Skip to main content

Computational Intelligence-Based Gene Expression Analysis in Colorectal Cancer: A Review

  • Chapter
  • First Online:
Computational Intelligence in Oncology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1016))

Abstract

Key challenges in cancer gene expression analysis are to collectively identify the gene (tumor suppressor, proto-oncogenes, and mismatch repair) or sets of genes that are differentially expressed significantly in cancer and normal samples. High throughput expression techniques provide quantitative data about the expression of thousands of genes per biological sample. However, such technologies have some common problems including but not limited to dataset complexity, data integration, and noise. Data generated from the latest technologies are growing at an explosive rate; therefore, it becomes essential to dig out useful information from this data and create biological knowledge. Moreover, traditional data analysis is sometimes not effective to extract valuable information from biological datasets. More recently, to overcome these issues, computational intelligence methods such as artificial intelligence (AI) and machine learning (ML) have been widely applied to study gene co-expression networks, differential gene expression analysis, pathway analysis, and predicting biomarkers and therapeutic targets in cancer. In this chapter, we attempt to describe how computational intelligence-based algorithms can contribute to this field to generate quality knowledge needed in cancer biology. Special emphasis is given on colorectal cancer (CRC) studies, wherein apart from expression biomarkers, diagnostic potential of AI-based analysis has also been investigated. We have highlighted algorithms widely used in identifying unique gene expression signatures in CRCs. AI and ML-based methodologies could help us identify high-risk genes or gene sets and their aberrant expression associated with them. In the future, this would help us improve diagnosis and prognosis for better monitoring and management of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AB:

Ada boost

AI:

Artificial intelligence

ANN:

Artificial neural network

BRAF:

v-Raf murine sarcoma viral oncogene homolog B1

CRC:

Colorectal cancer

DT:

Decision tree

DL:

Deep learning

FNN:

Fuzzy neural network

LR:

Logistic regression

LDA:

Linear discriminant analysis

ML:

Machine learning

NB:

Naive Bayes

SOM:

Self-organizing map

SVM:

Support vector machine

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  2. Colorectal Cancer Survival Rates, Colorectal Cancer Prognosis. Retrieved 20 August 2021, from https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html

  3. Singh, M. P., Rai, S., Suyal, S., Singh, S. K., Singh, N. K., Agarwal, A., & Srivastava, S. (2017). Genetic and epigenetic markers in colorectal cancer screening: Recent advances. In Expert Review of Molecular Diagnostics, 17(7), 665–685.

    Article  Google Scholar 

  4. Ng, R. T., & Pei, J. (2007). Introduction to the special issue on data mining for health informatics. ACM SIGKDD Explorations Newsletter, 9(1), 1–2.

    Article  Google Scholar 

  5. Chen, H. Y., Yu, S. L., Chen, C. H., Chang, G. C., Chen, C. Y., Yuan, A., Cheng, C. L., Wang, C. H., Terng, H. J., Kao, S. F., Chan, W. K., Li, H. N., Liu, C. C., Singh, S., Chen, W. J., Chen, J. J. W., & Yang, P. C. (2007). A five-gene signature and clinical outcome in non-small-cell lung cancer. New England Journal of Medicine, 356(1), 11–20.

    Article  Google Scholar 

  6. Rosenwald, A., Wright, G., Wiestner, A., Chan, W. C., Connors, J. M., Campo, E., Gascoyne, R. D., Grogan, T. M., Muller-Hermelink, H. K., Smeland, E. B., Chiorazzi, M., Giltnane, J. M., Hurt, E. M., Zhao, H., Averett, L., Henrickson, S., Yang, L., Powell, J., Wilson, W. H., & Staudt, L. M. (2003). The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell, 3(2), 185–197.

    Article  Google Scholar 

  7. Dressman, H. K., Berchuck, A., Chan, G., Zhai, J., Bild, A., Sayer, R., Cragun, J., Clarke, J., Whitaker, R. S., Li, L., & Gray, J. (2007). An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. Journal of Clinical Oncology, 25(5), 517–525.

    Article  Google Scholar 

  8. Sabates-Bellver, J., Van der Flier, L. G., de Palo, M., Cattaneo, E., Maake, C., Rehrauer, H., Laczko, E., Kurowski, M. A., Bujnicki, J. M., Menigatti, M., & Luz, J. (2007). Transcriptome profile of human colorectal adenomas. Molecular cancer research, 5(12), 1263–1275.

    Article  Google Scholar 

  9. Qin, L., Zeng, J., Shi, N., Chen, L., & Wang, L. (2020). Application of weighted gene co-expression network analysis to explore the potential diagnostic biomarkers for colorectal cancer. Molecular Medicine Reports, 21(6), 2533–2543.

    Google Scholar 

  10. Lenz, M., Müller, F. J., Zenke, M., & Schuppert, A. (2016). Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data. Scientific Reports, 6(1), 1–11.

    Article  Google Scholar 

  11. Singh, M. P., Rai, S., Singh, N. K., & Srivastava, S. (2021). Transcriptomic landscape of early age onset of colorectal cancer identifies novel genes and pathways in Indian CRC patients. Scientific Reports, 11(1), 1–11.

    Google Scholar 

  12. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Springer, 20, 273–297.

    MATH  Google Scholar 

  13. Chen, D., Liu, Z., Ma, X., & Hua, D. (2005). Selecting genes by test statistics. Journal of Biomedicine and Biotechnology, 2005(2), 132.

    Article  Google Scholar 

  14. Dahiru, T. (2008). P-value, a true test of statistical significance? A cautionary note. Annals of Ibadan Postgraduate Medicine, 6(1), 21–26.

    Google Scholar 

  15. Sun, G., Dong, X., & Xu, G. (2006). Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier. Neurocomputing, 69(4–6), 387–402.

    Article  Google Scholar 

  16. Hsu, Y. C., Yuan, S., Chen, H. Y., Yu, S. L., Liu, C. H., Hsu, P. Y., Wu, G., Lin, C. H., Chang, G. C., Li, K. C., & Yang, P. C. (2009). A four-gene signature from NCI-60 cell line for survival prediction in non-small cell lung cancer. Clinical Cancer Research, 15(23), 7309–7315.

    Article  Google Scholar 

  17. Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C. H., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J. P., & Poggio, T. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of Sciences, 98(26), 15149–15154.

    Article  Google Scholar 

  18. Burke, H. B., Goodman, P. H., Rosen, D. B., Henson, D. E., Weinstein, J. N., Harrell, F. E., Jr., Marks, J. R., Winchester, D. P., & Bostwick, D. G. (1997). Artificial neural networks improve the accuracy of cancer survival prediction. Cancer, 79(4), 857–862.

    Article  Google Scholar 

  19. Rothberg, B. E. G., Berger, A. J., Molinaro, A. M., Subtil, A., Krauthammer, M. O., Camp, R. L., Bradley, W. R., Ariyan, S., Kluger, H. M., & Rimm, D. L. (2009). Melanoma prognostic model using tissue microarrays and genetic algorithms. Journal of Clinical Oncology, 27(34), 5772.

    Article  Google Scholar 

  20. Dimitrakopoulos, C. M., & Beerenwinkel, N. (2017). Computational approaches for the identification of cancer genes and pathways. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 9(1), e1364.

    Google Scholar 

  21. Wang, K. W., & Dong, M. (2020). Potential applications of artificial intelligence in colorectal polyps and cancer: Recent advances and prospects. World Journal of Gastroenterology, 26(34), 5090.

    Article  Google Scholar 

  22. Mitsala, A., Tsalikidis, C., Pitiakoudis, M., Simopoulos, C., & Tsaroucha, A. K. (2021). Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A New Era. Current Oncology, 28(3), 1581–1607.

    Article  Google Scholar 

  23. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.

    Book  MATH  Google Scholar 

  24. Imler, T. D., Morea, J., Kahi, C., Cardwell, J., Johnson, C. S., Xu, H., & Imperiale, T. F. (2015). Multi-center colonoscopy quality measurement utilizing natural language processing. Official Journal of the American College of Gastroenterology, ACG, 110(4), 543–552.

    Article  Google Scholar 

  25. Marzuki, M. F. M., Yaacob, N. A., bin Yaacob, N. M., Hassan, M. R. A., & Ahmad, S. B. (2019). Usable mobile app for community education on colorectal cancer development process and usability study. JMIR Human Factors, 6(2), e12103.

    Article  Google Scholar 

  26. Wang, Y., He, X., Nie, H., Zhou, J., Cao, P., & Ou, C. (2020). Application of artificial intelligence to the diagnosis and therapy of colorectal cancer. American Journal of Cancer Research, 10(11), 3575.

    Google Scholar 

  27. Cruz, J. A., & Wishart, D. S. (2006). Applications of machine learning in cancer prediction and prognosis. Cancer Informatics, 2, 117693510600200030.

    Article  Google Scholar 

  28. Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17.

    Article  Google Scholar 

  29. Mori, Y., Kudo, S. E., Misawa, M., & Mori, K. (2019). Simultaneous detection and characterization of diminutive polyps with the use of artificial intelligence during colonoscopy. VideoGIE, 4(1), 7.

    Article  Google Scholar 

  30. Ruffle, J. K., Farmer, A. D., & Aziz, Q. (2019). Artificial intelligence-assisted gastroenterology—Promises and pitfalls. Official Journal of the American College of Gastroenterology, ACG, 114(3), 422–428.

    Article  Google Scholar 

  31. Kudo, S. E., Mori, Y., Misawa, M., Takeda, K., Kudo, T., Itoh, H., & Mori, K. (2019). Artificial intelligence and colonoscopy: Current status and future perspectives. Digestive Endoscopy, 31(4), 363–371.

    Article  Google Scholar 

  32. Mori, Y., Kudo, S. E., Berzin, T. M., Misawa, M., & Takeda, K. (2017). Computer-aided diagnosis for colonoscopy. Endoscopy, 49(08), 813–819.

    Article  Google Scholar 

  33. Nazarian, S., Glover, B., Ashrafian, H., Darzi, A., & Teare, J. (2021). Diagnostic accuracy of artificial intelligence and computer-aided diagnosis for the detection and characterization of colorectal polyps systematic review and meta-analysis. Journal of Medical Internet Research, 23(7), e27370.

    Article  Google Scholar 

  34. Dash, S., Shakyawar, S.K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: Management, analysis and future prospects. Journal of Big Data, 6(1).

    Google Scholar 

  35. Bottaci, L., Drew, P. J., Hartley, J. E., Hadfield, M. B., Farouk, R., et al. (1997). Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet, 350, 469–472.

    Article  Google Scholar 

  36. Grumett, S., Snow, P., & Kerr, D. (2003). Neural networks in the prediction of survival in patients with colorectal cancer. Clinical Colorectal Cancer, 2, 239–244.

    Article  Google Scholar 

  37. Nasarian, E., Abdar, M., Fahami, M. A., Alizadehsani, R., Hussain, S., Basiri, M. E., Zomorodi-Moghadam, M., Zhou, X., Pławiak, P., Acharya, U. R., & Tan, R. S. (2020). Association between work-related features and coronary artery disease: A heterogeneous hybrid feature selection integrated with balancing approach. Pattern Recognition Letters, 133, 33–40.

    Article  Google Scholar 

  38. van IJzendoorn, D. G., Szuhai, K., Briaire-de Bruijn, I. H., Kostine, M., Kuijjer, M. L., & Bovée, J. V. (2019). Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Computational Biology, 15(2), e1006826.

    Google Scholar 

  39. Bärlund, M., Monni, O., Kononen, J., Cornelison, R., Torhorst, J., Sauter, G., Kallioniemi, O. P., & Kallioniemi, A. (2000). Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Research, 60(19), 5340–5344.

    Google Scholar 

  40. Koleck, T. A., & Conley, Y. P. (2016). Identification and prioritization of candidate genes for symptom variability in breast cancer survivors based on disease characteristics at the cellular level. Breast Cancer: Targets and Therapy, 8, 29.

    Google Scholar 

  41. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12).

    Google Scholar 

  42. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140.

    Article  Google Scholar 

  43. Ritchie, M. E., Phipson, B., Wu, D. I., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), 47–47.

    Article  Google Scholar 

  44. Gautier, L., Cope, L., Bolstad, B. M., & Irizarry, R. A. (2004). Affy—Analysis of affymetrix genechip data at the probe level. Bioinformatics, 20(3), 307–315.

    Article  Google Scholar 

  45. Dunning, M. J., Smith, M. L., Ritchie, M. E., & Tavaré, S. (2007). Beadarray: R classes and methods for Illumina bead-based data. Bioinformatics, 23(16), 2183–2184.

    Article  Google Scholar 

  46. Smith, M. L., Baggerly, K. A., Bengtsson, H., Ritchie, M. E., & Hansen, K. D. (2013). Illuminaio: An open source IDAT parsing tool for illumina microarrays. F1000Research, 2.

    Google Scholar 

  47. Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., Girke, T., Gottardo, R., & Morgan, M. (2015). Orchestrating high-throughput genomic analysis with bioconductor. Nature Methods, 12(2), 115–121.

    Article  Google Scholar 

  48. Langfelder, P., Zhang, B., & Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: The dynamic tree cut package for R. Bioinformatics, 24(5), 719–720.

    Article  Google Scholar 

  49. Wani, N., Barh, D., & Raza, K. (2021). Modular network inference between miRNA-mRNA expression profiles using weighted co-expression network analysis. Journal of Integrative Bioinformatics, 18(4), 20210029. https://doi.org/10.1515/jib-2021-0029

  50. Battaglin, F., Puccini, A., Naseem, M., Schirripa, M., Berger, M. D., Tokunaga, R., & Lenz, H. J. (2018). Pharmacogenomics in colorectal cancer: Current role in clinical practice and future perspectives. Journal of Cancer Metastasis and Treatment, 4.

    Google Scholar 

  51. Gao, F., Wang, W., Tan, M., Zhu, L., Zhang, Y., Fessler, E., & Wang, X. (2019). DeepCC: A novel deep learning-based framework for cancer molecular subtype classification. Oncogenesis, 8(9), 1–12.

    Article  Google Scholar 

  52. Chen, Y., Li, Y., Narayan, R., Subramanian, A., & Xie, X. (2016). Gene expression inference with deep learning. Bioinformatics, 32(12), 1832–1839.

    Article  Google Scholar 

  53. Singh, R., Lanchantin, J., Robins, G., & Qi, Y. (2016). DeepChrome: Deep-learning for predicting gene expression from histone modifications. Bioinformatics, 32(17), 639–648.

    Article  Google Scholar 

  54. Nagpal, K., Foote, D., Liu, Y., Chen, P. H. C., Wulczyn, E., Tan, F., & Stumpe, M. C. (2019). Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer. NPJ Digital Medicine, 2(1), 1–10.

    Google Scholar 

  55. Kather, J. N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C. A., & Halama, N. (2019). Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Medicine, 16(1), e1002730.

    Article  Google Scholar 

  56. Skrede, O. J., De Raedt, S., Kleppe, A., Hveem, T. S., Liestøl, K., Maddison, J., & Danielsen, H. E. (2020). Deep learning for prediction of colorectal cancer outcome: A discovery and validation study. The Lancet, 395(10221), 350–360.

    Article  Google Scholar 

  57. Zhang, H., Du, Y., Wang, Z., Lou, R., Wu, J., & Feng, J. (2019). Integrated analysis of oncogenic networks in colorectal Cancer identifies GUCA2A as a molecular marker. Biochemistry Research International, 2019.

    Google Scholar 

  58. Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., & Tsirigos, A. (2018). Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567.

    Article  Google Scholar 

  59. Bottaci, L., Drew, P. J., Hartley, J. E., Hadfield, M. B., Farouk, R., Lee, P. W., & Monson, J. R. (1997). Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. The Lancet, 350(9076), 469–472.

    Article  Google Scholar 

  60. Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., & Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, 96(12), 6745–6750.

    Article  Google Scholar 

  61. Snow, P. B., Kerr, D. J., Brandt, J. M., & Rodvold, D. M. (2001). Neural network and regression predictions of 5-year survival after colon carcinoma treatment. Cancer: Interdisciplinary International Journal of the American Cancer Society, 91(S8), 1673–1678.

    Article  Google Scholar 

  62. Meeh, P. F., Farrell, C. L., Croshaw, R., Crimm, H., Miller, S. K., Oroian, D., & Buckhaults, P. J. (2009). A gene expression classifier of node-positive colorectal cancer. Neoplasia, 11(10), 1074-IN12.

    Google Scholar 

  63. Uddin, S., Ahmed, M., Hussain, A., Abubaker, J., Al-Sanea, N., AbdulJabbar, A., & Al-Kuraya, K. S. (2011). Genome-wide expression analysis of middle eastern colorectal cancer reveals FOXM1 as a novel target for cancer therapy. The American Journal of Pathology, 178(2), 537–547.

    Article  Google Scholar 

  64. Nagaraj, S. H., & Reverter, A. (2011). A Boolean-based systems biology approach to predict novel genes associated with cancer: Application to colorectal cancer. BMC Systems Biology, 5(1), 1–15.

    Article  Google Scholar 

  65. Li, B. Q., Huang, T., Liu, L., Cai, Y. D., & Chou, K. C. (2012). Identification of colorectal cancer related genes with mrmr and shortest path in protein-protein interaction network. PLoS ONE, 7(4), e33393.

    Article  Google Scholar 

  66. Gao, P., Zhou, X., Wang, Z. N., Song, Y. X., Tong, L. L., Xu, Y. Y., Yue, Z. Y., & Xu, H. M. (2012). Which is a more accurate predictor in colorectal survival analysis? Nine data mining algorithms versus the TNM staging system. PLoS ONE, 7(7), e42015.

    Article  Google Scholar 

  67. Maniruzzaman, M., Rahman, M. J., Ahammed, B., Abedin, M. M., Suri, H. S., Biswas, M., & Suri, J. S. (2019). Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Computer Methods and Programs in Biomedicine, 176, 173–193.

    Article  Google Scholar 

  68. Zhao, D., Liu, H., Zheng, Y., He, Y., Lu, D., & Lyu, C. (2019). A reliable method for colorectal cancer prediction based on feature selection and support vector machine. Medical and Biological Engineering and Computing, 57(4), 901–912.

    Article  Google Scholar 

  69. Ai, D., Wang, Y., Li, X., & Pan, H. (2020). Colorectal cancer prediction based on weighted gene co-expression network analysis and variational auto-encoder. Biomolecules, 10(9), 1207.

    Article  Google Scholar 

  70. Hildebrand, L. A., Pierce, C. J., Dennis, M., Paracha, M., & Maoz, A. (2021). Artificial intelligence for histology-based detection of microsatellite instability and prediction of response to immunotherapy in colorectal cancer. Cancers, 13(3), 391.

    Article  Google Scholar 

  71. Hu, H. P., Niu, Z. J., Bai, Y. P., & Tan, X. H. (2015). Cancer classification based on gene expression using neural networks. Genetics and Molecular Research, 14(4), 17605–17611.

    Article  Google Scholar 

  72. Xu, G., Zhang, M., Zhu, H., & Xu, J. (2017). A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM. Gene, 604, 33–40.

    Article  Google Scholar 

  73. Zhang, X., Yang, Y., Wang, Y., & Fan, Q. (2019). Detection of the BRAF V600E mutation in colorectal cancer by NIR spectroscopy in conjunction with counter propagation artificial neural network. Molecules, 24(12), 2238.

    Article  Google Scholar 

  74. Coppedè, F., Grossi, E., Lopomo, A., Spisni, R., Buscema, M., & Migliore, L. (2015). Application of artificial neural networks to link genetic and environmental factors to DNA methylation in colorectal cancer. Epigenomics, 7(2), 175–186.

    Article  Google Scholar 

  75. Wang, Q., Wei, J., Chen, Z., Zhang, T., Zhong, J., Zhong, B., & Cao, J. (2019). Establishment of multiple diagnosis models for colorectal cancer with artificial neural networks. Oncology Letters, 17(3), 3314–3322.

    Google Scholar 

  76. Wan, N., Weinberg, D., Liu, T. Y., Niehaus, K., Ariazi, E. A., Delubac, D., Kannan, A., White, B., Bailey, M., Bertin, M., Boley, N., & Haque, I. S. (2019). Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA. BMC Cancer, 19(1), 1–10.

    Article  Google Scholar 

  77. Galamb, O., Barták, B. K., Kalmár, A., Nagy, Z. B., Szigeti, K. A., Tulassay, Z., & Molnár, B. (2019). Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World Journal of Gastroenterology, 25(34), 5026.

    Article  Google Scholar 

  78. Chang, K. H., Miller, N., Kheirelseid, E. A., Lemetre, C., Ball, G. R., Smith, M. J., & Kerin, M. J. (2011). MicroRNA signature analysis in colorectal cancer: Identification of expression profiles in stage II tumors associated with aggressive disease. International Journal of Colorectal Disease, 26(11), 1415–1422.

    Article  Google Scholar 

  79. Amirkhah, R., Farazmand, A., Gupta, S. K., Ahmadi, H., Wolkenhauer, O., & Schmitz, U. (2015). Naive Bayes classifier predicts functional microRNA target interactions in colorectal cancer. Molecular Biosystems, 11(8), 2126–2134.

    Article  Google Scholar 

  80. Zhi, J., Sun, J., Wang, Z., & Ding, W. (2018). Support vector machine classifier for prediction of the metastasis of colorectal cancer. International Journal of Molecular Medicine, 41(3), 1419–1426.

    Google Scholar 

  81. Nartowt, B. J., Hart, G. R., Muhammad, W., Liang, Y., Stark, G. F., & Deng, J. (2020). Robust machine learning for colorectal cancer risk prediction and stratification. Frontiers in Big Data, 3, 6.

    Article  Google Scholar 

  82. Dimitriou, N., Arandjelović, O., Harrison, D. J., & Caie, P. D. (2018). A principled machine learning framework improves accuracy of stage II colorectal cancer prognosis. NPJ Digital Medicine, 1(1), 1–9.

    Article  Google Scholar 

  83. Maniruzzaman, M., Rahman, M. J., Ahammed, B., Abedin, M. M., Suri, H. S., Biswas, M., El-Baz, A., Bangeas, P., Tsoulfas, G., & Suri, J. S. (2019). Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Computer Methods and Programs in Biomedicine, 176, 173–193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, A., Rai, S., Singh, M.P., Srivastava, S. (2022). Computational Intelligence-Based Gene Expression Analysis in Colorectal Cancer: A Review. In: Raza, K. (eds) Computational Intelligence in Oncology. Studies in Computational Intelligence, vol 1016. Springer, Singapore. https://doi.org/10.1007/978-981-16-9221-5_22

Download citation

Publish with us

Policies and ethics