Keywords

Mathematics Subject Classification (2000)

1 Introduction

The fractional calculus is a theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration. We shall explain the result connected to classical analysis, namely uniformly differential functions given by Patel [1], can be extended to fractional calculus, i.e they can be generalized by replacing the first order the first derivatives and integrals, respectively, by derivatives and integrals of non-integer. The uniformly differentiable function can be defined as:

Definition 1

Let I be an interval in R. A differentiable function \(f: I\rightarrow R\) is uniformly differentiable, if for any \(\epsilon >0\), there is a \(\delta >0\) such that for any \(x,y\in I\) satisfying \(|x-y|<\delta \),

$$\begin{aligned} \left| \frac{f(x)-f(y)}{x-y}-f'(x)\right| <\epsilon \end{aligned}$$
(1)

and

$$\begin{aligned} \left| \frac{f(x)-f(y)}{x-y}-f'(y)\right| <\epsilon \end{aligned}$$
(2)

The collection of all uniformly differentiable functions on I will be denoted by UD(I). The class of uniformly differentiable function has connection with class of uniformly continuous functions which are well-known class of functions in classical analysis. The uniform continuous defined by Apostol [2] as:

Definition 2

A function \(f:I\rightarrow R\) is uniformly continuous function on interval I, if for any \(\epsilon >0\), there is a \(\delta >0\) such that for any xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned} |{f(x)-f(y)}|<\epsilon \end{aligned}$$
(3)

Definition 3

The Caputo fractional derivative of order \(\alpha \) defined by Caputo [3] as

$$\begin{aligned} {}^C{D_{}^{\alpha }}(f(t))=\frac{1}{\varGamma (n-\alpha )}\int \limits _{0}^{t}\frac{f^{(n)}(\tau )}{(t-\tau )^{n-\alpha -1}}\;d\tau \; (n-1<\alpha <n) \end{aligned}$$
(4)

The following theorem is given by Diethelm [4].

Theorem 4

Let \(0<\alpha \le 1\), \(a<b\) and \(f\in C[a,b]\) be such that \({}^C{D_{}^{\alpha }}(f)\in C[a,b]\). Then there exist \(\xi \in (a,b)\) such that

$$\begin{aligned} \frac{f(b)-f(a)}{(b-a)^{\alpha }}=\frac{1}{\varGamma (\alpha )}{}^C{D_{}^{\alpha }}(f(\xi )) \end{aligned}$$
(5)

Also some properties of Local fractional calculus was studied by Yang [5] and Yang and Gao [6]. Kachhia and Prajapati [7] introduced concept of functions of bounded fractional differential variation using the Caputo-type fractional derivative.

Definition 5

A Caputo fractional differentiable function f is absolutely fractional differentiable function on interval I, if for any \(\epsilon >0\), there is a \(\delta >0\) such that for an collection of pairwise disjoint intervals \(\{(a_i,b_i)\}\) in I satisfying \(\sum \nolimits _{i=1}^n(b_i-a_i)<\delta \),

$$\begin{aligned} \sum \limits _{i=1}^n\left| \varGamma (\alpha )\left( \frac{f(b_i)-f(a_i)}{(b_i-a_i)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(a_i))\right| <\epsilon \end{aligned}$$
(6)

and

$$\begin{aligned} \sum \limits _{i=1}^n\left| \varGamma (\alpha )\left( \frac{f(b_i)-f(a_i)}{(b_i-a_i)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(b_i))\right| <\epsilon \end{aligned}$$
(7)

where \(0<\alpha \le 1\).

The Hölder continuous function defined by Gilberg and Trudinger [8] as:

Definition 6

A function \(f:{R}\rightarrow C\) is said to be Hölder continuous if for all \(x,y\in R\), there are non-negative real constants \(M,\alpha \) such that

$$\begin{aligned} |f(x)-f(y)|\le M|x-y|^\alpha \end{aligned}$$

2 Uniformly Fractional Differentiable Functions

In this section, authors introduced the new concept of uniformly factional differentiable functions as:

Definition 7

Let I be an interval in R. A Caputo fractional differentiable function f is uniformly fractional differentiable function on I, if for any \(\epsilon >0\), there is a \(\delta >0\) such that for any \(x,y\in I\) satisfying \(|x-y|<\delta \),

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(x))\right| <\epsilon \end{aligned}$$
(8)

and

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(y))\right| <\epsilon \end{aligned}$$
(9)

where \(0<\alpha \le 1\).

If we take \(\alpha =1\), then Eqs. (8) and (9) reduces to Eqs. (1) and (2) respectively. The collection of all uniformly fractional differentiable functions on I will be denoted by UFD(I).

Theorem 8

A function f is uniformly fractional differentiable function on an interval I if and only if \({}^C{D_{}^{\alpha }}(f)\) is uniformly continuous on I.

Proof

Let \(f:I\rightarrow R\) be uniformly fractional differentiable. Then for any \(\epsilon >0\), there is a \(\delta >0\) such that for any xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^{\alpha }}\right) -{}^C{D_{}^{\alpha }}(f(x))\right| <{\frac{\epsilon }{2}} \end{aligned}$$
(10)

and

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^{\alpha }}\right) -{}^C{D_{}^{\alpha }}(f(y))\right| <{\frac{\epsilon }{2}} \end{aligned}$$
(11)

Now for any \(\epsilon >0\), there is a \(\delta >0\) such that for any xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned}&\left| {{}^C{D_{}^{\alpha }}(f(x))-{}^C{D_{}^{\alpha }}(f(y))}\right| = \nonumber \\&\left| {{}^C{D_{}^{\alpha }}(f(x))-\varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) +\varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(y))}\right| \end{aligned}$$
(12)

We get

$$\begin{aligned} \begin{aligned} \left| {{}^C{D_{}^{\alpha }}(f(x))-{}^C{D_{}^{\alpha }}(f(y))}\right|&\le \left| {}^C{D_{}^{\alpha }}(f(x))-\varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) \right| \\&\quad +\,\left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(y))\right| \end{aligned} \end{aligned}$$
(13)

By using Eqs. (10) and (11), we obtain

$$\begin{aligned} |{{}^C{D_{}^{\alpha }}(f(b_i))-{}^C{D_{}^{\alpha }}(f(a_i))}|<{\frac{\epsilon }{2}}+{\frac{\epsilon }{2}}=\epsilon \end{aligned}$$
(14)

Hence \({}^C{D_{}^{\alpha }}(f)\) is a uniformly continuous on I.

Conversely suppose that \({}^C{D_{}^{\alpha }}(f)\) is uniformly continuous on I. Let \(\epsilon >0\) be given. Then there exist a \(\delta >0\) such that for any xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned} \left| {{}^C{D_{}^{\alpha }}(f(x))-{}^C{D_{}^{\alpha }}(f(y))}\right| <\epsilon \end{aligned}$$
(15)

Then from Theorem 4, there exist \(c\in (y,x)\) such that

$$\begin{aligned} f(x)-f(y)=\frac{{}^C{D_{}^{\alpha }}(f(x))(x-y)^\alpha }{\varGamma (\alpha )} \end{aligned}$$
(16)

Since \(|c-y|<\delta \), for any \(\epsilon >0\), there exist a \(\delta >0\) such that for any xy in I

$$\begin{aligned} |{{}^C{D_{}^{\alpha }}(f(c))-{}^C{D_{}^{\alpha }}(f(y))}|<\epsilon \end{aligned}$$
(17)

By using Eq. (16)

$$\begin{aligned} \sum \limits _{i=1}^n\left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(y))\right| <\epsilon \end{aligned}$$
(18)

Again \(|x-c|<\delta \), then for any \(\epsilon >0\), there exist a \(\delta >0\) such that for any xy in I

$$\begin{aligned} \sum \limits _{i=1}^n\left| {{}^C{D_{}^{\alpha }}(f(x))-{}^C{D_{}^{\alpha }}(f(c))}\right| <\epsilon \end{aligned}$$
(19)

By using Eq. (16)

$$\begin{aligned} \sum \limits _{i=1}^n\left| {}^C{D_{}^{\alpha }}(f(x))-\varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) \right| <\epsilon \end{aligned}$$
(20)

Therefore f is uniformly fractional differentiable on I.

Example 9

The \(\frac{1}{2}\) order Caputo derivative of function \(f(t)=t\) is \(2\sqrt{\frac{t}{\pi }}\) which is uniformly continuous on [0, c]. Then by Theorem 8 uniformly fractional differentiable functions on [0, c] of order \(\frac{1}{2}\).

In fact, using Theorem 8, several examples of uniformly fractional differentiable functions can be constructed.

The following is motivated by the principle that differentiability implies continuity.

Theorem 10

If f is uniformly fractional differentiable function on an interval I, then f is uniformly continuous on I.

Proof

Since a function \(f: I\rightarrow R\) is uniformly fractional differentiable, then if for any \(\epsilon >0\), there is a \(\delta >0\) such that for any xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(x))\right| <\epsilon \end{aligned}$$
(21)

and

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(y))\right| <\epsilon \end{aligned}$$
(22)

Since \({}^C{D_{}^{\alpha }}(f)\) is bounded on I, so there exit \(M>0\) such that

$$\begin{aligned} |{}^C{D_{}^{\alpha }}(f(t))|\le M\;(\forall \;t\in I ) \end{aligned}$$
(23)

Take \(\delta _0=\min \{(\delta )^{\frac{1}{\alpha }},(\frac{\epsilon }{\epsilon +M})^{\frac{1}{\alpha }}\}\). Let \(x,y\in I\) satisfying \(|x-y|<\delta _0\).

Now

$$\begin{aligned}&\quad |f(x)-f(y)|\le \nonumber \\&\left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) (x-y)^\alpha -{}^C{D_{}^{\alpha }}(f(x))(x-y)^\alpha +{}^C{D_{}^{\alpha }}(f(x))(x-y)^\alpha \right| \end{aligned}$$
(24)

Therefore

$$\begin{aligned} \begin{aligned}&\quad |f(x)-f(y)|\le \\&\left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(x))\right| {|x-y|^\alpha }+|{}^C{D_{}^{\alpha }}(f(x))|{|x-y|^\alpha } \end{aligned} \end{aligned}$$
(25)

Finally

$$\begin{aligned} |f(x)-f(y)|<\delta _0 \epsilon +M\delta _0=\delta _0(\epsilon +M)<\epsilon \end{aligned}$$
(26)

Hence f is an uniformly continuous on I.

Theorem 11

Every absolutely fractional differentiable function on I is uniformly fractional differentiable on I.

Proof

Since \(f:I\rightarrow R\) is an absolutely fractional differentiable. Then for any \(\epsilon >0\), there is a \(\delta >0\) such that for any finite collection of pairwise disjoint intervals \(\{(a_i,b_i)\}\) in I satisfying \(\sum \nolimits _{i=1}^n(b_i-a_i)<\delta \),

$$\begin{aligned} \sum \limits _{i=1}^n\left| \varGamma (\alpha )\left( \frac{f(b_i)-f(a_i)}{(b_i-a_i)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(a_i))\right| <\epsilon \end{aligned}$$
(27)

and

$$\begin{aligned} \sum \limits _{i=1}^n\left| \varGamma (\alpha )\left( \frac{f(b_i)-f(a_i)}{(b_i-a_i)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(b_i))\right| <\epsilon \end{aligned}$$
(28)

In particular

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(x))\right| <\epsilon \end{aligned}$$
(29)

and

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(y))\right| <\epsilon \end{aligned}$$
(30)

Hence f is uniformly fractional differentiable function on I.

Proposition 12

If f is uniformly fractional differential function on I and if \({}^C{D^{\alpha }_{a}}(f)\) is bounded on I, then f is Hölder continuous on I.

Proof

Let f is uniformly fractional differential function. Then for xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(x))\right| <\epsilon \end{aligned}$$
(31)

and

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(y))\right| <\epsilon \end{aligned}$$
(32)

Since \({}^C{D_{}^{\alpha }}(f)\) is bounded on I, so there exit \(M>0\) such that

$$\begin{aligned} |{}^C{D_{}^{\alpha }}(f(t))|\le M\;(\forall \;t\in I ) \end{aligned}$$
(33)

Now

$$\begin{aligned} |f(x)-f(y)|= & {} \left| \left( \frac{f(x)-f(y)}{(x-y)^{\alpha }}\right) (x-y)^{\alpha }-{}^C{D^{\alpha }_a}(f(y))(x-y)^{\alpha }+{}^C{D^{\alpha }_a}(f(y))(x-y)^{\alpha }\right| \\\le & {} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^{\alpha }}\right) -{}^C{D^{\alpha }_a}(f(y))\right| |x-y|^{\alpha }+|{}^C{D^{\alpha }_a}(f(y))||x-y|^{\alpha }\\\le & {} (\epsilon +M)|x-y|^{\alpha } \end{aligned}$$

Hence f is Hölder continuous function on R.

Theorem 13

The space UFD(I) of uniformly fractional differentiable functions on interval I is a vector space with pointwise operations.

Proof

Let \(f,g\in UFD(I)\). Then for any \(\epsilon >0\), there is a \(\delta >0\) such that for any xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(x))\right| <\frac{\epsilon }{2} \end{aligned}$$
(34)
$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(x))\right| <\frac{\epsilon }{2} \end{aligned}$$
(35)
$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{g(x)-g(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(g(x))\right| <\frac{\epsilon }{2} \end{aligned}$$
(36)

and

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{g(x)-g(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(g(x))\right| <\frac{\epsilon }{2} \end{aligned}$$
(37)

Now for any \(\epsilon >0\), there is a \(\delta >0\) such that for any xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned}&\left| \varGamma (\alpha )\left( \frac{(f+g)(x)-(f+g)(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}((f+g)(x))\right| =\nonumber \\&\qquad \left| \varGamma (\alpha )\left( \frac{(f(x)+g(x))-(f(y)+g(y))}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}((f(x)+(g(x))\right| \end{aligned}$$
(38)

Then

$$\begin{aligned}&\quad \left| \varGamma (\alpha )\left( \frac{(f+g)(x)-(f+g)(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}((f+g)(x))\right| \le \nonumber \\&\left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(x))\right| +\left| \varGamma (\alpha )\left( \frac{g(x)-g(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(g(x))\right| \end{aligned}$$
(39)

By using Eqs. (34) and (35) the Eq. (39) reduces to

$$\begin{aligned} \begin{aligned} \sum \limits _{i=1}^n\left| \varGamma (\alpha )\left( \frac{(f+g)(x)-(f+g)(x)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}((f+g)(x))\right| <\frac{\epsilon }{2}+\frac{\epsilon }{2}=\epsilon \end{aligned} \end{aligned}$$
(40)

Similarly by using Eqs. (36) and (37) we obtain

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{(f+g)(x)-(f+g)(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}((f+g)(y))\right| <\epsilon \end{aligned}$$
(41)

Hence \(f+g\in UFD(I)\). Now let \(f\in UFD(I)\) and \(k\in C\). Then for any \(\epsilon >0\), there is a \(\delta >0\) such that for any xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(x))\right| <\frac{\epsilon }{k}, \end{aligned}$$
(42)

and

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}(f(y))\right| <\frac{\epsilon }{k},\end{aligned}$$
(43)

Now for any \(\epsilon >0\), there is a \(\delta >0\) such that for any xy in I satisfying \(|x-y|<\delta \),

$$\begin{aligned} \begin{aligned} \left| \varGamma (\alpha )\left( \frac{(kf)(x)-(kf)(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}((kf)(x))\right| =\\ \left| k\varGamma (\alpha )\left( \frac{f(x)-f(y)}{(x-y)^\alpha }\right) -k\;{}^C{D_{}^{\alpha }}((f(x))\right| \end{aligned} \end{aligned}$$
(44)

By using Eq. (42) the above equation reduces to

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{(kf)(x)-(kf)(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}((kf)(x))\right| <k\frac{\epsilon }{k}=\epsilon \end{aligned}$$
(45)

Similarly by using Eq. (43) we obtain

$$\begin{aligned} \left| \varGamma (\alpha )\left( \frac{(kf)(x)-(kf)(y)}{(x-y)^\alpha }\right) -{}^C{D_{}^{\alpha }}((kf)(y))\right| <\epsilon \end{aligned}$$
(46)

Thus \(kf\in UFD(I)\).

Therefore the space UFD(I) of uniformly fractional differentiable functions on I is a vector space with pointwise operations.