Skip to main content

Variants of Fuzzy C-Means on MRI Modality for Cancer Image Archives

  • Conference paper
  • First Online:
Recent Advances in Artificial Intelligence and Data Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1386))

  • 319 Accesses

Abstract

The segmentation, identification and mining of contaminated tumor region from MRI images is a primary concern in medical image analysis. However, it is a monotonous and time-consuming process done by radiologists or clinical experts, and its precision is subjected to their expertise. To overcome these constraints, the use of supporting technology turns out to be very important. In this study, performance improvement and reduction of the complexity involved in the segmentation of medical images is been focused. We have investigated cancer cells using various fuzzy c-means methods and its different variants for Breast, Brain, Liver and Prostate dataset. The empirical outcomes of the various methods have been tested and corroborated on MRI for efficiency and quality analysis based on four well-known cluster validity indices. The results are very encouraging and robust in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.C. Bezdek, Pattern Recognition with fuzzy Objective Function Algorithms (Springer, 2013)

    Google Scholar 

  2. A. Das, S.K. Sabut, Kernelized fuzzy C-means clustering with adaptive thresholding for segmenting liver tumors. Procedia Comput. Sci. 92, 389–395 (2016)

    Article  Google Scholar 

  3. I. El-Naqa, Y. Yang, M.N. Wernick, N.P. Galatsanos, R.M. Nishikawa, A support vector machine approach for detection of microcalcifications. IEEE Trans. Med. Imaging 21(12), 1552–1563 (2002)

    Article  Google Scholar 

  4. S. Ellmann, E. Wenkel, M. Dietzel, C. Bielowski, S. Vesal, A. Maier, M. Hammon, R. Janka, P.A. Fasching, M.W. Beckmann et al., Implementation of machine learning into clinical breast mri: Potential for objective and accurate decision-making in suspicious breast masses. Plos one 15(1), e0228446 (2020)

    Google Scholar 

  5. M.D. Greer, N. Lay, J.H. Shih, T. Barrett, L.K. Bittencourt, S. Borofsky, I. Kabakus, Y.M. Law, J. Marko, H. Shebel et al., Computer-aided diagnosis prior to conventional interpretation of prostate mpmri: an international multi-reader study. Eur. Radiol. 28(10), 4407–4417 (2018)

    Article  Google Scholar 

  6. A.E. Hassanien, Th. Kim, Breast cancer mri diagnosis approach using support vector machine and pulse coupled neural networks. J. Appl. Log. 10(4), 277–284 (2012)

    Article  MathSciNet  Google Scholar 

  7. P. Hebli P, S. Gupta, Brain tumor detection using image processing: a survey 1 amruta (2017)

    Google Scholar 

  8. G. Hu, Z. Du, Adaptive kernel-based fuzzy C-means clustering with spatial constraints for image segmentation. Int. J. Pattern Recogn. Artif. Intell. 33(01), 1954003 (2019)

    Article  Google Scholar 

  9. M.S.S. Hunnur, A. Raut, S. Kulkarni, Implementation of image processing for detection of brain tumors, in 2017 International Conference on Computing Methodologies and Communication (ICCMC) (IEEE, 2017), pp. 717–722

    Google Scholar 

  10. S.A. Kumar, B.S. Harish, Segmenting MRI brain images using novel robust spatial kernel fcm (rskfcm), in Eighth International Conference on Image and Signal Processing (2014), pp. 38–44

    Google Scholar 

  11. S.V.A. Kumar, B.S. Harish, V.N.M. Aradhya, A picture fuzzy clustering approach for brain tumor segmentation, in 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP) (2016), pp. 1–6

    Google Scholar 

  12. H.M. Moftah, A.T. Azar, E.T. Al-Shammari, N.I. Ghali, A.E. Hassanien, M. Shoman, Adaptive K-Means clustering algorithm for mr breast image segmenta- tion. Neural Comput. Appl. 24(7–8), 1917–1928 (2014)

    Article  Google Scholar 

  13. A.A. Nahid, Y. Kong, Involvement of machine learning for breast cancer image classification: a survey. Comput. Math. Methods Med. (2017)

    Google Scholar 

  14. Y. Peng, Y. Jiang, C. Yang, J.B. Brown, T. Antic, I. Sethi, C. Schmid-Tannwald, M.L. Giger, S.E. Eggener, A. Oto, Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with gleason scorea computer-aided diagnosis development study. Radiology 267(3), 787–796 (2013)

    Article  Google Scholar 

  15. S. Radhakrishna, S. Agarwal, P.M. Parikh, K. Kaur, S. Panwar, S. Sharma, A. Dey, K. Saxena, M. Chandra, S. Sud, Role of magnetic resonance imaging in breast cancer management. South Asian J. Cancer 7(2), 69 (2018)

    Article  Google Scholar 

  16. B.V. Ramana, M.S.P. Babu, N. Venkateswarlu et al., A critical study of selected classification algorithms for liver disease diagnosis. Int. J. Database Manage. Syst. 3(2), 101–114 (2011)

    Article  Google Scholar 

  17. M. Ramasamy, S. Selvaraj, M. Mayilvaganan, An empirical analysis of decision tree algorithms: Modeling hepatitis data, in 2015 IEEE International Conference on Engineering and Technology (ICETECH) (IEEE, 2015), pp. 1–4

    Google Scholar 

  18. Repositories OAMI: http://www.aylward.org/notes/open-access-medical-image-repositories. Accessed 12 Jan 2020 (2020)

  19. C.K. Roopa, B.S. Harish, S.A. Kumar, A novel method of clustering ECG arrhythmia data using robust spatial kernel fuzzy C-means. Procedia Comput. Sci. 143, 133–140 (2018)

    Article  Google Scholar 

  20. V. Shah, B. Turkbey, H. Mani, Y. Pang, T. Pohida, M.J. Merino, P.A. Pinto, P.L. Choyke, M. Bernardo, Decision support system for localizing prostate can- cer based on multiparametric magnetic resonance imaging. Med. Phys. 39(7Part1), 4093–4103 (2012)

    Google Scholar 

  21. H. Shahid, J.F. Wiedenhoefer, C. Dornbluth, P. Otto, K.A. Kist, An overview of breast MRI. Appl. Radiol. 45(19), 7–13 (2016)

    Google Scholar 

  22. S. Vijayarani, S. Dhayanand, Liver disease prediction using SVM and Nave Bayes algorithms. Int. J. Sci. Eng. Technol. Res. (IJSETR) 4(4), 816–820 (2015)

    Google Scholar 

  23. H. Wang, Y. Liu, W. Huang, Random forest and bayesian prediction for hepatitis b virus reactivation, in 2017 13th International Conference on Nat- ural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (IEEE, 2017), pp. 2060–2064

    Google Scholar 

  24. J. Wang, C.J. Wu, M.L. Bao, J. Zhang, X.N. Wang, Y.D. Zhang, Machine learning-based analysis of mr radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur. Radiol 27(10), 4082–4090 (2017)

    Article  Google Scholar 

  25. T. Xia, A. Kumar, D. Feng, J. Kim, Patch-level tumor classification in digital histopathology images with domain adapted deep learning, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2018), pp. 644–647

    Google Scholar 

  26. S. Yoo, I. Gujrathi, M.A. Haider, F. Khalvati, Prostate cancer detection using deep convolutional neural networks. Sci. Rep. 9 (2019)

    Google Scholar 

  27. Y. Yuan, W. Qin, M. Buyyounouski, B. Ibragimov, S. Hancock, B. Han, L. Xing, Prostate cancer classification with multiparametric MRI transfer learning model. Med. Phys. 46(2), 756–765 (2019)

    Article  Google Scholar 

  28. A. Zotin, K. Simonov, M. Kurako, Y. Hamad, S. Kirillova, Edge detection in mri brain tumor images based on fuzzy C-means clustering. Procedia Comput. Sci. 126, 1261–1270 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Harish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roopa, C.K., Harish, B.S., Kasturi Rangan, R. (2022). Variants of Fuzzy C-Means on MRI Modality for Cancer Image Archives. In: Shetty D., P., Shetty, S. (eds) Recent Advances in Artificial Intelligence and Data Engineering. Advances in Intelligent Systems and Computing, vol 1386. Springer, Singapore. https://doi.org/10.1007/978-981-16-3342-3_13

Download citation

Publish with us

Policies and ethics