3.1 Introduction

Forensic science laboratories play a crucial role in India's criminal justice system, providing vital assistance in investigating and resolving criminal cases. These labs are responsible for analysing various types of evidence, ranging from biological samples to digital media and trace evidence. Forensic scientists use a range of specialised techniques, including DNA analysis, fingerprint identification, ballistics, document examination, and toxicology, to name a few.

In recent years, India has placed a significant focus on technological advancements in forensic science. DNA profiling has emerged as a powerful tool in identifying suspects, connecting crime scenes, and establishing relationships between individuals. Forensic laboratories in India have made notable progress in DNA analysis, contributing to the resolution of numerous challenging cases and exonerating the innocent.

With the proliferation of digital technology, forensic science laboratories are facing new challenges and opportunities. Cybercrime investigations, digital forensics, and the analysis of electronic evidence have become increasingly essential in combatting cyber offenses and fraud. Forensic scientists use specialised techniques and tools to extract, preserve, and analyse digital evidence, which helps identify perpetrators and present robust evidence in court.

Recognising the importance of forensic science in the criminal justice system, the Indian government has taken steps to address various challenges being faced. Funding has been increased, infrastructure has been upgraded, and the quality and efficiency of forensic analysis have been improved. Specialised forensic laboratories have been established, and advanced forensic techniques have been introduced to enhance the capabilities of forensic science in India. Ongoing efforts aim to strengthen these laboratories and improve their capacity to meet the growing demands of the justice system.

3.2 Brief Historical Overview

Forensic science is the application of scientific techniques for the administration of justice. During the nineteenth century, as the number of deaths due poisoning increased, the need arose for fully equipped laboratories capable of isolating, detecting, and estimating various poisons from human body organs. In response to this, the first Chemical Examiner’s laboratory was established in Madras Presidency in 1849, under the control of the Department of Health. Initially, it operated under the authority of a civil surgeon or a professor of some medical college, which meant it would relocate with the surgeon’s transfer. However, the government and the court recognised the limitations of managing this laboratory on a part-time basis, leading to the appointment of a full-time permanent chemical examiner and the establishment of a permanent laboratory. Subsequently, additional Chemical Examiner’s laboratories were set up in Calcutta in 1853, Agra in 1864 and Bombay in 1870. These laboratories were fully equipped to conduct toxicological analyses of human viscera and biological analyses of stains from human body fluid such as semen, blood, saliva, etc. Furthermore, these facilities extended their services to neighbouring states and Union Territories.

While the identification of poisons was being addressed, the identification of individuals, particularly criminals, was done using conventional methods. Police officials would rely on memory to recognise individuals based on their facial and physical features if they committed another crime. With the introduction of photography, CID started recording photographs of criminals with a complete elucidation of their appearance. However, one flaw in this system was that criminals could easily evade capture by just changing their appearance. Globally and in India, Bertillon’s Anthropometric system gained widespread acceptance as a method for identifying individuals based on body measurements. Consequently, an Anthropometric Bureau was established at Calcutta in 1892. The bureau assisted police officials in identifying criminals based on anthropometric measurements until the use of fingerprint identification emerged as an alternative for individualisation.

After recognising the limitations of the Anthropometric system, a more superior personal identification system was needed. British civil servant William Herschel had started studying papillary ridges on the fingertips. He established that fingerprints never change during one’s lifetime. He designed a technique for registration of thumb impressions of native contractors to shelter the government’s interests so that contractors could not reject it. Then he extended his recording system to register the thumbprints of criminals. However, Herschel failed to implement this idea effectively. In 1891, Sir Edward Richard Henry was appointed as Inspector General of Police in Bengal. Henry, in 1897 included thumb impressions and anthropometric measurements as well in record slips to circumvent false identification of criminals. He also introduced a duplicate criminal record containing finger impressions of ten fingers, which later substituted the whole identification system with fingerprints. Henry appointed a couple of Indian police officials, Azizul Haque and Hem Chandra Bose, to work on this system. It was these two police officials who devised a mathematical formula in addition to Henry’s sorting slips into 1024 pigeon holes. This mathematical formula met the practicality of his idea of an identification system based on fingerprints. Later, they also designed the extended sub-classification system, termed a single-digit classification system. Henry then approached the government about his idea to replace anthropometric data with fingerprint slips to identify habitual criminals. The government consented to it, and hence the first fingerprint bureau was set up at Calcutta in July 1897. Following India, many other countries started using fingerprints as the primary means of identifying habitual criminals.

When the explosion cases started to increase, the need to detect the cause of the explosion also increased. This led to the First Chief Inspector of Explosives appointment at the Department of Explosives in 1898, with Nagpur as his headquarters. After this, five regional offices were established at Calcutta, Bombay, Agra, Madras and Gwalior and three sub-offices at Shivakshi, Gomia and Asansol.

Meanwhile, the British Government of Bengal needed the expertise to analyse handwriting present on secret documents related to the Indian Independence Movement. This led to the foundation of another post of Government Handwriting Expert of Bengal. Mr. CR Hardless, the then Superintended in accountant’s General’s office in Bengal, was designated for this post in 1904. This set-up was soon shifted to Shimla and was then put under the control of Director CID. Soon, Mr. F Brewster, a police officer of West Bengal CID, was then nominated for this post, and soon he became the Government Examiner of Questioned Documents (GEQD). Initially, the work of this laboratory was limited to the examination of writings of secret documents. Following this, utilisation of this branch was then extended to criminal and civil court cases. When this laboratory’s duties and tasks increased, Mr. R Stott was appointed as Assistant Government Examiner of Questioned Documents in 1920. In 1925, Mr. R Stott took over the charge as Government Examiner of Questioned Documents (GEQD) after the retirement of Mr. Brewster. Mr. VOJ Hodgson soon replaced Mr. R Stott in 1944 and Mr. SN Sen, the first Indian to be appointed for this post. This branch then took the charges of secret censorship, detecting secret writing, and providing training to military personnel about the subject. After recognising the need for more such laboratories, two other organisations were established in Kolkata in 1964 and Hyderabad in 1968.

Forensic Serology Institute entitled ‘Serology Department’ was started in 1910 at Calcutta. Imperial Serologist to the Government of India headed this institute. Dr. Hankin had a significant role in the establishment of this laboratory. This institute provided its services in analysing various biological evidence from the crime scene. After independence, this was soon re-labelled as the ‘Office of the Serologist and Chemical Examiner to the Government of India’.

In 1905, India’s first Central Finger Print Bureau (CFPB) was established at Shimla but was soon abolished in 1922. At the conference of DIGs of Police, CID proposed the establishment of CFPB, and thus a committee was formed to submit a scheme. The Government of India approved the scheme, and soon a CFPB started functioning in Delhi in 1955. It was headed by the Superintendent of Police and was under the administrative control of the Intelligence Bureau (I.B.). It was the central authority to coordinate the activities of all State FPBs. In August 1956, CFPB was shifted to Calcutta. Recognising the need to standardise fingerprint experts’ level in India, an All-India Board of Examination for Fingerprint Experts was formed by the Ministry of Home Affairs, Government of India, in 1958 at CFPB. This board conducted an annual examination for accrediting fingerprint experts from India. Then in the year 1973, the administrative control of the CFPB was shifted to the Central Bureau of Investigation CBI, and in the year 1986, it was again moved to the National Crime Records Bureau (NCRB) and was then again shifted to New Delhi.

Meanwhile, in 1915, a footprint section was established under CID, Government of Bengal. It assisted investigative authorities in identifying criminals based on the examination of footprints found on the crime scene. Later in 1917, a Note Forgery Section was established under CID, Government of Bengal, to analyse forged currency notes. In 1930, an Arms Expert was appointed, and thus a small ballistics laboratory was established under Calcutta Police to examine firearms.

A unique Institute to conduct training in the scientific investigation of crime against women, road accidents, explosion cases, drug abuse cases, etc., was formed and named Central Detective Training School (CDTS) in 1956 at Calcutta. Soon, four more CDTS was established at Hyderabad in 1964, Ghaziabad in 1970, Chandigarh in 1973 and Jaipur in 2012 (Table 3.1).

3.3 Forensic Science Laboratories in India

Post-independence, in 1952, the first Forensic Science Laboratory in India at Kolkata was established, the State Forensic Science Laboratory, West Bengal. The Chemical Examiner’s Laboratory in Kolkata was converted into State Forensic Science Laboratory, West Bengal, becoming the first FSL in India. When forensic science began to develop in India, the forensic scientists across India felt a need for an academy of their own which would be a platform for all forensic researchers to come together and carry out research in the field. Thus, the Indian Academy of Forensic Sciences was established in 1960.

Table 3.1 Summary

3.3.1 Central Forensic Science Laboratries

Cognisance of the capability of forensic science in solving criminal and civil cases inspired the government of India to plan to set up five CFSLs, one of which was intended to be established at a central place and the remaining at four corners of the country. In 1957, the first Central Forensic Science Laboratory was established in Kolkata.

Second, CFSL was established in Hyderabad in 1967. Then in 1968, another CFSL was established in Delhi under the control of the Central Bureau of Investigation (CBI). CFSL Chandigarh was initially started as CID Scientific Section in 1933, under the Police Department of United Punjab in Lahore before independence. In 1961, it was named Forensic Science Laboratory Punjab, Chandigarh. In 1966, it was taken over by the Union Territory of Chandigarh. In 1970, the Bureau of Police Research and Development (BPR & D) was formed. It was created to modernise the Indian Police, assist the systematic study of police problems, and initiate the usage of science and technology in crime investigation methods in the country. Subsequently, in 1978, the Bureau of Police Research and Development (BPR & D) took over the control of FSL Chandigarh and then was named CFSL Chandigarh. In the year 2011, three new CFSLs were set up at Bhopal, Guwahati, and Pune.

Earlier, all CFSLs, excluding CFSL Delhi, were under the control of BPR & D. In the year 2002, the Directorate of Forensic Science Services (DFSS) was carved out from BPR & D, New Delhi to propagate and carry out the most acceptable forensic science practices in the country to assist the Criminal Justice System. The organisational setup of DFSS is shown in Fig. 3.1. Thus, All CFSLs were then put under the control of DFSS from the year 2002; however, CFSL Delhi is hitherto under the control of CBI. The list of CFSLs in India along with their controlling agencies, year of establishment, scientific Forensic divisions and their jurisdiction are shown in Table 3.2. The organisational setup of different CFSLs is shown in Figs. 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8. The jurisdiction of various CFSLs is shown in Fig. 3.9.

Fig. 3.1
A hierarchical structure. The sequence is Government of India, Ministry of Home Affairs, D F S S, D F S S with 2 divisions. 1. Senior scientific officer group I with an administrative officer and 2. Director with deputy, assistant, senior, and junior scientific officers and 1 section officer.

Organisational structure of DFSS

Table 3.2 Central forensic science laboratories (CFSLs) in India
Fig. 3.2
A hierarchical structure of C F S L Kolkata. The sequence is Government of India, Ministry of Home Affairs, D F S S, C F S L Kolkata, then the Director with 2 divisions. 1. Administrative with establishment, accounts, and purchase. 2. Scientific with 10 categories.

Organisational setup of CFSL Kolkata

Fig. 3.3
A hierarchical structure of C F S L Hyderabad. The sequence is Government of India, Ministry of Home Affairs, D F S S, C F S L Hyderabad, then the Director with 2 divisions. 1. Administrative with establishment, accounts, and purchase. 2. Scientific with 11 categories.

Organisational setup of CFSL Hyderabad

Fig. 3.4
A hierarchical structure of C F S L New Delhi. The sequence is Government of India, Ministry of Home Affairs, Central Bureau of Intelligence, C F S L New Delhi, Director, and Principal Scientific Officer with 2 divisions. 1. Scientific Cadre with 11 sub-divisions. 2. Ministerial Crade.

Organisational setup of CFSL New Delhi

Fig. 3.5
A hierarchical structure of C F S L, Chandigarh. The sequence is Government of India, Ministry of Home Affairs, D F S S, C F S L Chandigarh, and Director with 4 divisions. 1. Quality management. 2. Office support services. 3. C F S L Unit Shimla, and 4. Technical operations with 7 sub-divisions.

Organisational setup of CFSL Chandigarh

Fig. 3.6
A hierarchical structure of C F S L, Bhopal. The sequence is Government of India, Ministry of Home Affairs, D F S S, C F S L Bhopal, and Director with 2 divisions. 1. Administrative with establishment, accounts, and purchase. 2. Scientific division with 6 sub-divisions.

Organisational setup of CFSL Bhopal

Fig. 3.7
A hierarchical structure of C F S L, Guwahati. The sequence is Government of India, Ministry of Home Affairs, D F S S, C F S L Guwahati, and Director with 2 divisions. 1. Administrative with the establishment, accounts, purchase, and case reception. 2. Scientific with 10 sub-divisions.

Organisational setup of CFSL Guwahati

Fig. 3.8
A hierarchical structure of C F S L, Pune. The sequence is Government of India, Ministry of Home Affairs, D F S S, C F S L Pune, and the Director with 2 divisions. 1. Administrative division with 4 categories. 2. Scientific division with 9 categories.

Organisational setup of CFSL Pune

Fig. 3.9
A table of 7 categories of the jurisdiction of C F S Ls. The C F S L of New Delhi supervises C B I of India, Kolkata, Eastern states, Hyderabad, southern states, Chandigarh, Northern states, Bhopal, Central states, Guwahati, Northeastern states, and Pune, western states.

Jurisdiction of CFSLs

3.3.2 State Forensic Science Laboratories

After the SFSL West Bengal (Kolkata) was established, many such SFSLs began to be set up in different states of India. In 1958, SFSL Maharashtra (Mumbai) was started up, then SFSL Rajasthan (Jaipur) and FSL Tamil Nadu (Chennai) in 1959, SFSL Bihar (Patna) in 1960, SFSL Kerala (Thiruvananthapuram) in 1961, SFSL Orissa (Bhubaneshwar) in 1962 (first setup in Cuttack and in 1971 shifted to Bhubaneshwar), SFSL MP (Sagar) in 1964, FSL Jammu and Kashmir in 1964, and SFSL Karnataka (Bengaluru) in 1967. The Directorate of Forensic Science, Assam (Guwahati), was set up in 1967. It was first established as Forensic Science Laboratory Assam in Shillong (capital of undivided Assam) in 1967. Later after two years, it was shifted to Guwahati under the control of the Director-General of Police Assam, and then a separate Directorate of Forensic Science was created in 2005. In 1969, Scientific section of CID, U.P. was converted into Forensic Science Laboratory. A Government order was issued in the year 1979 for the merger of the Chemical Examiner’s Laboratory, Agra and the Forensic Science Laboratory, Lucknow and to develop these two laboratories as full-fledged Forensic Science Laboratories. Initially SFSL Haryana was established at Rohtak in 1973 and then was shifted to Madhuban (Karnal) in 1976. In 1974, SFSL Andhra Pradesh was set up at Hyderabad, which became SFSL Telangana after Telangana separated from Andhra Pradesh, and the new SFSL Andhra Pradesh is recently established at Mangalagiri. Forensic Science Laboratory at Ahmedabad, Gujarat was established in 1974 but has now shifted to Gandhinagar as Directorate of Forensic Science. FSL Punjab (Chandigarh) was set up in 1980, SFSL Meghalaya (Shillong) in 1987, SFSL Manipur (Pangel, Imphal) in 1987–88. In 1988, SFSL Himachal Pradesh was established in Shimla but was shifted to Junga in 1996. FSL Delhi (Rohini) was setup in 1995. Thereafter, in 2000, FSL Mizoram was set up at Aizawl. In 2002, SFSL Chhattisgarh (Raipur) was set up. It was initially a Regional Forensic Science Laboratory in Raipur in Madhya Pradesh. Later, when Chhattisgarh was established as a different state, this RFSL was converted into SFSL Chhattisgarh. In the same year, SFSL Tripura was established at Agartala. In 2003, FSL Andaman and the Nicobar Islands was set up at Port Blair. The foundation stone of SFSL Arunachal Pradesh building was laid in 2004 and the construction of building was completed by 2006 in the premises of Police Training Centre, Banderdewa. In 2005, SFSL Jharkhand was established at Ranchi; in the past, it was started as RFSL Ranchi before the separation of Jharkhand. Later it was converted into SFSL after the formation of Jharkhand state.

There are seven Central FSLs (Table 3.2) and 32 State FSLs (Table 3.3) in India.

Map. 3.1
A map of India with its states and territories. India has 32 S F S Ls, 80 plus R F S Ls, and M F Us and D M F Us of 529.

Representative map of India showing the number of State FSLs (SFSLs), Regional FSLs (RFSLs), Mobile Forensic Units (MFUs)/ District Mobile Forensic Units (DMFUs) (Till 2022)

Table 3.3 State forensic science laboratories in India

Apart from CFSLs and SFSLs, different states in India have Regional FSLs, District FSLs, Mini FSLs and Mobile FSLs. As per the official record available on the official website of DFSS, there are total 80 Regional FSLs (plus 10 more are approved and under process of being established) and 529 Mobile Forensic Units(MFUs)/District Mobile Forensic Units (DMFUs). A representative image is shown in Map 3.1. These are under the control of the State Forensic Science Directorate under the State Home departments.

3.4 Role and Functions of FSLs

The role and functions of forensic science laboratories in India are significant in the criminal justice system and encompass a wide range of activities. These laboratories serve as specialised centres for scientific analysis and examination of evidence, playing a pivotal role in assisting law enforcement agencies, prosecutors, and the judiciary. Overall, FSLs in India have multifaceted roles and functions, ranging from evidence analysis and crime scene support to expert testimony and research. Their work is crucial in ensuring the fair administration of justice. Below are some of the key roles and functions performed by forensic science laboratories in India:

  • Evidence Examination and Analysis: Forensic laboratories in India are responsible for the examination, analysis, and interpretation of various types of evidence collected from crime scenes. This includes biological evidence such as DNA samples, fingerprints, ballistics, trace evidence, questioned documents, digital evidence, and more. The laboratories employ sophisticated techniques and scientific methods to extract information, identify patterns, and draw conclusions from the evidence.

  • Crime Scene Investigation Support: Forensic science laboratories provide vital support to crime scene investigators. They offer expertise and guidance in the proper collection, preservation, and documentation of evidence to ensure its integrity and admissibility in court. This includes providing training and assistance in evidence handling, evidence packaging, and maintaining chain of custody.

  • Scientific Analysis and Examination: Forensic scientists in these laboratories perform scientific analysis and examination of evidence using specialised techniques and equipment. They employ a wide range of forensic disciplines such as DNA profiling, fingerprint analysis, ballistics, toolmark examination, drug analysis, toxicology, questioned document examination, forensic anthropology, digital forensics, and more. These examinations help establish connections, identify suspects, determine causes of death, and provide scientific evidence in criminal cases.

  • Expert Testimony and Court Proceedings: Forensic science laboratories in India provide expert testimony in court proceedings. Forensic experts, based on their analysis and findings, present their conclusions and opinions to assist the judge and jury in understanding complex scientific evidence. Their testimony can play a vital role in supporting or refuting allegations and helping the court arrive at a just and informed decision.

  • Research and Development: Forensic laboratories also engage in research and development activities to advance forensic science techniques and methodologies. They explore emerging technologies, and contribute to the scientific knowledge base in the field. This helps in improving the accuracy, reliability, and efficiency of forensic analysis, leading to better outcomes in criminal investigations.

3.5 Conclusion

Forensic science laboratories in India play a vital role in the criminal justice system by providing scientific analysis and evidence that aid investigations, court proceedings, and the pursuit of justice. They are responsible for the examination and analysis of various types of evidence, ranging from DNA profiling to fingerprint identification, ballistics, toxicology, and digital forensics. The services offered and divisions available also vary. Despite their significance, forensic science laboratories in India face challenges such as limited resources, outdated equipment, and a shortage of skilled forensic professionals. However, the Government of India and other state governments have taken several steps to address these challenges, including increased funding, infrastructure development, and capacity building initiatives. Efforts have been made to improve the quality and efficiency of forensic analysis and enhance collaboration with law enforcement agencies and other stakeholders.

Over the last few decades, there has been constant up gradation in the infrastructure, facilities, and instrumentation available in the FSLs. Many FSLs now offer state-of-the-art facilities for analysing a wide range of evidence. The time taken for analysis has also reduced significantly. This, in turn, has resulted in quick turn-around time and hence reduced time taken by the honourable courts to deliver verdicts. Realising the need and increased scope of forensic science over the last few years, many universities, institutes and colleges have started offering several traditional and modern courses in the subject. The subject, Forensic Science, is predicted to grow manifolds in the next few years.