Agarwal UP (1999) An overview of Raman spectroscopy as applied to lignocellulosic materials. In: Advances in lignocellulosics characterization. TAPPI, Atlanta, GA, pp 209–225

    Google Scholar 

  47. Agarwal UP, McSweeny JD, Ralph SA (2011) FT-Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Technol 31(4):324–344. https://doi.org/10.1080/02773813.2011.562338

    Article  CAS  Google Scholar 

  48. Agarwal UP, Ralph SA (2008) Determination of ethylenic residues in wood and TMP of spruce by FT-Raman spectroscopy. Holzforschung 62(6):667–675. https://doi.org/10.1515/Hf.2008.112

    Article  CAS  Google Scholar 

  49. Sun L, Varanasi P, Yang F, Loque D, Simmons BA, Singh S (2011) Rapid determination of syringyl: guaiacyl ratios using FT-Raman spectroscopy. Biotechnol Bioeng 109(3):647–656. https://doi.org/10.1002/bit.24348

    Article  CAS  PubMed  Google Scholar 

  50. Larsen KL, Barsberg S (2010) Theoretical and Raman spectroscopic studies of phenolic lignin model monomers. J Phys Chem B 114(23):8009–8021. https://doi.org/10.1021/jp1028239

    Article  CAS  PubMed  Google Scholar 

  51. Keegstra K (2010) Plant cell walls. Plant Physiol 154(2):483–486. https://doi.org/10.1104/pp.110.161240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 49:281–309

    Article  CAS  PubMed  Google Scholar 

  53. Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36(4):307–319. https://doi.org/10.1002/Jrs.1323

    Article  CAS  Google Scholar 

  54. Zhu GY, Zhu X, Fan Q, Wan XL (2011) Raman spectra of amino acids and their aqueous solutions. Spectrochim Acta A 78(3):1187–1195. https://doi.org/10.1016/j.saa.2010.12.079

    Article  CAS  Google Scholar 

  55. Heredia A (2003) Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. BBA-Gen Subjects 1620(1–3):1–7. https://doi.org/10.1016/S0304-4165(02)00510-X

    Article  CAS  Google Scholar 

  56. Bock P, Nousiainen P, Elder T, Blaukopf M, Amer H, Zirbs R, Potthast A, Gierlinger N (2020) Infrared and Raman spectra of lignin substructures: Dibenzodioxocin. J Raman Spectrosc

    Google Scholar 

  57. Pollard M, Beisson F, Li YH, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13(5):236–246. https://doi.org/10.1016/j.tplants.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  58. Littlejohn GR, Mansfield JC, Parker D, Lind R, Perfect S, Seymour M, Smirnoff N, Love J, Moger J (2015) In vivo chemical and structural analysis of plant cuticular waxes using stimulated raman scattering (srs) microscopy. Plant Physiol 168(1):18–28. https://doi.org/10.1104/pp.15.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Prinsloo LC, du Plooy W, van der Merwe C (2004) Raman spectroscopic study of the epicuticular wax layer of mature mango (Mangifera indica) fruit. J Raman Spectrosc 35(7):561–567. https://doi.org/10.1002/Jrs.1185

    Article  CAS  Google Scholar 

  60. Trebolazabala J, Maguregui M, Morillas H, de Diego A, Madariaga JM (2013) Use of portable devices and confocal Raman spectrometers at different wavelength to obtain the spectral information of the main organic components in tomato (Solanum lycopersicum) fruits. Spectrochim Acta A 105:391–399. https://doi.org/10.1016/j.saa.2012.12.047

    Article  CAS  Google Scholar 

  61. Yu MML, Konorov SO, Schulze HG, Blades MW, Turner RFB, Jetter R (2008) In situ analysis by microspectroscopy reveals triterpenoid compositional patterns within leaf cuticles of Prunus laurocerasus. Planta 227(4):823–834. https://doi.org/10.1007/s00425-007-0659-z

    Article  CAS  PubMed  Google Scholar 

  62. Heredia-Guerrero JA, Benitez JJ, Dominguez E, Bayer IS, Cingolani R, Athanassiou A, Heredia A (2014) Infrared and Raman spectroscopic features of plant cuticles: a review. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00305

  63. Ram MS, Dowell FE, Seitz LM (2003) FT-Raman spectra of unsoaked and NaOH-soaked wheat kernels, bran, and ferulic acid. Cereal Chem 80(2):188–192. https://doi.org/10.1094/Cchem.2003.80.2.188

    Article  CAS  Google Scholar 

  64. Wu HW, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108(9):3809–3814. https://doi.org/10.1073/pnas.1009043108

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hunt GM, Baker EA (1980) Phenolic constituents of tomato fruit cuticles. Phytochemistry 19(7):1415–1419. https://doi.org/10.1016/0031-9422(80)80185-3

    Article  CAS  Google Scholar 

  66. Hollricher O (2010) Raman Instrumentation for confocal Raman microscopy. In: Dieing T, Hollrichter O, Toporski J (eds) Confocal Raman microscopy. Springer, Heidelberg, pp 43–60

    Chapter  Google Scholar 

  67. Li S, Dai LK (2011) An improved algorithm to remove cosmic spikes in Raman spectra for online monitoring. Appl Spectrosc 65(11):1300–1306. https://doi.org/10.1366/10-06169

    Article  CAS  PubMed  Google Scholar 

  68. Katsumoto Y, Ozaki Y (2003) Practical algorithm for reducing convex spike noises on a spectrum. Appl Spectrosc 57(3):317–322. https://doi.org/10.1366/000370203321558236

    Article  CAS  PubMed  Google Scholar 

  69. Dieing T, Ibach W (2010) Software requirements and data analysis in confocal Raman microscopy. In: Dieing T, Hollrichter O, Toporski J (eds) Confocal Raman microscopy. Springer, Heidelberg, pp 61–89

    Chapter  Google Scholar 

  70. Cappel UB, Bell IM, Pickard LK (2010) Removing cosmic ray features from Raman map data by a refined nearest neighbor comparison method as a precursor for chemometric analysis. Appl Spectrosc 64(2):195–200

    Article  CAS  PubMed  Google Scholar 

  71. de Juan A, Maeder M, Hancewicz T, Duponchel L, Tauler R (2009) Chemometric tools for image analysis. In: Salzer R, Siesler HW (eds) Infrared and Raman spectroscopic imaging. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 65–108

    Chapter  Google Scholar 

  72. Ramos PM, Ruisanchez I (2005) Noise and background removal in Raman spectra of ancient pigments using wavelet transform. J Raman Spectrosc 36(9):848–856. https://doi.org/10.1002/jrs.1370

    Article  CAS  Google Scholar 

  73. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  74. Gierlinger N, Reisecker C, Hild S, Gamsjaeger S (2013) Raman microscopy: Insights into chemistry and structure of biological materials. In: Fratzl P, Dunlop JWC, Weinkamer R (eds) Materials design inspired by nature: function through inner architecture. Royal Society of Chemistry, Cambridge

    Google Scholar 

  75. Peng J, Peng S, Jiang A, Wei J, Li C, Tan J (2010) Asymmetric least squares for multiple spectra baseline correction. Anal Chim Acta 683(1):63–68

    Article  CAS  PubMed  Google Scholar 

  76. Whittaker ET (1923) On a new method of graduation. Proc Edinb Math Soc 51:63–73

    Google Scholar 

  77. Eilers PHC (2003) A perfect smoother. Anal Chem 75(14):3631–3636. https://doi.org/10.1021/ac034173t

    Article  CAS  PubMed  Google Scholar 

  78. Felten J, Hall H, Jaumot J, Tauler R, de Juan A, Gorzsas A (2015) Vibrational spectroscopic image analysis of biological material using multivariate curve resolution-alternating least squares (MCR-ALS). Nat Protoc 10(2):217–240. https://doi.org/10.1038/nprot.2015.008

    Article  CAS  PubMed  Google Scholar 

  79. Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57(11):1363–1367. https://doi.org/10.1366/000370203322554518

    Article  CAS  PubMed  Google Scholar 

  80. Ohaver TC (1973) Wave-length modulation — applications in analytical spectrometry. Abstr Pap Am Chem S 1973:33

    Google Scholar 

  81. Ohaver TC, Green GL (1976) Numerical error analysis of derivative spectrometry for quantitative-analysis of mixtures. Anal Chem 48(2):312–318. https://doi.org/10.1021/Ac60366a016

    Article  CAS  Google Scholar 

  82. Windig W, Stephenson DA (1992) Self-modeling mixture analysis of 2nd-derivative near-infrared spectral data using the simplisma approach. Anal Chem 64(22):2735–2742. https://doi.org/10.1021/Ac00046a015

    Article  CAS  Google Scholar 

  83. Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7(7):2077–2081. https://doi.org/10.1021/bm060236g

    Article  CAS  PubMed  Google Scholar 

  84. Gierlinger N, Schwanninger M, Wimmer R (2004) Characteristics and classification of Fourier-transform near infrared spectra of the heartwood of different larch species (Larix sp.). J Near Infrared Spec 12(2):113–119

    Article  CAS  Google Scholar 

  85. Lohninger H, Ofner J (2014) Multisensor hyperspectral imaging as a versatile tool for image-based chemical structure determination. Spectrosc Eur Asia 26(5):6–10

    CAS  Google Scholar 

  86. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York, NY

    Book  Google Scholar 

  87. Bezdek JC, Ehrlich R, Full W (1984) Fcm – the fuzzy C-means clustering-algorithm. Comput Geosci 10(2–3):191–203. https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  88. Han EH, Karypis G, Kumar V (2000) Scalable parallel data mining for association rules. IEEE Trans Knowl Data Eng 12(3):337–352. https://doi.org/10.1109/69.846289

    Article  Google Scholar 

  89. Pham DT, Dimov SS, Nguyen C (2005) Selection of K in K-means clustering. Proc Inst Mech Eng C J Mech Eng Sci 219(1):103–119

    Article  Google Scholar 

  90. Nascimento JMP, Dias JMB (2005) Vertex component analysis: a fast algorithm to unmix hyperspectral data. Ieee Trans Geosci Remote 43(4):898–910. https://doi.org/10.1109/Tgrs.2005.844293

    Article  Google Scholar 

  91. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  CAS  PubMed  Google Scholar 

  92. Szymańska-Chargot M, Pieczywek PM, Chylińska M, Zdunek A (2016) Hyperspectral image analysis of Raman maps of plant cell walls for blind spectra characterization by nonnegative matrix factorization algorithm. Chemometr Intell Lab Syst 151:136–145. https://doi.org/10.1016/j.chemolab.2015.12.015

    Article  CAS  Google Scholar 

  93. Tauler R, Smilde A, Kowalski B (1995) Selectivity, local rank, 3-way data-analysis and ambiguity in multivariate curve resolution. J Chemometr 9(1):31–58. https://doi.org/10.1002/cem.1180090105

    Article  CAS  Google Scholar 

  94. Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140(4):1246–1254. https://doi.org/10.1104/pp.105.066993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lehringer C, Gierlinger N, Koch G (2008) Topochemical investigation on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Holzforschung 62(3):255–263. https://doi.org/10.1515/Hf.2008.036

    Article  CAS  Google Scholar 

  96. Zhang Z, Ma J, Ji Z, Xu F (2012) Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques. Microsc Microanal 18(6):1459–1466. https://doi.org/10.1017/S1431927612013451

    Article  CAS  PubMed  Google Scholar 

  97. Philippe S, Barron C, Robert P, Devaux MF, Saulnier L, Guillon F (2006) Characterization using Raman microspectroscopy of arabinoxylans in the walls of different cell types during the development of wheat endosperm. J Agr Food Chem 54(14):5113–5119. https://doi.org/10.1021/jf060466m

    Article  CAS  Google Scholar 

  98. Hanninen T, Kontturi E, Vuorinen T (2011) Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. Phytochemistry 72(14–15):1889–1895. https://doi.org/10.1016/j.phytochem.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  99. Morikawa Y, Yoshinaga A, Kamitakahara H, Wada M, Takabe K (2010) Cellular distribution of coniferin in differentiating xylem of Chamaecyparis obtusa as revealed by Raman microscopy. Holzforschung 64(1):61–67. https://doi.org/10.1515/Hf.2010.015

    Article  CAS  Google Scholar 

  100. Cao Y, Lu Y, Huang Y (2004) NIR FT-Raman study of biomass (Triticum aestivum) treated with cellulase. J Mol Struct 693(1–3):87–93. https://doi.org/10.1016/j.molstruc.2004.02.017

    Article  CAS  Google Scholar 

  101. Agarwal U (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224(5):1141–1153. https://doi.org/10.1007/s00425-006-0295-z

    Article  CAS  PubMed  Google Scholar 

  102. Richter S, Mussig J, Gierlinger N (2011) Functional plant cell wall design revealed by the Raman imaging approach. Planta 233(4):763–772. https://doi.org/10.1007/s00425-010-1338-z

    Article  CAS  PubMed  Google Scholar 

  103. Prats-Mateu B, Bock P, Schroffenegger M, Toca-Herrera JL, Gierlinger N (2018) Following laser induced changes of plant phenylpropanoids by Raman microscopy. Scientific Reports 8 (1)

    Google Scholar 

Download references

Acknowledgments

The authors thank Martin Felhofer for support in the graphic design, Ivan Sumerskii in the group of Antje Potthast for providing the milled wood lignin reference samples and Marie-Theres Hauser for providing the Arabidopsis thaliana specimens. All people mentioned belong to the University of Natural Resources and Life Sciences, BOKU, Vienna. The work was funded by the Austrian Science Fund (FWF): START Project [Y-728-B16] and from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement No. 681885.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Notburga Gierlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mateu, B.P., Bock, P., Gierlinger, N. (2020). Raman Imaging of Plant Cell Walls. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 2149. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0621-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0621-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0619-3

  • Online ISBN: 978-1-0716-0621-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics