Skip to main content

Raman Spectroscopy in Nonwoody Plants

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

Confocal Raman spectroscopy (RS) enables obtaining molecular information from the nondestructive analysis of plant material in situ. It can thereby be a useful method to investigate spatial distribution and heterogeneity of cell-wall polymers. The authors’ intention is to present some examples of RS application and its capabilities for investigations of nonwoody plants. In this context, we present protocols for qualitative analysis of main polymers of plant wall and application of RS in a semiquantitative study of the arrangement of selected polymers in the wall in its native state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ng JK, Schröder R, Brummell DA, Sutherland PW, Hallett IC et al (2015) Lower cell wall pectin solubilization and galactose loss during early fruit development in apple (Malus x domestica) cultivar ‘Scifresh’ are associated with the slower softening rate. J Plant Physiol 176:129–137

    Article  CAS  Google Scholar 

  2. Zdunek A, Kozioł A, Pieczywek PM, Cybulska J (2014) Evaluation of the nanostructure of pectin, hemicellulose, and cellulose in the cell walls of pears of different texture and firmness. Food Bioproc Tech 7:3525–3535

    Article  CAS  Google Scholar 

  3. Atalla RH, Ranua J, Malcolm EW (1984) Raman-spectroscopic studies of the structure of cellulose: a comparison of Kraft and sulfite pulps. TAPPI J 67:96–99

    CAS  Google Scholar 

  4. Atalla RH, Whitmore RE, Heimbach CJ (1980) Raman spectral evidence for molecular-orientation in native cellulosic fibres. Macromolecules 13:1717–1719

    Article  CAS  Google Scholar 

  5. Wiley JH, Atalla RH (1987) Band assignments in the Raman-spectra of celluloses. Carbohydr Res 160:113–129

    Article  CAS  Google Scholar 

  6. Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A Mol Biomol Spectrosc 53:2383–2392

    Article  Google Scholar 

  7. Himmelsbach DS, Khahili S, Akin DE (1999) Near-infrared–Fourier transform–Raman microspectroscopic imaging of flax stems. Vib Spectrosc 19:361–367

    Article  CAS  Google Scholar 

  8. Eichhorn SJ, Sirichaisit J, Young RJ (2001) Deformation mechanisms in cellulose fibres, paper and wood. J Mater Sci 36:3129–3135

    Article  CAS  Google Scholar 

  9. Jähn A, Schröder MW, Füting M, Schenzel K, Diepenbrock W (2002) Characterization of alkali-treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochim Acta A Mol Biomol Spectrosc 58:2271–2279

    Article  Google Scholar 

  10. Morrison WH, Himmelsbach DS, Akin DE, Evans JD (2003) Chemical and spectroscopic analysis of lignin in isolated flax fibres. J Agric Food Chem 51:2565–2568

    Article  CAS  Google Scholar 

  11. Fischer S, Schenzel K, Fischer K, Diepenbrock W (2005) Applications of FT Raman spectroscopy and micro spectroscopy characterizing cellulose and cellulosic biomaterials. Macromol Symp 223:41–56

    Article  CAS  Google Scholar 

  12. Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibres followed by Raman microscopy. Biomacromolecules 7:2077–2081

    Article  CAS  Google Scholar 

  13. Peetla P, Schenzel KC, Diepenbrock W (2006) Determination of mechanical strength properties of hemp fibres using near-infrared Fourier transform Raman microspectroscopy. Appl Spectrosc 60:682–691

    Article  CAS  Google Scholar 

  14. Schenzel K, Almlof H, Germgard U (2009) Quantitative analysis of the transformation process of cellulose I to cellulose II using NIR FT Raman spectroscopy and chemometric methods. Cellulose 16:407–415

    Article  CAS  Google Scholar 

  15. Atalla RH, Agarwal UP (1985) Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science 227:636–638

    Article  CAS  Google Scholar 

  16. Gierlinger N, Luss S, König C, Konnerth J, Eder M et al (2010) Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J Exp Bot 61:587–595

    Article  CAS  Google Scholar 

  17. Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254

    Article  CAS  Google Scholar 

  18. Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research: a review. Spectroscopy 21:69–89

    Article  CAS  Google Scholar 

  19. Smith E, Dent G (2005) Modern Raman spectroscopy—a practical approach. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  20. Hollricher O (2010) Raman instrumentation for confocal Raman microscopy. In: Dieing T, Hollricher O, Toporski J (eds) Confocal Raman microscopy, vol 2011. Springer, New York, pp 43–60

    Chapter  Google Scholar 

  21. Wolosewick JJ (1980) The application of polyethylene-glycol (PEG) to electron microscopy. J Cell Biol 86:675–681

    Article  CAS  Google Scholar 

  22. Schreiber N, Gierlinger N, Pütz N, Fratzl P, Neinhuis C et al (2010) G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction. Plant J 61:854–861

    Article  CAS  Google Scholar 

  23. Gierlinger N, Reisecker C, Hild S, Gamsjaeger S (2013) Raman microscopy: insights into chemistry and structure of biological materials. In: Fratzl P, Dunlop JWC, Weinkamer R (eds) Materials design inspired by nature: function through inner architecture. Royal Society of Chemistry, London, pp 151–179

    Chapter  Google Scholar 

  24. Griffith PR (2009) Infrared and Raman instrumentation for mapping and imaging. In: Salzer R, Siesler HW (eds) Infrared and Raman spectroscopic imaging. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 3–64, 2014

    Google Scholar 

  25. Zeise I, Heiner Z, Holz S, Joester M, Büttner C et al (2018) Raman imaging of plant cell walls in sections of Cucumis sativus. Plants (Basel) 7:7

    Article  Google Scholar 

  26. Schmidt M, Schwartzberg AM, Carroll A, Chaibang A, Adams PD et al (2010) Raman imaging of cell wall polymers in Arabidopsis thaliana. Biochem Biophys Res Commun 395:521–523

    Article  CAS  Google Scholar 

  27. Piot O, Autran J-C, Manfait M (2001) Investigation by confocal Raman microspectroscopy of the molecular factors responsible for grain cohesion in the Triticum aestivum bread wheat. Role of the cell walls in the starchy endosperm. J Cereal Sci 34:191–205

    Article  CAS  Google Scholar 

  28. Chylińska M, Szymańska-Chargot M, Zdunek A (2014) Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy. Plant Methods 10:14

    Article  Google Scholar 

  29. Atalla RH, Agarwal UP (1986) Recording Raman-spectra from plant cell walls. J Raman Spectrosc 17:229–231

    Article  CAS  Google Scholar 

  30. Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7:1694–1708

    Article  CAS  Google Scholar 

  31. Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51:1648–1655

    Article  CAS  Google Scholar 

  32. Agarwal UP (1999) An overview of Raman spectroscopy as applied to lignocellulosic materials. In: Argyropoulos DS (ed) Advances in lignocellulosics characterization. TAPPI Press, Atlanta, Georgia, pp 209–225

    Google Scholar 

  33. Borowska-Wykręt D, Rypień A, Dulski M, Grelowski M, Wrzalik R et al (2017) Gradient of structural traits drives hygroscopic movements of scarious bracts surrounding Helichrysum bracteatum capitulum. Ann Bot 119:1365–1383 

    Article  Google Scholar 

  34. Dieing T, Ibach W (2010) Software requirements and data analysis in confocal Raman microscopy. In: Dieing T, Hollricher O, Toporski J (eds) Confocal Raman microscopy, vol 2011. Springer, New York, pp 61–89

    Chapter  Google Scholar 

  35. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  36. Liland KH, Rukke EO, Olsen EF, Isaksson T (2011) Customized baseline correction. Chemom Intell Lab Syst 109:51–56

    Article  CAS  Google Scholar 

  37. Schulze G, Jirasek A, Marcia ML, Lim A, Turner RF et al (2005) Investigation of selected baseline removal techniques as candidates for automated implementation. Appl Spectrosc 59:545–574 

    Article  CAS  Google Scholar 

  38. Prakash BD, Wei YC (2011) A fully automated iterative moving averaging (AIMA) technique for baseline correction. Analyst 136:3130–3135

    Article  CAS  Google Scholar 

  39. de Juan A, Maeder M, Hancewicz T, Duponchel L, Tauler R (2009) Chemometric tools for image analysis. In: Salzer R, Siesler HW (eds) Infrared and Raman spectroscopic imaging. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 65–108

    Chapter  Google Scholar 

  40. Snyder R (1971) Raman scattering activities for partially oriented molecules. J Mol Spectrosc 37:353–365

    Article  CAS  Google Scholar 

  41. Bower D (1972) Investigation of molecular orientation distributions by polarized Raman scattering and polarized fluorescence. J Polym Sci 10:2135–2153

    CAS  Google Scholar 

  42. Bremard C, Dhamelincourt P, Laureyns J, Turrell G (1985) The effect of high-numerical- aperture objectives on polarization measurements in micro-Raman spectrometry. Appl Spectrosc 39:1036–1039

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Centre, Poland (ERA-CAPS CALL 2016; project No. 2017/24/Z/NZ3/00548 and 2017/26/D/ST8/01117). We thank Dorota Kwiatkowska and Roman Wrzalik for discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Borowska-Wykręt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borowska-Wykręt, D., Dulski, M. (2019). Raman Spectroscopy in Nonwoody Plants. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics