Skip to main content

Quasi-Newton Optimization Methods for Deep Learning Applications

  • Chapter
  • First Online:
Deep Learning Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1098))

Abstract

Deep learning algorithms often require solving a highly nonlinear and non-convex unconstrained optimization problem. Methods for solving optimization problems in large-scale machine learning, such as deep learning and deep reinforcement learning (RL), are generally restricted to the class of first-order algorithms, like stochastic gradient descent (SGD). While SGD iterates are inexpensive to compute, they have slow theoretical convergence rates. Furthermore, they require exhaustive trial-and-error to fine-tune many learning parameters. Using second-order curvature information to find search directions can help with more robust convergence for non-convex optimization problems. However, computing Hessian matrices for large-scale problems is not computationally practical. Alternatively, quasi-Newton methods construct an approximate of the Hessian matrix to build a quadratic model of the objective function. Quasi-Newton methods, like SGD, require only first-order gradient information, but they can result in superlinear convergence, which makes them attractive alternatives to SGD. The limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) approach is one of the most popular quasi-Newton methods that constructs positive definite Hessian approximations. In this chapter, we propose efficient optimization methods based on L-BFGS quasi-Newton methods using line search and trust-region strategies. Our methods bridge the disparity between first- and second-order methods by using gradient information to calculate low-rank updates to Hessian approximations. We provide formal convergence analysis of these methods as well as empirical results on deep learning applications, such as image classification tasks and deep reinforcement learning on a set of Atari 2600 video games. Our results show a robust convergence with preferred generalization characteristics as well as fast training time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  2. M.A. Wani, F.A. Bhat, S. Afzal, A. Khan, Advances in Deep Learning (Springer, Berlin, 2020)

    Google Scholar 

  3. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. (Springer, Berlin, 2009)

    Book  Google Scholar 

  4. H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  Google Scholar 

  5. L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of COMPSTAT’2010 (Springer, 2010), pp. 177–186

    Google Scholar 

  6. J.C. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  7. B. Recht, C. Re, S. Wright, F. Niu, Hogwild: a lock-free approach to parallelizing stochastic gradient descent, in Advances in Neural Information Processing Systems (2011), pp. 693–701

    Google Scholar 

  8. L. Adhikari, O. DeGuchy, J.B. Erway, S. Lockhart, R.F. Marcia, Limited-memory trust-region methods for sparse relaxation, in Wavelets and Sparsity XVII, vol. 10394 (International Society for Optics and Photonics, 2017)

    Google Scholar 

  9. Q.V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, A.Y. Ng, On optimization methods for deep learning, in Proceedings of the 28th International Conference on International Conference on Machine Learning (2011), pp. 265–272

    Google Scholar 

  10. J.B. Erway, J. Griffin, R.F. Marcia, R. Omheni, Trust-region algorithms for training responses: machine learning methods using indefinite Hessian approximations. Optim. Methods Softw. 1–28 (2019)

    Google Scholar 

  11. P. Xu, F. Roosta-Khorasan, M.W. Mahoney, Second-order optimization for non-convex machine learning: an empirical study. ArXiv e-prints (2017)

    Google Scholar 

  12. J. Martens, Deep learning via Hessian-free optimization, in Proceedings of the 27th International Conference on Machine Learning (ICML) (2010), pp. 735–742

    Google Scholar 

  13. J. Martens, I. Sutskever, Learning recurrent neural networks with hessian-free optimization, in Proceedings of the 28th International Conference of on Machine Learning (ICML) (2011), pp. 1033–1040

    Google Scholar 

  14. J. Martens, I. Sutskever, Training deep and recurrent networks with hessian-free optimization, in Neural Networks: Tricks of the Trade (Springer, 2012), pp. 479–535

    Google Scholar 

  15. R. Bollapragada, R.H. Byrd, J. Nocedal, Exact and inexact subsampled newton methods for optimization. IMA J. Numer. Anal. 39(2), 545–578 (2018)

    Article  MathSciNet  Google Scholar 

  16. M.D. Zeiler, ADADELTA: an adaptive learning rate method (2012). arxiv:1212.5701

  17. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization (2014). arXiv:1412.6980

  18. J. Nocedal, S.J. Wright, Numerical Optimization, 2nd edn. (Springer, New York, 2006)

    MATH  Google Scholar 

  19. J. Brust, O. Burdakov, J.B. Erway, R.F. Marcia, A dense initialization for limited-memory quasi-newton methods. Comput. Optim. Appl. 74(1), 121–142 (2019)

    Article  MathSciNet  Google Scholar 

  20. J. Brust, J.B. Erway, R.F. Marcia, On solving L-SR1 trust-region subproblems. Comput. Optim. Appl. 66(2), 245–266 (2017)

    Article  MathSciNet  Google Scholar 

  21. C.G. Broyden, The convergence of a class of double-rank minimization algorithms 1. General considerations. SIAM J. Appl. Math. 6(1), 76–90 (1970)

    MATH  Google Scholar 

  22. R. Fletcher, A new approach to variable metric algorithms. Comput. J. 13(3), 317–322 (1970)

    Article  Google Scholar 

  23. D. Goldfarb, A family of variable-metric methods derived by variational means. Math. Comput. 24(109), 23–26 (1970)

    Article  MathSciNet  Google Scholar 

  24. D.F. Shanno, Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24(111), 647–656 (1970)

    Article  MathSciNet  Google Scholar 

  25. Q.V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, A.Y. Ng, On optimization methods for deep learning, in Proceedings of the 28th International Conference on International Conference on Machine Learning (Omnipress, 2011), pp. 265–272

    Google Scholar 

  26. J. Rafati, O. DeGuchy, R.F. Marcia, Trust-region minimization algorithm for training responses (TRMinATR): the rise of machine learning techniques, in 26th European Signal Processing Conference (EUSIPCO 2018) (Italy, Rome, 2018)

    Google Scholar 

  27. O. Burdakov, L. Gong, Y.X. Yuan, S. Zikrin, On efficiently combining limited memory and trust-region techniques. Math. Program. Comput. 9, 101–134 (2016)

    Article  MathSciNet  Google Scholar 

  28. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, 2nd edn. (MIT Press, Cambridge, 2018)

    MATH  Google Scholar 

  29. R.S. Sutton, Generalization in reinforcement learning: successful examples using sparse coarse coding. Adv. Neural Inf. Process. Syst. 8, 1038–1044 (1996)

    Google Scholar 

  30. J. Rafati, D.C. Noelle, Lateral inhibition overcomes limits of temporal difference learning, in Proceedings of the 37th Annual Cognitive Science Society Meeting (Pasadena, CA, USA, 2015)

    Google Scholar 

  31. J. Rafati, D.C. Noelle, Sparse coding of learned state representations in reinforcement learning, in Conference on Cognitive Computational Neuroscience (New York City, NY, USA, 2017)

    Google Scholar 

  32. J. Rafati Heravi, Learning representations in reinforcement learning. Ph.D. Thesis, University of California, Merced, 2019

    Google Scholar 

  33. J. Rafati, D.C. Noelle, Learning representations in model-free hierarchical reinforcement learning (2019). arXiv:1810.10096

  34. F.S. Melo, S.P. Meyn, M.I. Ribeiro, An analysis of reinforcement learning with function approximation, in Proceedings of the 25th International Conference on Machine Learning (2008)

    Google Scholar 

  35. G. Tesauro, Temporal difference learning and TD-Gammon. Commun. ACM 38(3)(1995)

    Google Scholar 

  36. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M.A. Riedmiller, Playing Atari with deep reinforcement learning (2013). arxiv:1312.5602

  37. V. Mnih, K. Kavukcuoglu, D. Silver, Others, Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  38. D. Silver, A. Huang, C.J. Maddison, D. Hassabis, Others, Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  39. P. Wolfe, Convergence conditions for ascent methods. SIAM Rev. 11(2), 226–235 (1969)

    Article  MathSciNet  Google Scholar 

  40. D.M. Gay, Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2(2), 186–197 (1981)

    Article  MathSciNet  Google Scholar 

  41. J.J. Moré, D.C. Sorensen, Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572 (1983)

    Article  MathSciNet  Google Scholar 

  42. A.R. Conn, N.I.M. Gould, P.L. Toint, Trust-Region Methods (Society for Industrial and Applied Mathematics, Philadelphia, 2000)

    Book  Google Scholar 

  43. D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  44. J. Rafati, R.F. Marcia, Improving L-BFGS initialization for trust-region methods in deep learning, in 17th IEEE International Conference on Machine Learning and Applications (Orlando, Florida, 2018)

    Google Scholar 

  45. R.H. Byrd, J. Nocedal, R.B. Schnabel, Representations of quasi-Newton matrices and their use in limited-memory methods. Math. Program. 63, 129–156 (1994)

    Article  MathSciNet  Google Scholar 

  46. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  47. Y. LeCun, Others, Lenet5, convolutional neural networks (2015), p. 20

    Google Scholar 

  48. Y. LeCun, The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  49. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, 1st edn. (MIT Press, Cambridge, 1998)

    MATH  Google Scholar 

  50. A.S. Berahas, J. Nocedal, M. Takac, A multi-batch L-BFGS method for machine learning, in Advances in Neural Information Processing Systems, vol. 29 (2016), pp. 1055–1063

    Google Scholar 

  51. R.H. Byrd, S.L. Hansen, J. Nocedal, Y. Singer, A stochastic quasi-newton method for large-scale optimization. SIAM J. Optim. 26(2), 1008–1031 (2016)

    Article  MathSciNet  Google Scholar 

  52. Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course (Springer Science & Business Media, Berlin, 2013)

    MATH  Google Scholar 

  53. T. Jaakkola, M.I. Jordan, S.P. Singh, On the convergence of stochastic iterative dynamic programming algorithms. Neural Comput. 6(6), 1185–1201 (1994)

    Article  Google Scholar 

  54. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba, OpenAI Gym (2016)

    Google Scholar 

  55. M.G. Bellemare, Y. Naddaf, J. Veness, H.M. Bowling, The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2013)

    Article  Google Scholar 

  56. M.G. Bellemare, J. Veness, M.H. Bowling, Investigating contingency awareness using Atari 2600 games, in Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  57. M. Hausknecht, J. Lehman, R. Miikkulainen, P. Stone, A neuroevolution approach to general atari game playing. IEEE Trans. Comput. Intell. AI Games 6(4), 355–366 (2014)

    Article  Google Scholar 

  58. J. Schulman, S. Levine, P. Moritz, M. Jordan, P. Abbeel, Trust region policy optimization, in Proceedings of the 32nd International Conference on International Conference on Machine Learning (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Rafati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rafati, J., Marica, R.F. (2020). Quasi-Newton Optimization Methods for Deep Learning Applications. In: Wani, M., Kantardzic, M., Sayed-Mouchaweh, M. (eds) Deep Learning Applications. Advances in Intelligent Systems and Computing, vol 1098. Springer, Singapore. https://doi.org/10.1007/978-981-15-1816-4_2

Download citation

Publish with us

Policies and ethics