Skip to main content

A Survey of Machine Learning and Deep Learning Applications in Genome Editing

  • Conference paper
  • First Online:
Advances on Smart and Soft Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1399))

Abstract

A genome is a complete DNA segment that contains the genetic information of how the organism cell lives and performs its functions, such as producing proteins. The field of biology that studies the complete information about the genome is known as genomics. It introduces concepts and techniques about the sequence, functions, evolution, and mapping of the genome. Many genomics applications in broad areas improve creatures’ lives via precise diagnosis and effective treatment. Analyzing the vast amount of genetic information generated from medical technologies and devices is a complicated process. Therefore, implementing deep learning and machine learning with other methods such as feature selection and clustering reduces cost and time spent and enhances prediction accuracy. Scientists can discover hidden patterns in genetic information by utilizing machine learning models, finding mutations in gene expression, and selecting precise locations in gene editing. This study reviewed recent studies that applied machine learning approaches in genomics and focused explicitly on gene editing. One of the hot topics for gene editing research is off-target mutation prediction using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (CRISPRCas9). Prediction techniques in gene editing have been developed to determine values based on mismatches in the CRISPR-Cas9 guide series. This paper summarizes recent studies that have employed machine learning and deep learning methods in different genomics applications and presents a comparative analysis of the discussed studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miko, I., LeJeune, L.: Essentials of Genetics. Cambridge NPG Educ. (2009)

    Google Scholar 

  2. Khurana, S.P.: Biotechnology: Principles and Process. Studium (2015)

    Google Scholar 

  3. Almutiri, T., Saeed, F.: Review on feature selection methods for gene expression data classification. In: International Conference of Reliable Information and Communication Technology, pp. 24–34. Springer, Berlin (2019)

    Google Scholar 

  4. Matilainen, M.: Identification and characterization of target genes of the nuclear receptors VDR and PPARs (2007)

    Google Scholar 

  5. Glick, B.R., Patten, C.L.: Molecular Biotechnology: Principles and Applications of Recombinant DNA. Wiley, Hoboken (2017)

    Google Scholar 

  6. Baxevanis, A.D., Ouellette, F.: Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Willey, NY, USA (2001)

    Google Scholar 

  7. Boffetta, P., Hainaut, P.: Encyclopedia of Cancer. Academic Press, Cambridge (2018)

    Google Scholar 

  8. Rittschof, C.C., Robinson, G.E.: Behavioral genetic toolkits: toward the evolutionary origins of complex phenotypes. In: Current Topics in Developmental Biology, pp. 157–204. Elsevier, Amsterdam (2016)

    Google Scholar 

  9. Marlow, F.L.: Maternal Effect Genes in Development. Academic Press, Cambridge (2020)

    Google Scholar 

  10. Williams, K.L.: Gene mapping. In: Encyclopedia of Bioinformatics and Computational Biology, pp. 242–250. Academic Press, Cambridge (2019)

    Google Scholar 

  11. Pasquier, J., Cabau, C., Nguyen, T., Jouanno, E., Severac, D., Braasch, I., Journot, L., Pontarotti, P., Klopp, C., Postlethwait, J.H.: Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics 17, 1–10 (2016)

    Article  Google Scholar 

  12. Hsu, P.D., Lander, E.S., Zhang, F.: Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014)

    Article  Google Scholar 

  13. Huang, Y.-W., Lee, H.-J.: Cell-penetrating peptides for medical theranostics and targeted drug delivery. In: Peptide Applications in Biomedicine, Biotechnology and Bioengineering, pp. 359–370. Elsevier, Amsterdam (2018)

    Google Scholar 

  14. Charlier, J., Nadon, R., Makarenkov, V.: Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing. Bioinformatics (2021). https://doi.org/10.1093/bioinformatics/btab112

    Article  Google Scholar 

  15. Muhammad Rafid, A.H., Toufikuzzaman, M., Rahman, M.S., Rahman, M.S.: CRISPRpred (SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning. BMC Bioinform. 21, 1–13 (2020)

    Article  Google Scholar 

  16. Molla, K.A., Yang, Y.: Predicting CRISPR/Cas9-induced mutations for precise genome editing. Trends Biotechnol. 38, 136–141 (2020)

    Article  Google Scholar 

  17. Shen, M.W., Arbab, M., Hsu, J.Y., Worstell, D., Culbertson, S.J., Krabbe, O., Cassa, C.A., Liu, D.R., Gifford, D.K., Sherwood, R.I.: Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018)

    Article  Google Scholar 

  18. Allen, F., Crepaldi, L., Alsinet, C., Strong, A.J., Kleshchevnikov, V., De Angeli, P., Páleníková, P., Khodak, A., Kiselev, V., Kosicki, M.: Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat. Biotechnol. 37, 64–72 (2019)

    Article  Google Scholar 

  19. Leenay, R.T., Aghazadeh, A., Hiatt, J., Tse, D., Roth, T.L., Apathy, R., Shifrut, E., Hultquist, J.F., Krogan, N., Wu, Z.: Large dataset enables prediction of repair after CRISPR–Cas9 editing in primary T cells. Nat. Biotechnol. 37, 1034–1037 (2019)

    Article  Google Scholar 

  20. Eitzinger, S., Asif, A., Watters, K.E., Iavarone, A.T., Knott, G.J., Doudna, J.A., Minhas, F.A.A.: Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Res. 48, 4698–4708 (2020)

    Google Scholar 

  21. Wang, J., Xiang, X., Bolund, L., Zhang, X., Cheng, L., Luo, Y.: GNL-Scorer: a generalized model for predicting CRISPR on-target activity by machine learning and featurization. J. Mol. Cell Biol. (2020)

    Google Scholar 

  22. Cordero-Maldonado, M.L., Perathoner, S., Van der Kolk, K.J., Boland, R., Heins-Marroquin, U., Spaink, H.P., Meijer, A.H., Crawford, A.D., De Sonneville, J.: Deep learning image recognition enables efficient genome editing in zebrafish by automated injections. PLoS ONE 14, 1–18 (2019). https://doi.org/10.1371/journal.pone.0202377

    Article  Google Scholar 

  23. Chuai, G., Ma, H., Yan, J., Chen, M., Hong, N., Xue, D., Zhou, C., Zhu, C., Chen, K., Duan, B.: DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80 (2018)

    Article  Google Scholar 

  24. Lin, J., Wong, K.-C.: Off-target predictions in CRISPR-Cas9 gene editing using deep learning. Bioinformatics 34, i656–i663 (2018)

    Article  Google Scholar 

  25. Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R.: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016)

    Article  Google Scholar 

  26. Singh, R., Kuscu, C., Quinlan, A., Qi, Y., Adli, M.: Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res. 43, e118–e118 (2015)

    Article  Google Scholar 

  27. Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O.: DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013)

    Article  Google Scholar 

  28. Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J., Mateo, J.L.: CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10, e0124633 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almutiri, T., Saeed, F., Alassaf, M. (2022). A Survey of Machine Learning and Deep Learning Applications in Genome Editing. In: Saeed, F., Al-Hadhrami, T., Mohammed, E., Al-Sarem, M. (eds) Advances on Smart and Soft Computing. Advances in Intelligent Systems and Computing, vol 1399. Springer, Singapore. https://doi.org/10.1007/978-981-16-5559-3_13

Download citation

Publish with us

Policies and ethics