Skip to main content

Simulation of Foot Movement During Walking Based on the Study of Different Step Parameters

  • Chapter
  • First Online:
Frontiers in Robotics and Electromechanics

Abstract

In this work, data on the movement of the human foot are experimentally obtained, by solving the inverse problem of kinematics, the laws of change in the angles of rotation of the lower limbs in time are obtained. For the construction of rehabilitation exercises, the parameters of the movements of the legs of a healthy person were used, which in the future will allow using the patterns obtained to recreate the patient's stepping movements in an exoskeleton—a robotic electromechanical system that allows reproducing the movements of the lower extremities. The use of simplified laws of foot movement leads to the formation of an incorrect gait of a person and increases the rehabilitation period. This complicates the development of a criterion for assessing the fidelity of reproduction. It is necessary to correctly select the points of the foot for measurements, since the real trajectory changes from step to step. Therefore, a method is considered for approximating the trajectory of the foot movement, taking into account the anthropometric parameters of the patient, based on video analysis of the gait, taking into account uncertainties, and statistical processing of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dynamics of the spread of OA diseases in Russia and in the world. Spine and Joint Health. https://spinet.ru/public/dinamika_rasprostraneniy_oda.php, 14 Jun 2022

  2. Vorobev, A.A., Petrukhin, A.V., Zasypkina, O.A., Krivonozhkina, P.S.: Exoskeleton as a new tool for habilitation and rehabilitation of people with disabilities (review). Modern Technol. Med. 7(2), 51–62 (2015). (In Russ.)

    Google Scholar 

  3. Shakti, D., Mathew, L., Kumar, N., Kataria, C.: Effectiveness of robo-assisted lower limb rehabilitation for spastic patients: a systematic review. Biosens. Bioelectron. 117, 403–415 (2018)

    Article  Google Scholar 

  4. Zhang, X., Yue, Z., Wang, J.: Robotics in lower-limb rehabilitation after stroke. Behav. Neurol. (2017)

    Google Scholar 

  5. Cafolla, D., Russo, M., Carbone, G.: CUBE, a cable-driven device for limb rehabilitation. J. Bionic Eng. 16(3), 492–502 (2019)

    Article  Google Scholar 

  6. Shi, D., Zhang, W., Zhang, W., Ding, X.: A review on lower limb rehabilitation exoskeleton robots. Chin. J. Mech. Eng. 32(1), 1–11 (2019)

    Article  Google Scholar 

  7. Yatsun, S.F., Yatsun, A.S., Korenevsky, N.A.: Experience in designing rehabilitation exoskeletons. Med. Eng. 3, 48–51 (2017)

    Google Scholar 

  8. Charles, J.P., Grant, B., D’Août, K., Bates, K.T.: Foot anatomy, walking energetics, and the evolution of human bipedalism. J. Hum. Evol. 156, 103014 (2021)

    Article  Google Scholar 

  9. Hannink, J., Ollenschläger, M., Kluge, F., Roth, N., Klucken, J., Eskofier, B.M.: Benchmarking foot trajectory estimation methods for mobile gait analysis. Sensors 17(9), 1940 (2017)

    Article  Google Scholar 

  10. Tracker Video Analysis and Modeling Tool. https://physlets.org/tracker/, 14 Jun 2022

  11. Skvortsov, D.V.: Clinical analysis of movements. In: Gait Analysis (1996) (In Russ.)

    Google Scholar 

  12. Mikheev, S.E.: On function smoothing. In: Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences (2014) (In Russ.)

    Google Scholar 

  13. Smooth MathWorks. https://www.mathworks.com/help/curvefit/smooth.html, 14 Jun 2022

  14. Polyfit MathWorks. https://www.mathworks.com/help/matlab/ref/polyfit.html, 14 Jun 2022

  15. Vershik, A.M., Malozemov, V.N., Pevnyi, A.B.: The best piecewise polynomial approximation. Sib. 16(5), 925–938 (1975). (In Russ.)

    MathSciNet  MATH  Google Scholar 

  16. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. Robot. Res., 649–666 (2016)

    Google Scholar 

  17. Koltygin, D.S., Sedelnikov, I.A., Petukhov, N.V.: Analytical and numerical methods for solving the inverse kinematics problem for the robot Delta. Bull. Irkutsk State Tech. Univ. 21(5), 124 (2017)

    Google Scholar 

  18. Shmalko, E., Rumyantsev, Y., Baynazarov, R., Yamshanov, K.: Identification of neural network model of robot to solve the optimal control problem. Inf. Autom. 20(6), 1254–1278 (2021). https://doi.org/10.15622/ia.20.6.3

  19. Yatsun, S.V., Al Manji, H.H.M., Postolny, A.A., Yatsun, A.S.: Modeling of gait patterns of patients with musculoskeletal system damage using an exoskeleton. Izvestia Southwestern State Univ. 23(6), 176–188 (2020) (In Russ.)

    Google Scholar 

  20. Kapustin, A.V., Loskutov, Yu.V., Kudriavtsev, I.A., Belogusev, V.N.: Ways to maintain a stable position of a rehabilitative medical exoskeleton while walking. Bull. Volga Region State Technol. Uni. Ser.: Mater. Des. Technol. 3, 44–54 (2018)

    Google Scholar 

  21. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, vol. 3, pp. 75–118. Wiley, New York (2006)

    Google Scholar 

Download references

Acknowledgements

The article was prepared with the support of the Russian Scientific Foundation project 22-21-00464 “Development of models and control algorithms for biotechnical walking systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Pechurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malchikov, A., Pechurin, A., Jatsun, A. (2023). Simulation of Foot Movement During Walking Based on the Study of Different Step Parameters. In: Ronzhin, A., Pshikhopov, V. (eds) Frontiers in Robotics and Electromechanics. Smart Innovation, Systems and Technologies, vol 329. Springer, Singapore. https://doi.org/10.1007/978-981-19-7685-8_1

Download citation

Publish with us

Policies and ethics