Skip to main content

Bilinearization and Analytic Solutions of \((2+1)\)-Dimensional Generalized Hirota-Satsuma-Ito Equation

  • Conference paper
  • First Online:
Proceedings of International Conference on Trends in Computational and Cognitive Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1169))

  • 198 Accesses

Abstract

On the basis of derived bilinear form of \((2+1)\)-dimensional generalized Hirota-Satsuma-Ito equation with general coefficients, we emphasize on obtaining new analytic solutions of the considered equation. A novel test function has been appointed to formally derive various exact solutions containing abundant arbitrary constants. New solutions consist of hyperbolic, trigonometric, and exponential functions. Three-dimensional plots of all exact solutions determined in this research have also been provided in uniform manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablowitz MJ, Clarkson PA (1991) Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511623998

  2. Kochanov MB, Kudryashov NA, Sinel’shchikov DI (2013) Non-linear waves on shallow water under an ice cover. Higher order expansions. J. Appl. Math. Mech. 77, 25–32 (2013). https://doi.org/10.1016/j.jappmathmech.2013.04.004

  3. El-Tantawy SA, Moslem WM (2014) Nonlinear structures of the Korteweg-de Vries and modified Korteweg-de Vries equations in non-Maxwellian electron-positron-ion plasma: solitons collision and rouge waves. Phys Plasmas 21:052112. https://doi.org/10.1063/1.4879815

    Article  Google Scholar 

  4. Vakhnenko VO, Parkes EJ, Morrison AJ (2003) A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos Soliton Fract 17:683–692. https://doi.org/10.1016/S0960-0779(02)00483-6

    Article  MATH  Google Scholar 

  5. Vladimirov VA, Kutafina EV (2004) Exact travelling wave solutionsof some nonlinear evolutionary equations. Rep Math Phys 54:261–271. https://doi.org/10.1016/S0034-4877(04)80018-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhao X, Wang L, Sun W (2006) The repeated homogeneous balance method and its applications to nonlinear partial differential equations. Chaos Soliton Fract 28:448–453. https://doi.org/10.1016/j.chaos.2005.06.001

    Article  MathSciNet  MATH  Google Scholar 

  7. Abdou MA (2007) The extended tanh method and its applications for solving nonlinear physical models. Appl Math Comput 190:988–996. https://doi.org/10.1016/j.amc.2007.01.070

    Article  MathSciNet  MATH  Google Scholar 

  8. Song LN, Wang Q, Zheng Y, Zhang HQ (2007) A new extended Riccati equation rational expansion method and its application. Chaos Soliton Fract 31:548–556. https://doi.org/10.1016/j.chaos.2005.10.008

    Article  MathSciNet  MATH  Google Scholar 

  9. Bekir A, Boz A (2008) Exact solutions for nonlinear evolution equations using Exp-function method. Phys Lett A 372:1619–1625. https://doi.org/10.1016/j.physleta.2007.10.018

    Article  MathSciNet  MATH  Google Scholar 

  10. Hong B, Lu D (2012) New Jacobi elliptic function-like solutions for the general KdV equation with variable coefficients. Math Comput Model 55:1594–1600. https://doi.org/10.1016/j.mcm.2011.10.057

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaur L, Gupta RK (2013) On symmetries and exact solutions of the Einstein-Maxwell field equations via the symmetry approach. Phys Scr 87:035003. https://doi.org/10.1088/0031-8949/87/03/035003

    Article  MATH  Google Scholar 

  12. Wazwaz AM, Xu G (2016) An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn 86:1455–1460. https://doi.org/10.1007/s11071-016-2971-2

    Article  MATH  Google Scholar 

  13. Lü X, Geng T, Zhang C, Zhu HW, Meng XH, Tian B (2009) Multi-soliton solutions and their interactions for the \((2+1)\)-dimensional Sawada-Kotera model with truncated Painlevé expansion, Hirota bilinear method and symbolic computation. Int J Mod Phys B 23:5003–5015. https://doi.org/10.1142/S0217979209053382

    Article  MATH  Google Scholar 

  14. Hietarinta J (2004) Introduction to the Hirota bilinear method. Integrability of Nonlinear Systems, vol 638. Springer, Berlin, Heidelberg, pp 95–103. https://doi.org/10.1007/978-3-540-40962-5_4

  15. Wu J (2008) N-soliton solution, generalized double Wronskian determinant solution and rational solution for a \((2+1)\)-dimensional nonlinear evolution equation. Phys Lett A 373:83–88. https://doi.org/10.1016/j.physleta.2008.10.071

    Article  MathSciNet  MATH  Google Scholar 

  16. Wazwaz AM (2016) New \((3+1)\)-dimensional nonlinear equations with KdV equation constituting its main part: multiple soliton solutions. Math Method Appl Sci 39:886–891. https://doi.org/10.1002/mma.3528

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang JB, Ma WX (2017) Mixed lump-kink solutions to the BKP equation. Comput Math Appl 74:591–596. https://doi.org/10.1016/j.camwa.2017.05.010

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaur L, Wazwaz AM (2018) Dynamical analysis of lump solutions for \((3+1)\) dimensional generalized KP-Boussinesq equation and its dimensionally reduced equations. Phys Scr 93:075203. https://doi.org/10.1088/1402-4896/aac8b8

    Article  Google Scholar 

  19. Lin FH, Chen ST, Qu QX, Wang JP, Zhou XW, Lü X (2018) Resonant multiple wave solutions to a new \((3+1)\)-dimensional generalized Kadomtsev-Petviashvili equation: linear superposition principle. Appl Math Lett 78:112–117. https://doi.org/10.1016/j.aml.2017.10.013

    Article  MathSciNet  MATH  Google Scholar 

  20. Mao JJ, Tian SF, Zou L, Zhang TT, Yan XJ (2019) Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a \((3+1)\)-dimensional B-type Kadomtsev-Petviashvili equation. Nonlinear Dyn 95:3005–3017. https://doi.org/10.1007/s11071-018-04736-2

    Article  MATH  Google Scholar 

  21. Zhang TT, Ma PL, Xu MJ, Zhang XY, Tian SF (2015) On Bell polynomials approach to the integrability of a \((3+1)\)-dimensional generalized Kadomtsev-Petviashvili equation. Mod Phys Lett B 29:1550051. https://doi.org/10.1142/S0217984915500517

    Article  MathSciNet  Google Scholar 

  22. Zhao XH, Tian B, Xie XY, Wu XY, Sun Y, Guo YJ (2018) Solitons, Bäcklund transformation and Lax pair for a \((2+1)\)-dimensional Davey-Stewartson system on surface waves of finite depth. Wave Random Complex 28:356–366. https://doi.org/10.1080/17455030.2017.1348645

    Article  Google Scholar 

  23. Ma WX, Li J, Khalique CM (2018) A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in \((2+1)\)-dimensions. Complexity 2018:9059858. https://doi.org/10.1155/2018/9059858

    Article  MATH  Google Scholar 

  24. Zhou Y, Manukure S, Ma WX (2019) Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation. Commun Nonlinear Sci 68:56–62. https://doi.org/10.1016/j.cnsns.2018.07.038

    Article  MathSciNet  Google Scholar 

  25. Verma P, Kaur L (2019) Integrability, bilinearization and analytic study of new form of \((3+1)\)-dimensional B-type Kadomstev-Petviashvili (BKP)- Boussinesq equation. Appl Math Comput 346:879–886. https://doi.org/10.1016/j.amc.2018.11.050

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhveer Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, P., Kaur, L. (2021). Bilinearization and Analytic Solutions of \((2+1)\)-Dimensional Generalized Hirota-Satsuma-Ito Equation. In: Singh, P., Gupta, R.K., Ray, K., Bandyopadhyay, A. (eds) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. Advances in Intelligent Systems and Computing, vol 1169. Springer, Singapore. https://doi.org/10.1007/978-981-15-5414-8_19

Download citation

Publish with us

Policies and ethics