Skip to main content

Design and Motion Simulation of a New Exoskeleton Leg Mechanism

  • Conference paper
  • First Online:
New Trends in Medical and Service Robotics (MESROB 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 106))

Included in the following conference series:

  • 292 Accesses

Abstract

In this paper, we will present a new constructive solution of a robotic system for the rehabilitation of people with locomotor disabilities. In the first part of the paper, we performed an experimental analysis of human gait, with help a Biometrics Data Acquisition System. This step is necessary in order to perform a comparative analysis between human gait and developed exoskeleton movement. In a first stage, we presented a constructive solution for the mechanism that shapes the legs of the exoskeleton. This solution is based on a closed kinematic chain and is driven by a single motor. Based on the mechanism kinematic scheme, the virtual prototype model developed in the SolidWorks CAD environment is presented. The virtual prototype is used to perform a motion simulation in ADAMS dynamic analysis software. In this way, we performed a comparative analyse of the motions of healthy human subjects in relation to the motions realized by the designed exoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anama, K., Al-Jumaily, A.A.: Active exoskeleton control systems: state of the art. Procedia Eng. 41, 988–994 (2012)

    Article  Google Scholar 

  2. Young, A.J., Ferris, D.P.: State-of-the-art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 171–182 (2017). https://doi.org/10.1109/TNSRE.2016.2521160

    Article  Google Scholar 

  3. Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., Michaud, F.: Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil. Rehabil. Assist. Technol. 11(7), 535–547 (2016). https://doi.org/10.3109/17483107.2015

    Article  Google Scholar 

  4. Díaz, I., Gil, J.J., Sánchez, E.: Lower-limb robotic rehabilitation: literature review and challenges. J. Robot, 11 (2011). https://doi.org/10.1155/2011/759764

  5. Louie, D.R., Eng, J.J.: Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng. Rehabil. 13(1), 1 (2016). https://doi.org/10.1186/s12984-016-0162-5

    Article  Google Scholar 

  6. Viteckova, S., Kutilek, P., Jirina, M.: Wearable lower limb robotics: a review. Biocybernetics Biomed. Eng. 33, 96–105 (2013)

    Article  Google Scholar 

  7. Tingfang, Y., Cempinia, M., et al.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120–136 (2015)

    Article  Google Scholar 

  8. Geonea, I.D., Tarnita, D.: Design and evaluation of a new exoskeleton for gait rehabilitation. Mech. Sci. 8, 307–321 (2017). https://doi.org/10.5194/ms-8-307-2017

    Article  Google Scholar 

  9. Geonea, I., Dumitru, N., Tarnita, D., Rinderu, P.: Design and kinematics of a new leg exoskeleton for human motion assistance. In: IFToMM World Congress on Mechanism and Machine Science, pp. 165–174. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-20131-9_17

  10. Tarniţă, D., Geonea, I., Petcu, A., Tarniţă, D.-N.: Experimental characterization of human walking on stairs applied to humanoid dynamics. In: Rodić, A., Borangiu, T. (eds.) RAAD 2016. AISC, vol. 540, pp. 293–301. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49058-8_32

    Chapter  Google Scholar 

  11. Tarnita, D.: Wearable sensors used for human gait analysis. Rom. J. Morphol. Embryol. 57(2), 373–382 (2016)

    Google Scholar 

  12. Wang, M., Ceccarelli, M., Carbone, G.: A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation. Front. Mech. Eng. 11(2), 144–158 (2016). https://doi.org/10.1007/s11465-016-0391-0

    Article  Google Scholar 

  13. Wojtyra, M.: dynamical analysis of human walking. In: 15th European ADAMS Users, Conference Technical Papers, Rome, Italy (2000)

    Google Scholar 

  14. Patton, J.L.: Forward dynamic modeling of human locomotion. Ph.D. thesis, Michigan State University (1993)

    Google Scholar 

  15. Kecskemethy, A.: Integrating efficient kinematics in biomechanics of human motions. Procedia IUTAM 2, 86–92 (2011). https://doi.org/10.1016/j.piutam.2011.04.009

    Article  Google Scholar 

  16. Wang, M.F., Ceccarelli, M., Carbone, G.: Experimental tests on operation performance of a LARM leg mechanism with 3-DOF parallel architecture. Mech. Sci. 6, 1–8 (2015). https://doi.org/10.5194/ms-6-1-2015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionut Geonea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geonea, I., Copiluși, C., Dumitru, S., Roșca, A.S. (2022). Design and Motion Simulation of a New Exoskeleton Leg Mechanism. In: Rauter, G., Carbone, G., Cattin, P.C., Zam, A., Pisla, D., Riener, R. (eds) New Trends in Medical and Service Robotics. MESROB 2021. Mechanisms and Machine Science, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-76147-9_8

Download citation

Publish with us

Policies and ethics