Skip to main content

Role of Phosphorus in (Im)mobilization and Bioavailability of Heavy Metals in the Soil-Plant System

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 177))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott KL, Robson AD (1982) The role of vesicular-arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust J Agric Res 33:389–408.

    Article  Google Scholar 

  • Adriano DC (2001) Trace Elements in Terrestrial Environments; Biogeochemistry, Bioavailability and Risks of Metals, 2nd Ed. Springer, New York.

    Google Scholar 

  • Agbenin JO (1998) Phosphate-induced zinc retention in a tropical semi-arid soil. Eur J Soil Sci 49:693–700.

    Article  CAS  Google Scholar 

  • Aide MT, Cummings MF (1997) The influence of pH and phosphorus on the adsorption of chromium (VI) on boehmite. Soil Sci 162:599–603.

    Article  CAS  Google Scholar 

  • Alloway BJ (1990) Cadmium. In: Alloway BJ (ed) Heavy Metals in Soils. Wiley, New York, pp 100–124.

    Google Scholar 

  • Ames RN, Reid CPP, Ingham ER (1984) Rhizosphere bacterial population responses to root colonization by a vesicular-arbuscular mycorrhizal fungus. New Phytol 96: 555–563.

    Article  Google Scholar 

  • Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems. 7. A detailed study of effects of soil-phosphorus on colonization. New Phytol 111:435–446.

    Article  Google Scholar 

  • Ando J (1987) Thermal phosphate. In: Nielsson FT (ed) Manual of Fertilizer Processing. Dekker, New York, pp 93–124.

    Google Scholar 

  • Andrew CS, Johnson AD (1976) Effect of calcium, pH and nitrogen on the growth and chemical composition of some tropical and temperate pasture legumes. II. Chemical composition (calcium, nitrogen, potassium, magnesium, sodium and phosphorus). Aust J Agric Res 27:625–636.

    Article  CAS  Google Scholar 

  • Avudainayagam S, Naidu R, Kookana RS, Alston AM, McClure S, Smith LH (2001) Effects of electrolyte composition on chromium desorption in soils contaminated by tannery waste. Aust J Soil Res 39:1077–1089

    Article  CAS  Google Scholar 

  • Ayers AS, Hagihara HH (1953) Effect of anion on the sorption of potassium by some humic and hydrol humic Latosols. Soil Sci 75:1–17.

    Article  Google Scholar 

  • Aylward G, Findlay T (1994) SI Chemical Data, 3rd ed. Wiley, Brisbane, Australia.

    Google Scholar 

  • Azcon R, Barea JM, Hayman DS (1976) Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biol Biochem 8:135–138.

    Article  CAS  Google Scholar 

  • Barrow NJ (1973) On the displacement of adsorbed anions from soil. 1. Displacement of molybdenum by phosphate and by hydroxide. Soil Sci 116:423–431.

    CAS  Google Scholar 

  • Barrow NJ (1985) Reactions of anions and cations with variable-charge soils. Adv Agron 38:183–230.

    CAS  Google Scholar 

  • Barrow NJ (1987) The effects of phosphate on zinc sorption by a soil. J Soil Sci 38: 453–459.

    CAS  Google Scholar 

  • Bartlett EM, Lewis DH (1973) Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol Biochem 5:249–257.

    Article  CAS  Google Scholar 

  • Bartlett RJ (1991) Chromium cycling in soils and water: links, gaps, and methods. Environ Health Perspect 92:17–24.

    CAS  PubMed  Google Scholar 

  • Bartlett RJ, James BR (1979) Behavior of chromium in soils. III. Oxidation. J Environ Qual 8:31–35.

    CAS  Google Scholar 

  • Bartlett RJ, Kimble JM (1976) Behavior of chromium in soils. II. Hexavalent forms. J Environ Qual 5:383–386.

    CAS  Google Scholar 

  • Basta NT, Gradwohl R (2000) Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure. J Soil Contam 9:149–164.

    CAS  Google Scholar 

  • Basta NT, Tabatabai MA (1992) Effect of cropping systems on adsorption of metals by soils. II. Effect of pH. Soil Sci 153:195–204.

    CAS  Google Scholar 

  • Basta NT, Gradwohl R, Snethen KL, Schroder JL (2001) Chemical immobilisation of lead, zinc and cadmium in smelter-contaminated sols using biosolids and rock phosphate. J Environ Qual 30:1222–1230.

    CAS  PubMed  Google Scholar 

  • Berti WR, Cunningham SD (1997) In-place inactivation of Pb in Pb-contaminated soils. Environ Sci Technol 31:1359–1364.

    Article  CAS  Google Scholar 

  • Boekhold AE, Temminghoff EJM, van der Zee SEATM (1993) Influence of electrolyte composition and pH on cadmium adsorption by an acid sandy soil. J Soil Sci 44: 85–96.

    CAS  Google Scholar 

  • Boisson J, Mench M, Vangronsveld J, Ruttens A, Kopponen P, DeKoe T (1999) Immobilization of trace metals and arsenic by different soil additives: Evaluation by means of chemical extractions. Commun Soil Sci Plant Anal 30:365–387.

    CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the effect of mycorrhizal fungi on the uptake of phosphorus by plants. Plant Soil 134:189–207.

    Article  CAS  Google Scholar 

  • Bolan NS, Thiyagarajan S (2001) Retention and plant availability of chromium in soils as affected by lime and organic amendments. Aust J Soil Res 39:1091–1103.

    Article  CAS  Google Scholar 

  • Bolan NS, Barrow NJ, Posner AM (1985) Describing the effect of time on the sorption of phosphate by iron and aluminum hydroxides. J Soil Sci 36:187–196.

    CAS  Google Scholar 

  • Bolan NS, Syers JK, Tillman RW (1986) Ionic strength effects on surface charge and adsorption of phosphate and sulfate by soils. J Soil Sci 37:379–388.

    CAS  Google Scholar 

  • Bolan NS, Hedley MJ, White RE (1991) Nitrogen fixation and soil acidification with emphasis on legume based pastures. Plant Soil 134:53–63.

    Article  CAS  Google Scholar 

  • Bolan NS, White RE, Hedley MJ (1990) A review of the use of phosphate rock as fertilizer for direct application in Australia and New Zealand. Aust J Exp Agric 30: 297–313.

    Article  CAS  Google Scholar 

  • Bolan NS, Hedley MJ, Loganathan P (1993) Preparation, forms and properties of slow-release phosphate fertilizers. Fert Res 35:13–24.

    Article  CAS  Google Scholar 

  • Bolan NS, Naidu R, Syers JK, Tillman RW (1999a) Surface charge and solute interactions in soils. Adv Agron 67:88–141.

    Google Scholar 

  • Bolan NS, Naidu R, Syers JK, Tillman RW (1999b) Effect of anion sorption on cadmium sorption by soils. Aust J Soil Res 37:445–460.

    Article  CAS  Google Scholar 

  • Bolland MDA, Posner AM, Quirk JP (1977) Zinc adsorption by goethite in the absence and presence of phosphate. Aust J Soil Res 15:279–286.

    Article  CAS  Google Scholar 

  • Bramley RGV (1990) Cadmium in New Zealand agriculture. N Z J Agric Res 33: 505–519

    CAS  Google Scholar 

  • Broyer TC, Johnson CM, Huston RP (1972) Selenium and nutrition of Astragalus. II. Ionic sorption interactions among selenium, phosphate, and the macro-and micronutrient cations. Plant Soil 36:651–669.

    Article  CAS  Google Scholar 

  • Brudevold F, Steadman LT, Spinelli MA, Amdur BH, Gron P (1963) A study of zinc in human teeth. Arch Oral Biol 8:135–144.

    Article  CAS  PubMed  Google Scholar 

  • Buwalda JG, Stribley DP, Tinker PB (1983) Increased uptake of anions by plants with vesicular-arbuscular mycorrhizas. Plant Soil 71:463–467.

    Article  CAS  Google Scholar 

  • Carter DL, Robbis CW, Brown MJ (1972) Effect of phosphorus fertilization on the selenium concentration in alfalfa (Medicago sativa). Soil Sci Soc Am Proc 36:624–628.

    Article  CAS  Google Scholar 

  • Chakraborty AK, Saha KC (1987) Arsenical dermatosis from tube well water in West Bengal. Ind J Med Res 85:326–334.

    CAS  Google Scholar 

  • Chen XB, Wright JV, Conca JL (1997a) Effects of pH on heavy metal sorption on mineral apatite. Environ Sci Technol 31:624–631.

    Article  CAS  Google Scholar 

  • Chen XB, Wright JV, Conca JL, Peurrung LM (1997b) Evaluation of heavy metal remediation using mineral apatite. Water Air Soil Pollut 98:57–78.

    CAS  Google Scholar 

  • Chlopecka A, Adriano DC (1996) Mimicked in situ stabilization of metals in a cropped soil bioavailability and chemical form of zinc. Environ Sci Technol 30:3294–3303.

    Article  CAS  Google Scholar 

  • Chlopecka A, Adriano DC (1997) Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. Sci Total Environ 207:195–206.

    Article  CAS  PubMed  Google Scholar 

  • Corey RB (1981) Adsorption vs precipitation. In: Anderson MA, Robin AJ (eds) Adsorption of Inorganics at Solid-Liquid Interfaces. Ann Arbor Science, Ann Arbor, MI, pp 51–90.

    Google Scholar 

  • Cotter-Howells J, Capron S (1996) Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342.

    Article  CAS  Google Scholar 

  • Creger TL, Peryea FJ (1994) Phosphate fertilizer enhances arsenic uptake by apricot liners grown in lead-arsenate-enriched soil. Hortic Sci 29:88–92.

    CAS  Google Scholar 

  • Curtin D, Syers JK (1990) Mechanism of sulfate adsorption by two tropical soils. J Soil Sci 41:295–304.

    CAS  Google Scholar 

  • Davenport JR, Peryea FJ (1991) Phosphate fertilizers influence leaching of lead and arsenic in a soil contaminated with lead arsenate. Water Air Soil Pollut 57(8):101–110.

    Article  Google Scholar 

  • Dhillon KS, Dhillon DK (1990) Selenium toxicity in soil-plant-animal system: a case study. Trans 14th Int Congr Soil Sci Commun IV VI:300–305.

    Google Scholar 

  • Dudka S, Chlopecka A (1990) Effect of solid-phase speciation on metal mobility and phytoavailability in sludge-amended soil. Water Air Soil Pollut 51:153–160.

    Article  CAS  Google Scholar 

  • Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. CRC Crit Rev Environ Sci Technol 252:141–199.

    Article  Google Scholar 

  • Feng D, Aldrich C, Tan H (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner Eng 13:623–642.

    Article  CAS  Google Scholar 

  • Ford RG, Sparks DL (2000) The nature of Zn precipitates formed in the presence of pyrophyllite. Environ Sci Technol 34:2479–2483.

    Article  CAS  Google Scholar 

  • Frazer L (2001) Probing the depths of a solution for acid mine drainage. Environ Health Perspect 109:486–489.

    Google Scholar 

  • Fu G, Allen HE, Cowan CE (1991) Adsorption of cadmium and copper by manganese oxide. Soil Sci 152:72–81.

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1978) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. II. Soluble alkaline phosphatase specific to mycorrhizal infection in onion roots. Physiol Plant Pathol 12:45–53.

    Article  CAS  Google Scholar 

  • Gildon A (1983) The relationship of vesicular arbuscular mycorrhizal infection and copper nutrition. J Sci Food Agric 34:56–57.

    Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of a mycorrhizal fungus. Trans Br Mycol Soc 77:648–649.

    Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular arbuscular mycorrhizal infections and heavy-metals in plants. 2. The effects of infection on uptake of copper. New Phytol 95:263–268.

    Article  CAS  Google Scholar 

  • Gonzalez RX, Sartain JB, Miller WL (1992) Cadmium availability and extractability from sewage-sludge as affected by waste phosphatic clay. J Environ Qual 21:272–275.

    CAS  Google Scholar 

  • Graustein WC, Cromack K, Sollins P (1977) Calcium oxalate occurrence in soils and effect on nutrient and geochemical cycles. Science 198:1252–1254.

    CAS  PubMed  Google Scholar 

  • Gray CW, McLaren RG, Roberts AHC, Condron LM (1999) Effect of soil pH on cadmium phytoavailability in some New Zealand soils. N Z J Crop Hortic 27:169–179.

    CAS  Google Scholar 

  • Griffioen WAJ (1994) Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza 4:197–200.

    Article  CAS  Google Scholar 

  • Griffioen WAJ, Ietswaart JH, Ernst WHO (1994) Mycorrhizal infection of an Agrostis capillaris population on a copper-contaminated soil. Plant Soil 158:83–89.

    Article  CAS  Google Scholar 

  • Gworek B (1992) Lead inactivation in soils by zeolites. Plant Soil 143:71–74.

    Article  CAS  Google Scholar 

  • Haas CI, Horowitz ND (1986) Adsorption of cadmium to kaolinite in the presence of organic material. Water Air Soil Pollut 27:131–140.

    Article  CAS  Google Scholar 

  • Harter RDR, Naidu R (1995) Role of metal-organic complexation in metal sorption by soils. Adv Agron 55:219–264.

    CAS  Google Scholar 

  • He QB, Singh BR (1994) Plant availability of cadmium in soils. 2. Factors related to the extractability and plant uptake of cadmium in cultivated soils. Acta Agric Scand 43: 142–150.

    Google Scholar 

  • Hedley MJ, White RE, Nye PH (1982) Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. II. Origin of the pH changes. New Phytol 91:31–44.

    Article  CAS  Google Scholar 

  • Helyar KR, Munns DN, Burau RG (1976) Adsorption of phosphate by gibbsite. II. Formation of a surface complex involving divalent cations. J Soil Sci 27:315–323.

    CAS  Google Scholar 

  • Hettiarachchi GM, Pierzynski GM, Ransom MD (2000) In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol 34:4614–4619.

    Article  CAS  Google Scholar 

  • Hingston FJ (1981) A review of anion adsorption. In: Anderson MA, Robin AJ (eds) Adsorption of Inorganics at Solid-Liquid Interfaces, Ann Arbor Science, Ann Arbor, MI, pp 51–90.

    Google Scholar 

  • Hodgson JF, Tiller KG, Fellows M (1964) The role of hydrolysis in the reaction of heavy metals in soil forming materials. Soil Sci Soc Am Proc 28:42–46.

    Article  CAS  Google Scholar 

  • Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210:199–207.

    Article  CAS  Google Scholar 

  • James BR (1996) The challenge of remediating chromium contaminated soil. Environ Sci Technol 30:248–251.

    Google Scholar 

  • James BR, Petura JC, Vitale RJ, Mussoline GR (1995) Hexavalent chromium extraction from soils: a comparison of five methods. Environ Sci Technol 29:2377–2380.

    CAS  Google Scholar 

  • Jayachandran K, Schwab AP, Hetrick BAD (1989) VA mycorrhizal mediation of phosphorus availability: effect of synthetic iron chelate on phosphorus solubilization. Soil Sci Soc Am J 35:1701–1706.

    Article  Google Scholar 

  • Jeanjean J, Fedoroff M, Faverjon F (1995) Influence of pH on the sorption of cadmium ions on calcium hydroxyapatite. J Mater Sci 30:6156–6160.

    Article  CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Koo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207.

    Article  CAS  PubMed  Google Scholar 

  • Khattak R, Page AL, Parker DR, Baker D (1991) Accumulation and interactions of arsenic, selenium, molybdenum and phosphorus in alfalfa. J Environ Qual 20:165–168.

    CAS  Google Scholar 

  • Knox AS, Seaman JC, Mench MJ, Vangronsveld J (2000) Remediation of metal and radionuclides-contaminated soils by in situ stabilization techniques. In: Iskandar IK (ed) Environmental Restoration of Metals-Contaminated Soils. Lewis, New York, pp 21–60.

    Google Scholar 

  • Krishnamurti GSR (2000) Speciation of heavy metals: an approach for remediation of contaminated soils. In: Wise DL (ed) Remediation Engineering of Contaminated Soils. Dekker, New York, pp 693–716.

    Google Scholar 

  • Krishnamurti GSR, Naidu R (2000) Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Aust J Soil Res 38:991–1004.

    Article  CAS  Google Scholar 

  • Krishnamurti GSR, Huang PM, Van Rees KCJ, Kozak LM, Rostad HPW (1995) Speciation of particulate-bound cadmium of soils and its bioavailability. Analyst 120:659–665.

    Article  CAS  Google Scholar 

  • Krishnamurti GSR, Huang PM, Van Rees KCJ (1996) Studies on soil rhizosphere: speciation and availability of cadmium. Chem Speciat Bioavailab 8:23–28.

    CAS  Google Scholar 

  • Krishnamurti GSR, Cieslinski G, Huang PM, Van Rees KCJ (1997a) Kinetics of cadmium release from soils as influenced by organic acids. Implication in cadmium availability. J Environ Qual 26:271–277.

    CAS  Google Scholar 

  • Krishnamurti GSR, Huang PM, Van Rees, KCJ, Kozak LM, Rostad HPW (1997b) Differential FTIR study of pyrophosphate-extractable material of soils: implication in Cd-bonding sites and availability. In: Prost R (ed) Contaminated Soils. Proceedings, 3rd International Conference on Biogeochemistry of Trace Elements. Institut National de la Recherche Agronomique, Paris, pp 1–10.

    Google Scholar 

  • Krishnamurti GSR, Huang PM, Kozak LM (1999) Sorption and desorption kinetics of cadmium in soils: influence of phosphate. Soil Sci 164:888–898.

    Article  CAS  Google Scholar 

  • Kuo S (1986) Concurrent adsorption of phosphate and zinc, cadmium, or calcium by a hydrous ferric oxide. Soil Sci Soc Am J 50:1412–1419.

    Article  CAS  Google Scholar 

  • Lambert DH, Baker DE, Cole H (1979) The role of mycorrhizae in the interactions of phosphorus with zinc, copper and other elements. Soil Sci Soc Am J 43:976–980.

    Article  CAS  Google Scholar 

  • Laperche V, Traina SJ (1998) Immobilization of Pb by hydroxyapatite. In: Everett JA (ed) Adsorption of Metals by Geomedia: Variables, Mechanisms, and Model Applications. Academic Press, Orlando, pp 225–276.

    Google Scholar 

  • Laperche V, Logan TJ, Gaddam P, Traina SJ (1997) Effect of apatite amendments on plant uptake of lead from contaminated soil. Environ Sci Technol 7:91–102.

    Article  Google Scholar 

  • Lapeyrie F (1988) Oxalate synthesis from soil bicarbonate by the mycorrhizal fungus Paxillus involutus. Plant Soil 110:3–8.

    Article  CAS  Google Scholar 

  • Lazic S, Vukovic Z (1991) Ion exchange of strontium on synthetic hydroxyapatite. J Radioanal Nucl Chem 19:161–168.

    Google Scholar 

  • Lindsay WL (1971) Chemical Equilibria in Soils. Wiley, New York.

    Google Scholar 

  • Livesey NT, Huang PM (1981) Adsorption of arsenate by soils and its relations to selected chemical properties and anions. Soil Sci 131:88–94.

    CAS  Google Scholar 

  • Loganathan P, Hedley MJ, Gregg PEH, Currie LD (1996) Effect of phosphate fertiliser type on the accumulation and plant availability of cadmium in grassland soils. Nutr Cycl Agroecosyst 46:169–178.

    Article  CAS  Google Scholar 

  • Loneragan JF, Grove TS, Robson AD, Snowball K (1979) Phosphorus toxicity as a factor in zinc-phosphorus interactions in plants. Soil Sci Soc Am J 43:966–972

    Article  CAS  Google Scholar 

  • Loser C, Seidel H, Hoffmann P, Zehnsdorf A (2001) Remediation of heavy metalcontaminated sediments by solid-bed bioleaching. Environ Geol 40:643–650.

    Article  CAS  Google Scholar 

  • Ma LQ, Rao GN (1997) Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils. J Environ Qual 26:788–794.

    CAS  Google Scholar 

  • Ma LQ, Traina SJ, Logan TJ, Ryan JA (1993) In situ Pb immobilization by apatite. Environ Sci Technol 27:1803–1810.

    Article  CAS  Google Scholar 

  • Ma LQ, Choate AL, Rao GN (1997) Effects of incubation and phosphate rock on lead extractability and speciation in contaminated soils. J Environ Qual 26:801–807.

    CAS  Google Scholar 

  • Maclean AJ (1976) Cadmium in different plant species and its availability in soils as influenced by organic-matter and additions of lime, P, Cd and Zn. Can J Soil Sci 56: 129–138.

    Article  CAS  Google Scholar 

  • Mahler RJ, Bingham FT, Page AL (1978) Cadmium-enriched sewage sludge application to acid and calcareous soils—effect on yield and cadmium uptake by lettuce and chard. J Environ Qual 7:274–281.

    CAS  Google Scholar 

  • Malajczuk N, Cromack K Jr (1982) Accumulation of calcium oxalate in the mantle of ectomycorrhizal roots of Pinus radiata and Eucalyptus marginata. New Phytol 92: 527–531.

    Article  CAS  Google Scholar 

  • Malone CP, Koeppe DE, Miller RJ (1974) Localisation of lead accumulated by corn plants. Plant Physiol 53:388–394.

    Article  CAS  PubMed  Google Scholar 

  • Mandjiny S, Matis KA, Fedoroff M (1998) Calcium hydroxyapatites: evaluation of sorption properties for cadmium ions in aqueous solution. J Mater Sci 33:5433–5439.

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants, 2nd Ed. Academic Press, London.

    Google Scholar 

  • McGowen SL, Basta NT, Brown GO (2001) Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual 30: 493–500.

    CAS  PubMed  Google Scholar 

  • McLaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) Review: the behaviour and environmental impact of contaminants in fertilizers. Aust J Soil Res 34:1–54.

    Article  CAS  Google Scholar 

  • Mench MJ, Didier VL, Loeffler M, Gomez A, Masson P (1994) A mimicked in situ remediation study of metal contaminated soils with emphasis on cadmium and lead. J Environ Qual 23:58–63.

    CAS  Google Scholar 

  • Meyer JR, Linderman RG (1986) Selective influence on population of rhizosphere or rhizoplane bacteria and actinomycete by mycorrhizas formed by Gloumus fasciculatus. Soil Biol Biochem 18:191–196.

    Article  Google Scholar 

  • Middelburg JJ, Comans MJ (1991) Sorption of cadmium on hydroxyapatite. Chem Geol 90:45–53.

    Article  Google Scholar 

  • Misra DN, Bowen RL, Wallace BM (1975) Adhesive bonding of various materials to hard tooth tissues. 8. Nickel and copper ions on hydroxyapatite—role of ion-exchange and surface nucleation. J Colloid Interface Sci 51:36–43

    Article  CAS  Google Scholar 

  • Mitchell DT, Read D (1981) Utilization of inorganic and organic phosphates by the mycorrhizal endophytes of Vaccinium macrocarpon and Rhododendron ponticum. Trans Br Mycol Soc 76:255–260.

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fert Res 43:55–61.

    Article  Google Scholar 

  • Naidu R, Skinner HCW (1999) Arsenic contamination of rural ground-water supplies in Bangladesh and India: implications for soil quality, animal and human health. In: Barber C, Humphries B, Dixon J (eds) Proceedings, International Conference on Diffuse Pollution, 16–20 May 1999, Perth, pp 407–417.

    Google Scholar 

  • Naidu R, Syers JK, Tillman RW, Kirkman JH (1990) Effect of liming and added phosphate on charge characteristics of acid soils. J Soil Sci 41:157–164.

    CAS  Google Scholar 

  • Naidu R, Bolan NS, Kookana RS, Tiller KG (1994) Ionic-strength and pH effects on the adsorption of cadmium and the surface charge of soils. Eur J Soil Sci 45:419–429.

    CAS  Google Scholar 

  • Naidu R, Kookana RS, Oliver DP, Rogers S, McLaughlin MJ (1996a) Contaminants and the Soil Environment in the Australasia-Pacific region, Kluwer, London.

    Google Scholar 

  • Naidu R, Kookana RS, Sumner ME, Harter RD, Tiller KG (1996b) Cadmium adsorption and transport in variable charge soils: a review. J Environ Qual 26:602–617.

    Article  Google Scholar 

  • Ness RLL, Vlek PLG (2000) Mechanism of calcium and phosphate release from hydroxyapatite by mycorrhizal hyphae. Soil Sci Soc Am J 64:949–955.

    Article  CAS  Google Scholar 

  • Neunhauserer C, Berreck M, Insam H (2001) Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water Air Soil Pollut 128:85–96.

    Article  CAS  Google Scholar 

  • Nriagu JO (1984) Formation and stability of base metal phosphates in soils and sediments. In: Nriagu JO, Moore PB (eds) Phosphate Minerals. Springer-Verlag, New York, pp 318–329.

    Google Scholar 

  • Nriagu JO (1988) A silent epidemic of environmental metal poisoning. Environ Pollut 50:139–161.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor GA, O’Connor C, Cline GR (1984) Sorption of cadmium by calcareous soils: Influence of solution composition. Soil Sci Soc Am J 48:1244–1247.

    Article  CAS  Google Scholar 

  • Pacovsky RS (1986) Micronutrient uptake and distribution in mycorrhizal or phosphorus-fertilized soybeans. Plant Soil 95:379–388.

    Article  CAS  Google Scholar 

  • Parfitt RL (1979) The availability of P from phosphate-goethite bridging complexes: desorption and uptake of ryegrass. Plant Soil 53:55–65.

    Article  CAS  Google Scholar 

  • Pearson MS, Maenpaa K, Pierzynski GM (2000) Effects of soil amendments on the bioavailability of lead, zinc, and cadmium to earthworms. J Environ Qual 29:1611–1617.

    CAS  Google Scholar 

  • Peryea FJ (1991) Phosphate-induced release of arsenic from soils contaminated with lead arsenate. Soil Sci Soc Am J 55:1301–1306.

    Article  CAS  Google Scholar 

  • Peryea FJ, Kammereck R (1997) Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil. Water Air Soil Pollut 93:243–54.

    Article  CAS  Google Scholar 

  • Pierzynski GM, Schwab AP (1993) Bioavailability of zinc, cadmium and lead in a metal contaminated alluvial soil. J Environ Qual 22:247–254.

    CAS  Google Scholar 

  • Power JF, Dick WA (2000) Land Application of Agricultural, Industrial, and Municipal By-Products. Soil Science Society of America, Inc., Madison, WI.

    Google Scholar 

  • Prasad M, Saxena S, Amritphale SS, Chandra N (2001) Detoxification of aqueous zinc using fluorapatite-bearing lean grade rock phosphate. Environ Technol 22:367–371.

    CAS  PubMed  Google Scholar 

  • Pratt PF, Blair FL, McLean GW (1964) Reactions of phosphate with soluble and exchangeable nickel. Soil Sci Soc Am Proc 28:363–365.

    Article  Google Scholar 

  • Qafoku NP, Kukier U, Sumner ME, Miller WP, Radcliffe DE (1999) Arsenate displacement from fly ash in amended soils. Water Air Soil Pollut 114:185–198.

    Article  CAS  Google Scholar 

  • Qafoku NP, Dudka S, Sumner ME, Miller WP (2001) Arsenic, boron, selenium, and molybdenum displacement and transport in a fly ash amended soil leached with calcium phosphate solution. Commun Soil Sci Plant Anal 32:1499–1512.

    Article  CAS  Google Scholar 

  • Rai D, Earty LE, Zachara JM (1987) Chromium(III) hydrolysis constant and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349.

    Article  CAS  Google Scholar 

  • Rajan SSS (1978) Sulfate adsorbed on hydrous alumna, ligands displaced, and changes in surface charge. Soil Sci Soc Am J 42:39–44.

    Article  CAS  Google Scholar 

  • Rajan SSS, Perrott KW, Saunders WMH (1974) Identification of phosphate-reactive sites of hydrous alumna from proton consumption during phosphate adsorption at constant pH values. J Soil Sci 25:438–447.

    CAS  Google Scholar 

  • Rajan SSS, Watkinson JH, Sinclair AG (1996) Phosphate rocks for direct application to soils. Adv Agron 57:77–159.

    CAS  Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intercellular pH regulation. New Phytol 76:415–431.

    Article  CAS  Google Scholar 

  • Raven JA, Smith SE, Smith FA (1978) Ammonium assimilation and the role of mycorrhizas in climax communities in Scotland. Trans Bot Soc Edinb 43:27–35.

    Google Scholar 

  • Reynolds JG, Naylor DV, Fendorf SE (1999) Arsenic sorption in phosphate-amended soils during flooding and subsequent aeration. Soil Sci Soc Am J 63:1149–1156.

    Article  CAS  Google Scholar 

  • Roberts A, Longhurst RD, Brown MW (1994) Cadmium status of soils, plant and grazing animals in New Zealand. N Z J Agric Res 33:119–129.

    Google Scholar 

  • Ross SM (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic Metals in Soil-Plant Systems. Wiley, New York, pp 63–152.

    Google Scholar 

  • Rothbaum HP, Goguel RL, Johnson AE, Mattingly GEG (1986) Cadmium accumulation in soils from long continued application of superphosphate. J Soil Sci 37:99–107.

    CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1994) In situ formation of lead phosphates in soils as a method to immobilise lead. Environ Sci Technol 28:646–654.

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of bioavailability using a physiologically based extraction test. Environ Sci Technol 30:420–430.

    Article  Google Scholar 

  • Rumberg CB, Engel RE, Meggitt WF (1960) Effect of phosphorus concentration on the absorption of arsenate by oats from nutrient solution. Agron J 52:452–453.

    Article  Google Scholar 

  • Ryden JC, Syers JK (1976) Calcium retention in response to phosphate adsorption by soils. Soil Sci Soc Am J 40:845–846.

    Article  CAS  Google Scholar 

  • Santillan-Medrano J, Jurinak JJ (1975) The chemistry of lead and cadmium in soil: solid phase formation. Soil Sci Soc Am Proc 39:851–856.

    Article  CAS  Google Scholar 

  • Sauve S, Norvell WA, McBride M, Hendershot W (2000) Speciation and complexation of cadmium in extracted soil solutions. Environ Sci Technol 34:291–296.

    Article  CAS  Google Scholar 

  • Sawhney BL (1974) Charge characteristics of soils as affected by phosphate sorption. Soil Sci Soc Am J 38:159–160.

    Article  Google Scholar 

  • Schalscha EB, Pratt PF, Soto D (1974) Effect of phosphate adsorption on the cation-exchange capacity of volcanic ash soils. Soil Sci Soc Am J 38:539–540.

    Article  CAS  Google Scholar 

  • Schippers A, Sand W (1998) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321.

    Google Scholar 

  • Schwab AP (1989) Manganese-phosphate solubility relationships in an acid soil. Soil Sci Soc Am J 53:1654–1660.

    Article  CAS  Google Scholar 

  • Seaman JC, Arey JS, Bertsch PM (2001) Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. J Environ Qual 30:460–469.

    CAS  PubMed  Google Scholar 

  • Shuman LM (1986) Effect of ionic strength and anions on zinc adsorption by two soils. Soil Sci Soc Am J 50:1438–1442.

    Article  CAS  Google Scholar 

  • Shuman LM (1991) Chemical forms of micronutrients in soils. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in Agriculture. Soil Science Society of America, Madison, WI, pp 113–144.

    Google Scholar 

  • Singh BR, Myhr K (1998) Cadmium uptake by barley as affected by Cd sources and pH levels. Geoderma 84:185–194.

    Article  CAS  Google Scholar 

  • Smith SE, St John BJ, Smith FA, Nicholas DJD (1985) Activity of glutamine synthetase and glutamine dehydrogenase in Trifolium subterraneum L. and Allium cepa L.: effect of mycorrhizal infection and phosphate nutrition. New Phytol 99:211–217.

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 66:149–195.

    Google Scholar 

  • Smith E, Naidu R, Alston AM (1999) Chemistry of arsenic in soils. I. Sorption of arsenate and arsenite by four Australian soils. J Environ Qual 28:1719–1726.

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston A (2002) Chemistry of arsenic in soils. II. Effect of pH and ionic strength. J Environ Qual 31:557–563.

    CAS  PubMed  Google Scholar 

  • Soon YK (1981) Solubility and sorption of cadmium in soils amended with sewage sludge. J Soil Sci 32:85–95.

    CAS  Google Scholar 

  • Soon YK, Miller MH (1977) Changes in the rhizosphere due to NH +4 and NO 3 fertilization and phosphorus uptake by corn seedlings (Zea mays L.). Soil Sci Soc Am Proc 41:77–80.

    Article  CAS  Google Scholar 

  • Snoeyink VL, Jenkins D (1980) Water Chemistry, Wiley, New York.

    Google Scholar 

  • Sparrow LA, Salardini AA, Bishop AC (1993) Field studies of cadmium in potatoes (Solanum tuberosum L). 1. Effects of lime and phosphorus on cv. russet burbankaust. J Agric Res 44:845–853.

    Article  CAS  Google Scholar 

  • Sposito G (1984) The Surface Chemistry of Soils. Oxford University Press, New York.

    Google Scholar 

  • Sposito G, Lund LJ, Chang AC (1982) Trace metal chemistry in arid zone field soils amended with sewage sludge. I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Sci Soc Am J 46:260–264.

    Article  CAS  Google Scholar 

  • Street JJ, Sabey BR, Lindsay WL (1978) Influence of pH, phosphorus, cadmium, sewage sludge, and incubation time on the solubility and plant uptake of cadmium. J Environ Qual 7:286–290.

    CAS  Google Scholar 

  • Stumm W, Morgan JJ (1995) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Ed. Wiley, New York.

    Google Scholar 

  • Suzuki T, Hatsushika T, Hayakawa Y (1981) Synthetic hydroxyapatites employed as inorganic cation-exchangers. J Chem Soc Faraday Trans 77:1059–1062.

    Article  CAS  Google Scholar 

  • Syers JJ, MacKay AD, Brown MW, Currie LD (1986) Chemical and physical characteristics of phosphate rock materials of ranging reactivity. J Sci Food Agric 37:1057–1064.

    CAS  Google Scholar 

  • Taylor G (1975) Leaching rates of heavy metal ions in forest soils. Water Air Soil Pollut 9:137–148.

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bissom M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850.

    Article  CAS  Google Scholar 

  • Tiller KG (1988) Heavy metals in soils and their environmental significance. Adv Soil Sci 9:113–142.

    Google Scholar 

  • Timmer LW, Leydon RF (1980) The relationship of mycorrhizal infection to phosphorus-induced copper deficiency in sour orange seedlings. New Phytol 85:15–23.

    Article  CAS  Google Scholar 

  • Treeby M, Marschner H, Rōmheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial and synthetic metal chelators. Plant Soil 114:217–226.

    Article  CAS  Google Scholar 

  • Tu C, Zheng CR, Chen HM (2000) Effect of applying chemical fertilizers on forms of lead and cadmium in red soil. Chemosphere 41:133–138.

    Article  CAS  PubMed  Google Scholar 

  • Wann SS, Uehara G (1978a) Surface charge manipulation in constant surface potential soil colloids. I. Relation to sorbed phosphorus. Soil Sci Soc Am J 42:565–570.

    Article  CAS  Google Scholar 

  • Wann SS, Uehara G (1978b) Surface charge manipulation in constant surface potential soil colloids. II. Effect on solute transport. Soil Sci Soc Am J 42:886–888.

    Article  CAS  Google Scholar 

  • Whitelaw MA (2002) Growth promotion of plants innoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151.

    Article  Google Scholar 

  • Williams CH, David DJ (1976) The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Sci 121: 86–93.

    CAS  Google Scholar 

  • Williamson B, Alexander I (1975) Acid phosphatases localized in the sheath of beech mycorrhizas. Soil Biol Biochem 7:194–198.

    Article  Google Scholar 

  • Woolson EA, Axley JH, Kearney P (1973) The chemistry and phytotoxicity of arsenic in soil: II. Effect of time and phosphorus. Soil Sci Soc Am Proc 37:254–258.

    Article  Google Scholar 

  • Xie RJ, Mackenzie AF (1991) Molybdate sorption-desorption in soils treated with phosphate. Geoderma 48:321–333.

    Article  CAS  Google Scholar 

  • Xie RJ, Mackenzie AF, Lou ZJ (1993) Causal-modeling pH and phosphate effects on molybdate sorption in 3 temperate soils. Soil Sci 155:385–397.

    CAS  Google Scholar 

  • Xu Y, Schwartz FW, Traina SJ (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480.

    CAS  Google Scholar 

  • Zhang P, Ryan JA, Yang J (1997) In vitro soil Pb solubility in the presence of hydroxyapatite. Environ Sci Technol 32:2763–2768.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Bolan, N.S., Adriano, D.C., Naidu, R. (2003). Role of Phosphorus in (Im)mobilization and Bioavailability of Heavy Metals in the Soil-Plant System. In: Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 177. Springer, New York, NY. https://doi.org/10.1007/0-387-21725-8_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-21725-8_1

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00214-9

  • Online ISBN: 978-0-387-21725-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics