Skip to main content

Estimating Brain Permeability Using In Vitro Blood-Brain Barrier Models

  • Protocol
  • First Online:
Permeability Barrier

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2367))

Abstract

The blood-brain barrier (BBB) is a vital biological interface that regulates transfer of different molecules between blood and brain and, therefore, maintains the homeostatic environment of the CNS. In order to perform high-throughput screening of therapeutics in drug discovery, specific properties of the BBB are investigated within in vitro BBB platforms. In this chapter, we detail the process and steps for the iPSC to BMEC and astrocyte differentiation as well as TEER and permeability measurement in Transwell platform of in vitro BBB model. Also, advanced microfluidic iPSCs-derived BMECs on chip and permeability measurement within this model have been elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128. https://doi.org/10.1016/S0140-6736(12)61728-0

    Article  PubMed  Google Scholar 

  2. Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12(1–2):54–61. https://doi.org/10.1016/j.drudis.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  3. Paulson OB (2002) Blood-brain barrier, brain metabolism and cerebral blood flow. Eur Neuropsychopharmacol 12(6):495–501

    Article  CAS  PubMed  Google Scholar 

  4. Cecchelli R, Berezowski V, Lundquist S et al (2007) Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 6(8):650–661. https://doi.org/10.1038/nrd2368

    Article  CAS  PubMed  Google Scholar 

  5. Nozohouri S, Sifat AE, Vaidya B, Abbruscato TJ (2020) Novel approaches for the delivery of therapeutics in ischemic stroke. Drug Discov Today 25(3):535–551. https://doi.org/10.1016/j.drudis.2020.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abbott NJ, Patabendige AA, Dolman DE et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  7. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. https://doi.org/10.1124/pr.57.2.4

    Article  CAS  PubMed  Google Scholar 

  8. Wilhelm I, Krizbai IA (2014) In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm 11(7):1949–1963. https://doi.org/10.1021/mp500046f

    Article  CAS  PubMed  Google Scholar 

  9. Wolff A, Antfolk M, Brodin B, Tenje M (2015) In vitro blood-brain barrier models-an overview of established models and new microfluidic approaches. J Pharm Sci 104(9):2727–2746. https://doi.org/10.1002/jps.24329

    Article  CAS  PubMed  Google Scholar 

  10. Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD (2015) Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci 9:385. https://doi.org/10.3389/fnins.2015.00385

    Article  PubMed  PubMed Central  Google Scholar 

  11. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468(7323):562–566. https://doi.org/10.1038/nature09513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Faria A, Pestana D, Teixeira D et al (2010) Flavonoid transport across RBE4 cells: a blood-brain barrier model. Cell Mol Biol Lett 15(2):234–241. https://doi.org/10.2478/s11658-010-0006-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hatherell K, Couraud PO, Romero IA et al (2011) Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods 199(2):223–229. https://doi.org/10.1016/j.jneumeth.2011.05.012

    Article  PubMed  Google Scholar 

  14. Abbott NJ, Dolman DE, Drndarski S, Fredriksson SM (2012) An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol 814:415–430. https://doi.org/10.1007/978-1-61779-452-0_28

    Article  CAS  PubMed  Google Scholar 

  15. Paolinelli R, Corada M, Ferrarini L et al (2013) Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 8(8):e70233. https://doi.org/10.1371/journal.pone.0070233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Helms HC, Brodin B (2014) Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes. Methods Mol Biol 1135:365–382. https://doi.org/10.1007/978-1-4939-0320-7_30

    Article  PubMed  Google Scholar 

  17. Lippmann ES, Al-Ahmad A, Azarin SM et al (2014) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep 4:4160. https://doi.org/10.1038/srep04160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Helms HC, Abbott NJ, Burek M et al (2016) In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 36(5):862–890. https://doi.org/10.1177/0271678X16630991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernas MJ, Cardoso FL, Daley SK et al (2010) Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat Protoc 5(7):1265–1272. https://doi.org/10.1038/nprot.2010.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaisar MA, Sajja RK, Prasad S et al (2017) New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opin Drug Discovery 12(1):89–103. https://doi.org/10.1080/17460441.2017.1253676

    Article  Google Scholar 

  21. Thomsen LB, Burkhart A, Moos T (2015) A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and Pericytes. PLoS One 10(8):e0134765. https://doi.org/10.1371/journal.pone.0134765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weksler BB, Subileau EA, Perriere N et al (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19(13):1872–1874. https://doi.org/10.1096/fj.04-3458fje

    Article  CAS  PubMed  Google Scholar 

  23. Vu K, Weksler B, Romero I et al (2009) Immortalized human brain endothelial cell line HCMEC/D3 as a model of the blood-brain barrier facilitates in vitro studies of central nervous system infection by Cryptococcus neoformans. Eukaryot Cell 8(11):1803–1807. https://doi.org/10.1128/EC.00240-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eigenmann DE, Xue G, Kim KS et al (2013) Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 10(1):33. https://doi.org/10.1186/2045-8118-10-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lippmann ES, Azarin SM, Kay JE et al (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30(8):783–791. https://doi.org/10.1038/nbt.2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patel R, Alahmad AJ (2016) Growth-factor reduced Matrigel source influences stem cell derived brain microvascular endothelial cell barrier properties. Fluids Barriers CNS 13:6. https://doi.org/10.1186/s12987-016-0030-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Katt ME, Xu ZS, Gerecht S, Searson PC (2016) Human brain microvascular endothelial cells derived from the BC1 iPS cell line exhibit a blood-brain barrier phenotype. Plos One 11(4):e0152105. https://doi.org/10.1371/journal.pone.0152105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaltouki A, Peng J, Liu Q et al (2013) Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells 31(5):941–952. https://doi.org/10.1002/stem.1334

    Article  CAS  PubMed  Google Scholar 

  29. Pei Y, Peng J, Behl M et al (2016) Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res 1638(Pt A):57–73. https://doi.org/10.1016/j.brainres.2015.07.048

    Article  CAS  PubMed  Google Scholar 

  30. Albekairi TH, Vaidya B, Patel R et al (2019) Brain delivery of a potent opioid receptor agonist, Biphalin during ischemic stroke: role of organic anion transporting polypeptide (OATP). Pharmaceutics 11(9). https://doi.org/10.3390/pharmaceutics11090467

  31. Jamieson JJ, Linville RM, Ding YY et al (2019) Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D. Fluids Barriers CNS 16(1):15. https://doi.org/10.1186/s12987-019-0136-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jamieson JJ, Searson PC, Gerecht S (2017) Engineering the human blood-brain barrier in vitro. J Biol Eng 11:37. https://doi.org/10.1186/s13036-017-0076-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325(6101):253–257. https://doi.org/10.1038/325253a0

    Article  CAS  PubMed  Google Scholar 

  34. Arthur FE, Shivers RR, Bowman PD (1987) Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res 433(1):155–159

    Article  CAS  PubMed  Google Scholar 

  35. Lee SW, Kim WJ, Choi YK et al (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9(7):900–906. https://doi.org/10.1038/nm889

    Article  CAS  PubMed  Google Scholar 

  36. Mizee MR, Wooldrik D, Lakeman KA et al (2013) Retinoic acid induces blood-brain barrier development. J Neurosci 33(4):1660–1671. https://doi.org/10.1523/JNEUROSCI.1338-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zerlin M, Goldman JE (1997) Interactions between glial progenitors and blood vessels during early postnatal corticogenesis: blood vessel contact represents an early stage of astrocyte differentiation. J Comp Neurol 387(4):537–546. https://doi.org/10.1002/(SICI)1096-9861(19971103)387:4<537::AID-CNE5>3.0.CO;2-3. [pii]

    Article  CAS  PubMed  Google Scholar 

  38. Zerlin M, Levison SW, Goldman JE (1995) Early patterns of migration, morphogenesis, and intermediate filament expression of subventricular zone cells in the postnatal rat forebrain. J Neurosci 15(11):7238–7249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lippmann ES, Al-Ahmad A, Palecek SP, Shusta EV (2013) Modeling the blood-brain barrier using stem cell sources. Fluids Barriers CNS 10(1):2. https://doi.org/10.1186/2045-8118-10-2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Akdemir ES, Huang AY, Deneen B (2020) Astrocytogenesis: where, when, and how. F1000Res 9. https://doi.org/10.12688/f1000research.22405.1

  41. Lippmann ES, Weidenfeller C, Svendsen CN, Shusta EV (2011) Blood-brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem 119(3):507–520. https://doi.org/10.1111/j.1471-4159.2011.07434.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weidenfeller C, Svendsen CN, Shusta EV (2007) Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. J Neurochem 101(2):555–565. https://doi.org/10.1111/j.1471-4159.2006.04394.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Canfield SG, Stebbins MJ, Morales BS et al (2017) An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem 140(6):874–888. https://doi.org/10.1111/jnc.13923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weksler B, Subileau E, Perriere N et al (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19(13):1872–1874

    Article  CAS  PubMed  Google Scholar 

  45. Nakagawa S, Deli MA, Kawaguchi H et al (2009) A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54(3–4):253–263

    Article  CAS  PubMed  Google Scholar 

  46. Grifno GN, Farrell AM, Linville RM et al (2019) Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells. Sci Rep 9(1):13957. https://doi.org/10.1038/s41598-019-50193-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miah MK, Chowdhury EA, Bickel U, Mehvar R (2017) Evaluation of [(14)C] and [(13)C]sucrose as blood-brain barrier permeability markers. J Pharm Sci 106(6):1659–1669. https://doi.org/10.1016/j.xphs.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  48. Alqahtani F, Chowdhury EA, Bhattacharya R et al (2018) Brain uptake of [13C] and [14C]sucrose quantified by microdialysis and whole tissue analysis in mice. Drug Metab Dispos 46(11):1514–1518. https://doi.org/10.1124/dmd.118.082909

    Article  CAS  PubMed  Google Scholar 

  49. Chowdhury EA, Alqahtani F, Bhattacharya R et al (2018) Simultaneous UPLC-MS/MS analysis of two stable isotope labeled versions of sucrose in mouse plasma and brain samples as markers of blood-brain barrier permeability and brain vascular space. J Chromatogr B Analyt Technol Biomed Life Sci 1073:19–26. https://doi.org/10.1016/j.jchromb.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  50. Kaya M, Ahishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol 763:369–382. https://doi.org/10.1007/978-1-61779-191-8_25

    Article  CAS  PubMed  Google Scholar 

  51. Patel R, Page S, Al-Ahmad AJ (2017) Isogenic blood-brain barrier models based on patient-derived stem cells display inter-individual differences in cell maturation and functionality. J Neurochem 142(1):74–88. https://doi.org/10.1111/jnc.14040

    Article  CAS  PubMed  Google Scholar 

  52. Page S, Raut S, Al-Ahmad A (2019) Oxygen-glucose deprivation/reoxygenation-induced barrier disruption at the human blood-brain barrier is partially mediated through the HIF-1 pathway. Neuromolecular Med. https://doi.org/10.1007/s12017-019-08531-z

  53. Al Ahmad A, Gassmann M, Ogunshola OO (2012) Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc Res 84(2):222–225. https://doi.org/10.1016/j.mvr.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  54. Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO (2011) Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab 31(2):693–705. https://doi.org/10.1038/jcbfm.2010.148

    Article  PubMed  Google Scholar 

  55. Al Ahmad A, Gassmann M, Ogunshola OO (2009) Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol 218(3):612–622. https://doi.org/10.1002/jcp.21638

    Article  CAS  PubMed  Google Scholar 

  56. Schmid-Brunclik N, Burgi-Taboada C, Antoniou X et al (2008) Astrocyte responses to injury: VEGF simultaneously modulates cell death and proliferation. Am J Physiol Regul Integr Comp Physiol 295(3):R864–R873. https://doi.org/10.1152/ajpregu.00536.2007

    Article  CAS  PubMed  Google Scholar 

  57. Phan DT, Bender RHF, Andrejecsk JW et al (2017) Blood-brain barrier-on-a-chip: microphysiological systems that capture the complexity of the blood-central nervous system interface. Exp Biol Med (Maywood) 242(17):1669–1678. https://doi.org/10.1177/1535370217694100

    Article  CAS  Google Scholar 

  58. Bhalerao A, Sivandzade F, Archie SR et al (2020) In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 17(1):22. https://doi.org/10.1186/s12987-020-00183-7

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zheng F, Fu F, Cheng Y et al (2016) Organ-on-a-Chip Systems: microengineering to biomimic living systems. Small 12(17):2253–2282. https://doi.org/10.1002/smll.201503208

    Article  CAS  PubMed  Google Scholar 

  60. Wang YI, Abaci HE, Shuler ML (2017) Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng 114(1):184–194. https://doi.org/10.1002/bit.26045

    Article  CAS  PubMed  Google Scholar 

  61. Faley SL, Neal EH, Wang JX et al (2019) iPSC-derived brain endothelium exhibits stable, long-term barrier function in perfused hydrogel scaffolds. Stem Cell Reports 12(3):474–487. https://doi.org/10.1016/j.stemcr.2019.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Linville RM, DeStefano JG, Sklar MB et al (2019) Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 190-191:24–37. https://doi.org/10.1016/j.biomaterials.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  63. Park TE, Mustafaoglu N, Herland A et al (2019) Hypoxia-enhanced blood-brain barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10(1):2621. https://doi.org/10.1038/s41467-019-10588-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vatine GD, Barrile R, Workman MJ et al (2019) Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24(6):995–1005.e6. https://doi.org/10.1016/j.stem.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  65. Campisi M, Shin Y, Osaki T et al (2018) 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180:117–129. https://doi.org/10.1016/j.biomaterials.2018.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. van der Helm MW, van der Meer AD, Eijkel JC et al (2016) Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 4(1):e1142493. https://doi.org/10.1080/21688370.2016.1142493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prabhakarpandian B, Shen MC, Nichols JB et al (2013) SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13(6):1093–1101. https://doi.org/10.1039/c2lc41208j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Neal EH, Marinelli NA, Shi Y et al (2019) A simplified, fully defined differentiation scheme for producing blood-brain barrier endothelial cells from human iPSCs. Stem Cell Reports 12(6):1380–1388. https://doi.org/10.1016/j.stemcr.2019.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Abbruscato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nozohouri, S., Noorani, B., Al-Ahmad, A., Abbruscato, T.J. (2020). Estimating Brain Permeability Using In Vitro Blood-Brain Barrier Models. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_311

Download citation

  • DOI: https://doi.org/10.1007/7651_2020_311

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1672-7

  • Online ISBN: 978-1-0716-1673-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics