Skip to main content

Kidney Lesion Segmentation in MRI Using Clustering with Salp Swarm Algorithm

  • Conference paper
  • First Online:
Applications of Artificial Intelligence in Engineering

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

In this paper, kidney lesion segmentation in MRI using clustering with salp swarm algorithm (SSA) is proposed. The segmentation results of kidney MRI are degraded by the noise and intensity inhomogeneities (IIHs) in MR images. Therefore, at the outset, the MR images are denoised using median filter. Then IIHs are corrected using the max filter-based method. A hard-clustering technique using SSA is developed to segment the MR images. Finally, the lesions are extracted from the segmented MR images. The proposed method is compared with the K-means algorithm using well-known clustering validity measure DB-index. The experimental results demonstrate that the proposed method performs better than the K-means algorithm in the segmentation of kidney lesions in MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luyckx VA, Tonelli M, Stanifer JW (2018) The global burden of kidney disease and the sustainable development goals. Bull World Health Organ 96:414–422D. https://doi.org/10.2471/BLT.17.206441

    Article  Google Scholar 

  2. Cova MA, Cavallaro M, Martingano P, Ukmar M (2011) Magnetic resonance imaging of the kidney. In: Quaia E (ed) Radiological imaging of the kidney. Medical radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87597-0_6

  3. Martlin-Fernlandez M, Alberola-Llopez C (2005) An approach for contour detection of human kidneys from ultrasound images using Markov random fields and active contours. Med Image Anal 9:1–23

    Article  Google Scholar 

  4. Li L, Ross P, Kruusmaa M, Zheng X (2011) A comparative study of ultrasound image segmentation algorithms for segmenting kidney tumors. In: Proceedings of the 4th international symposium on applied sciences in biomedical and communication technologies. Article no 126, pp 1–5. https://doi.org/10.1145/2093698.2093824

  5. Kim D-Y, Park J-W (2004) Computer-aided detection of kidney tumor on abdominal computed tomography scans. Acta Radiol 45(7):791–795

    Article  Google Scholar 

  6. Skalski A, Jakubowski J, Drewniak T (2016) Kidney tumor segmentation and detection on computed tomography data. In: IEEE international conference on imaging systems and techniques (IST), Chania, Greece

    Google Scholar 

  7. Yang G, Li G, Pan T, Kong Y, Wu J, Shu H, Luo L, Dillenseger J-L, Coatrieux J-L, Tang L, Zhu X (2018) Automatic segmentation of kidney and renal tumor in CT images based on pyramid pooling and gradually enhanced feature modules. In: 24th international conference on pattern recognition (ICPR), Beijing, China. IEEE, pp 3790–3795. https://doi.org/10.1109/ICPR.2018.8545143

  8. Choudhari K, Sharma R, Halarnkar P (2020) Kidney and tumor segmentation using U-Net deep learning model. In: 5th international conference on next generation computing technologies (NGCT-2019). https://doi.org/10.2139/ssrn.3527410

  9. Pang S, Du A, Orgun MA, Yu Z, Wang Y, Wang Y, Liu G (2020) CTumorGAN: a unified framework for automatic computed tomography tumor segmentation. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-020-04781-3

    Article  Google Scholar 

  10. Kaur R, Junejaa M, Mandal AK (2019) Computer-aided diagnosis of renal lesions in CT images: a comprehensive survey and future prospects. Comput Electr Eng 77:423–434

    Article  Google Scholar 

  11. Nikken JJ, Krestin GP (2007) MRI of the kidney—state of the art. Eur Radiol 17:2780–2793. https://doi.org/10.1007/s00330-007-0701-3

    Article  Google Scholar 

  12. Li S, Zöllnera FG, Merrema AD, Peng Y, Roervikc J, Lundervoldd A, Schada LR (2012) Wavelet-based segmentation of renal compartments in DCE-MRI of human kidney: initial results in patients and healthy volunteers. Comput Med Imaging Graph 36:108–118

    Article  Google Scholar 

  13. Rudra AK, Chowdhury AS, Elnakib A, Khalifa F, Soliman A, Beache G, El-Baz A (2013) Kidney segmentation using graph cuts and pixel connectivity. Pattern Recogn Lett 34:1470–1475

    Article  Google Scholar 

  14. Yang X, Minh HL, (Tim) Cheng K-T, Sung KH, Liu W (2016) Renal compartment segmentation in DCE-MRI images. Med Image Anal 32:269–280

    Google Scholar 

  15. Rusinek H, Lim JC, Wake N, Seah J, Botterill E, Farquharson S, Mikheev A, Lim RP (2015) A semi-automated “blanket” method for renal segmentation from non-contrast T1-weighted MR images. Magn Reson Mater Phys Biol Med 29:197–206

    Article  Google Scholar 

  16. Will S, Martirosian P, Würslin C, Schick F (2014) Automated segmentation and volumetric analysis of renal cortex, medulla, and pelvis based on non-contrast enhanced T1- and T2-weighted MR images. Magn Reson Mater Phys Biol Med 27:445–454

    Article  Google Scholar 

  17. Akin O, Elnajjar P, Heller M, Jarosz R, Erickson BJ, Kirk S, Filippini J (2016) Radiology data from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma [TCGA-KIRC] collection. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.V6PBVTDR

    Article  Google Scholar 

  18. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057

    Article  Google Scholar 

  19. Mohana J, Krishnavenib V, Guo Y (2014) A survey on the magnetic resonance image denoising methods. Biomed Signal Process Control 9:56–69

    Article  Google Scholar 

  20. Balafar MA, Ramli AR, Mashohor S (2010) A new method for MR grayscale inhomogeneity correction. Artif Intell Rev 34:195–204

    Article  Google Scholar 

  21. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  22. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1(2):224–227

    Article  Google Scholar 

  23. Si T, De A, Bhattacharjee AK (2014) Brain MRI segmentation for tumor detection using Grammatical Swarm based clustering algorithm. In: Proceedings of IEEE international conference on circuits, power and computing technologies (ICCPCT-2014), Nagercoil, India, 2014

    Google Scholar 

  24. Si T, De A, Bhattacharjee AK (2015) Grammatical swarm based segmentation methodology for lesion segmentation in brain MRI. Int J Comput Appl 121(4):1–8

    Google Scholar 

  25. Si T, De A, Bhattacharjee AK (2016) MRI brain lesion segmentation using generalized opposition-based glowworm swarm optimization. Int J Wavelets Multiresolution Inf Process 14(5):1650041 (29 pp)

    Google Scholar 

  26. Derrac J, Garcla S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Si .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Si, T. (2021). Kidney Lesion Segmentation in MRI Using Clustering with Salp Swarm Algorithm. In: Gao, XZ., Kumar, R., Srivastava, S., Soni, B.P. (eds) Applications of Artificial Intelligence in Engineering. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-4604-8_7

Download citation

Publish with us

Policies and ethics