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Preface

This book is based around the conference International Conference on
Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2018),
held at JECRC, Jaipur, from 6 to 8 July 2018. The book contains several useful
topics of mathematical modelling, applied analysis and computation having dif-
ferent applications in other scientific areas of research and study. It should be useful
for graduate students, researcher and educators interested in diverse areas of
research in mathematical sciences including modelling, analysis and computation.
The general readers interested in tools and techniques from different areas of
mathematical sciences having practical applications in real life should also find the
book interesting and useful. The book consists of 20 chapters organized as follows:

Chapter “Certain Banach-Space Operators Acting on the Semicircular Elements
Induced by Orthogonal Projections” presents certain Banach-space operators acting
on (weighted-) semicircular elements induced by mutually orthogonal Zj j-many
projections. In particular, it emphasizes in cases where such operators are generated
by *-isomorphisms induced by certain shifting processes on the set of all integers.
The main results show not only how such Banach-space operators affect the original
free-distributional data on (weighted-) semicircular elements, but also how the
weighted-semicircular laws are preserved by the operators.

Chapter “Explicit Expressions Related to Degenerate Cauchy Numbers and
Their Generating Function” establishes an explicit expression for degenerate
Cauchy numbers and finds explicit, meaningful and significant expressions for
coefficients in a family of nonlinear differential equations for the generating func-
tion of degenerate Cauchy numbers.

Chapter “Statistical Deferred Riesz Summability Mean and Associated
Approximation Theorems for Trigonometric Functions” presents an idea of
approximation via statistical deferred weighted (Riesz) summability mean for
trigonometrical periodic functions defined over a Banach space C2pð<Þ and
accordingly establishes a new approximation theorem (Korovkin-type).
Furthermore, the chapter studies the rate of statistical deferred weighted summa-
bility and also establishes another result for the same set of functions by using the
modulus of continuity. Finally, it considers a number of special cases and examples
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to exhibit the relevance of the obtained results and definitions provided in this
chapter.

Chapter “On Pointwise Convergence of a Family of Nonlinear Integral
Operators” presents some auxiliary theorems concerning existence and pointwise
convergence of the certain operators. Then, it presented a Fatou-type convergence
theorem for these operators. Finally, the rates of both pointwise and Fatou-type
convergences have been established by using the derived results.

Chapter “Existence and Ulam’s Type Stability of Integro Differential Equation
with Non-instantaneous Impulses and Periodic Boundary Condition on Time Scales”
presents existence and stability of integro-differential equation with periodic boundary
condition and non-instantaneous impulses on time scales. Banach contraction theorem
and nonlinear functional analysis have been used to establish these results. Moreover,
to outline the utilization of these outcomes, an example is given.

Chapter “Introduction to Class of Uniformly Fractional Differentiable Functions”
presents a new concept of uniformly fractional differentiable functions on an arbitrary
interval I of R by using Caputo-type fractional derivative instead of the commonly used
first-order derivative. Their interesting properties with few illustrations have been
discussed in this chapter.

Chapter “Asymptotically Almost Automorphic Solution for Neutral Functional
Integro Evolution Equations on Time Scales” studies the existence, uniqueness with
stability consequence of asymptotically almost automorphic (AAA) solution for
integro-neutral evolution equation on time scales by applying fixed-point hypoth-
esis. It gives the time scale adaptation of (AAA) functions. Towards the end, a
precedent is given for the adequacy of the hypothetical outcomes.

Chapter “An Integral Relation Associated with a General Class of Polynomials
and the Aleph Function” reports new finite integral involving two general classes of
polynomials with the Aleph function. This integral is supposed to be one of the
most universal integrals evaluated until now and act as a key component from
which one can obtain as its different special cases, integrals relating a large number
of simpler special functions and polynomials. Some useful unique cases of the main
outcome have also been discussed in the chapter.

Chapter “On the New Fractional Operator and Application to Nonlinear Bloch
System” analyses the nonlinear Bloch system with a new fractional operator
without singular kernel proposed by Caputo and Fabrizio. The commensurate and
non-commensurate order nonlinear Bloch system is considered. Special solutions
using a numerical scheme based on Lagrange interpolations are obtained. It studied
the uniqueness and existence of the solutions employing the fixed-point theorem.
Novel chaotic attractors with total order less than 3 are obtained.

Chapter “Fractional Order Integration and Certain Integrals of Generalized
Multiindex Bessel Function” introduces generalized multiindex Bessel function and
some formulas of the Riemann–Liouville fractional integration and differentiation
operators. Further, certain integral formulas involving the newly defined general-
ized multiindex Bessel function have also been derived. It is also proved that such
integrals are expressed in terms of the Fox–Wright function. The results presented
here are general in nature and easily reducible to new and known results.
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Chapter “Fractional Variational Iteration Method for Time Fractional Fourth-
Order Diffusion-Wave Equation” applies fractional variational iteration method
(FVIM) to solve numerically time-fractional diffusion-wave equation of order four.
By using FVIM, a sequence converging rapidly to the exact solution of the
fourth-order fractional diffusion-wave equation is obtained. Two test problems are
presented to prove the merit of the proposed technique. Plotted graph shows that the
numerical solution acquired by employed technique is similar to the exact solution.

Chapter “Analytical Approach to Fractional Navier–Stokes Equations by
Iterative Laplace Transform Method” studies iterative Laplace transform scheme
to examine fractional Navier–Stokes equations in cylindrical coordinates with ini-
tial conditions. The arbitrary ordered derivatives are described in terms of Caputo.
By utilizing only the initial conditions, the analytical expressions are derived in the
closed form. The results achieved with the aid of the proposed technique are
graphically presented.

Chapter “Biological Model of Dengue Spread with Non-Markovian Properties”
deals with converting the classical model to fractional model by using the concept
of recently established fractional differential operators known as the
Caputo-Fabrizio derivative to include into mathematical system the memory and the
crossover effects. The new model was subjected to analysis of existence and
uniqueness of the system solution to insure the well-posedness of the modified
system. Due to the complexity of the new system, a newly introduced numerical
scheme was used to solve the system and some numerical simulations were per-
formed to see the effect of the Mittag–Leffler law that brings the crossover effect.

Chapter “Approximate Solution of Higher Order Two Point Boundary Value
Problems Using Uniform Haar Wavelet Collocation Method” studies the numerical
solution of second- and fourth-order two-point boundary value problems (B.V.P.)
based on uniform Haar wavelet. It aims to convert higher order differential equa-
tions into a system of differential equations of lower order and then solve it by
uniform Haar wavelet, which reduces the time and complexity of the system. The
technique introduced in this chapter is easy to apply. The performance of the
present method yields more accurate results on increasing the resolution level. To
demonstrate the robustness and accuracy of the Haar wavelet collocation method,
five problems have been solved and compared with the existing methods present in
the literature.

Chapter “Solving Multi-objective Fractional Transportation Problem” deals with
optimizing the objective function in the form of one or several ratios subject to
some linear constraints. If in multi-objective transportation problem, objective
function is in ration of two linear functions under some linear restrictions, then the
problem is called multi-objective linear fractional transportation problem. A new
method to solve multi-objective linear fractional transportation problem is sug-
gested. Two numerical problems are presented to validate the proposed algorithm.

Chapter “On the Dark and Bright Solitons to the Negative-Order Breaking
Soliton Model with (2+1)-Dimensional” studies the complex dynamics of cnoidal
waves via the negative-order breaking soliton model with (2+1)-dimensional. This
model is arisen in the (2+1)-dimensional interaction of the Riemann wave
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propagated between y-axis and x-axis. The improved Bernoulli sub-equation
function method is used in obtaining some complex and dark solutions with
hyperbolic function structure. It presents the interesting contour surfaces along with
2D and 3D graphics of the obtained analytical solutions in this study, plotted by
using several computational programmes such as Matlab, Mathematica, and so on.

Chapter “A Reliable Analytical Algorithm for Cubic Isothermal Auto-Catalytic
Chemical System” applies an algorithm for the q-homotopy analysis transform
method (q-HATM) to solve the Cubic Isothermal Auto-catalytic Chemical System
(CIACS). This technique is a combination of the Laplace decomposition method
and the homotopy analysis scheme. This method gives the solution in the form of a
rapidly convergent series with �h-curves are employed to determine the intervals of
convergent. Averaged residual errors are used to determine the optimal values of �h.
The behaviour of the solutions is shown graphically.

Chapter “Numerical Study of Effects of Adrenal Hormones on Lymphocytes”
aims to study a mathematical model to examine the impact of adrenal hormones on
the immune system with respect to time evolution and spatial distribution cells in
response to hormones concentration. The steady state of the model is studied and
found to be uniformly and asymptotically stable subject to the secretion and decay
rates of hormones. The numerical experiments using the free diffusion equations
further investigates the dynamic behaviour of the “bound” lymphocytes secretion
rate of the adrenal hormones induced by psychological stress.

Chapter “Mathematical Modelling of Poor Nutrition in the Human Life Cycle”
deals with a mathematical model as a system of nonlinear ordinary differential
equations in order to investigate the effects of poor nutrition from conception to
adulthood using the poor pregnant woman nutrient status. The steady states are
studied and R0 of poor nutrition in the society are calculated. To keep the society
healthy and free of malnutrition, malnourished pregnant females are encouraged to
eat foods that contain all the nutrients needed for development. The model is
supported with numerical simulation.

Chapter “Characteristics of Homogeneous Heterogeneous Reaction on Flow of
Walters’ B Liquid Under the Statistical Paradigm” studies the significance of
inclined MHD stagnant point flow of Walters B liquid because of stretched surface.
Flow phenomenon is studied with Newtonian heating, homogeneous\heterogeneous
reactions, Joule heating, and viscous dissipation. The nonlinear PDEs are converted
to get nonlinear system of ODEs by invoking suitable transformations and solved
by utilizing OHAM. Statistical methodology is used to check the significance and
insignificance of the physical parameters via correlation coefficients and probable
error. Characteristics of various sundry parameters on velocity, concentration, and
temperature fields are studied. Friction and Nusselt numbers are calculated and
discussed in detail.
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Certain Banach-Space Operators Acting
on the Semicircular Elements Induced
by Orthogonal Projections

Ilwoo Cho

Abstract Themain purposes of this paper are (i) to construct-and-study (weighted-)
semicircular elements induced by mutually orthogonal |Z|-many projections, and
the Banach ∗-probability space LQ generated by these operators, (ii) to establish ∗-
isomorphisms onLQ from shifting processes on the setZ of integers, (iii) to consider
the ∗-isomorphisms of (ii) as Banach-space operators acting onLQ (by regarding the
Banach ∗-algebra LQ as a Banach space), and (iv) to compare the free-distributional
data affected by the operators of (iii) from the original data.

Keywords Free probability · Weighted-semicircular elements · Semicircular
elements · Integer-shifts · The integer-shift group · Integer-shift operators · The
integer-shift-operator algebra

1991 Mathematics Subject Classification 46L10 · 46L40 · 46L53 · 46L54 ·
47L15 · 47L30 · 47L55

1 Introduction

In this paper, certain Banach-space operators acting on (weighted-)semicircular ele-
ments induced by mutually orthogonal |Z|-many projections are constructed-and-
considered. In particular, we are interested in the cases where such operators are
generated by ∗-isomorphisms induced by certain shifting processes on the set Z of
all integers. The main results show not only how such Banach-space operators affect
the original free-distributional data on (weighted-)semicircular elements, but also
how our weighted-semicircular laws are preserved by the operators.

To study our topics, we (i) construct weighted-semicircular, and semicircular
elements in a certain Banach ∗-probability space LQ(Z) induced by a fixed C∗-
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2 I. Cho

probability space (A, ψ) containing |Z|-many mutually orthogonal projections, (ii)
study free distributions of certain free reduced words in the Banach ∗-probabilistic
sub-structureLQ ofLQ(Z), generated by the (weighted-)semicircular elements of (i),
providing “non-zero” free distributions in LQ(Z), (iii) define suitable shift processes
on Z, and (iv) establish certain ∗-homomorphisms on LQ induced by the shift pro-
cesses of (iii), and then (v) compare the free-distributional data of the∗-homomorphic
images of the ∗-homomorphisms in (iv), and the original free-distributional data of
(ii).

1.1 Motivations

There are many different approaches to construct semicircular elements (e.g., [1, 4,
6, 12, 15, 19–21]) in topological ∗-probability spaces (e.g., C∗-probability spaces,
or W ∗-probability spaces, or Banach ∗-probability spaces, etc.). The construction
of semicircular elements in this paper is highly motivated by those of weighted-
semicircular elements in certain Banach ∗-probability spaces of [5, 7, 8] induced by
p-adic analysis on the p-adic number fields Qp, for primes p. So, our construction is
different from those of earlier works (also, see [6]).

In [5, 8], we studiedweighted-semicircular elements induced bymeasurable func-
tions on p-adic number fields Qp (e.g., [8]), and those from a free product Banach
∗-algebra induced from weighted-semicircular elements of [8] (e.g., [5]). The author
and Jorgensen applied number-theoretic results (e.g., [10, 18]), and free-probabilistic
techniques (e.g., [2–4, 13, 14, 16]) to consider free-probabilistic models of [8], and
they realized that there are well-defined weighted-semicircular elements. Interest-
ingly, these operators automatically generate corresponding semicircular elements.
In [5], the author extended the constructions and the main results of [8] under free
product over primes. The detailed properties of “p-adic” weighted-semicircular ele-
ments, and those of corresponding semicircular elements were studied there.

Motivated by [5, 8], the author considered the similar constructions of (weighted-)
semicircular elements from arbitrary C∗-probability spaces containing |Z|-many
mutually orthogonal projections in [6, 7], by mimicking the constructions of [5, 8].
The main results of [6] show that whenever one can have mutually orthogonal |Z|-
manyprojections in aC∗-probability space, the correspondingweighted-semicircular
elements whose weights are characterized by the free-distributional data of the pro-
jections; moreover, under suitable (additional) conditions, semicircular elements are
well-defined (see short Sects. 3, 4 and 5, below).

In this paper, we are interested in certain Banach-space adjointable operators (in
the sense of [9]) acting on weighted-semicircular elements of [6, 7]. Especially, they
are induced by certain shift processes on the set Z of integers, and corresponding
well-defined ∗-homomorphisms on the (weighted-)semicircular elements.
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1.2 Overview

In Sect. 2, we briefly mention about backgrounds of our proceeding works. In short
Sects. 3, 4 and 5, weighted-semicircular elements, and semicircular elements are
constructed from mutually orthogonal |Z|-many projections (e.g., [6, 7]).

In Sect. 6, we construct a suitable free-probabilistic, operator-algebraic structure
LQ generated by our (weighted-)semicircular elements under free product.

In Sect. 7, we define-and-study Banach-space adjointable operators acting on LQ.
In particular, certain shifting processes on Z are defined in Sect. 7.1, and the cor-
responding ∗-isomorphisms are determined on LQ in Sect. 7.2. We realize that the
collection of such ∗-isomorphisms forms a subgroupB of the automorphism group
Aut(LQ) of LQ. The structure theorem of this group B is provided in Sect. 7.2: B
is group-isomorphic to the infinite cyclic abelian group (Z,+). We then study how
the group B generate our Banach-space adjointable operators (in the sense of [9])
on LQ, and how they affects the free-probabilistic information on LQ in Sect. 7.3.

In Sect. 8, we re-characterize the free-distributional data of Sect. 7.3 with help of
the group-isomorphic relation of Sect. 7.2. Also, group dynamical systems ofB are
studied.

2 Preliminaries

Readers can review fundamental analytic-and-combinatorial free probability theory
from [17, 19] (and the cited papers therein). Free probability is understood as the
noncommutative operator-algebraic version of classical measure theory and statis-
tics. The classical independence is replaced by so-called the freeness, by replacing
measures on sets to linear functionals on algebras. It has various applications not
only in pure mathematics (e.g., [2–4, 12, 14, 15]), but also in related fields (e.g.,
[5–8, 13, 16, 20, 21]).

In particular, we use combinatorial free-probabilistic approach of Speicher (e.g.,
[17]). Free moments and free cumulants of operators will be computed without intro-
ducing detailed concepts. Also, free product (in the sense of [17, 19]) will be used
without precise introduction.

3 Fundamental Settings

In this section, we establish backgrounds of our proceeding works. Let (B, ϕ) be a
topological ∗-probability space (a C∗-probability space, or a W ∗-probability space,
or a Banach ∗-probability space, etc), where B is a topological ∗-algebra (a C∗-
algebra, resp., a W ∗-algebra, resp., a Banach ∗-algebra, etc), and ϕ is a (bounded or
unbounded) linear functional on B.
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An operator a of B is said to be a free random variable, whenever it is regarded
as an element of (B, ϕ). As usual in operator theory, an operator a is said to be
self-adjoint, if a∗ = a in B, where a∗ is the adjoint of a (e.g., [11]).

Definition 3.1 A self-adjoint free random variable a is said to be weighted-
semicircular in (B, ϕ) with its weight t0 ∈ C

× = C \ {0} (or, in short, t0-semicir-
cular), if a satisfies the free cumulant computations,

kn(a, . . . , a) =
{
k2(a, a) = t0 if n = 2
0 otherwise,

(3.1)

for all n ∈ N, where kn(. . .) is the free cumulant on B in terms of ϕ under the Möbius
inversion of [17].

If t0 = 1 in (3.1), the 1-semicircular element a is said to be semicircular in (B, ϕ),
i.e., a is semicircular in (B, ϕ), if a satisfies

kn(a, . . . , a) =
{
1 if n = 2
0 otherwise,

(3.2)

for all n ∈ N.

By theMöbius inversionof [17], one can characterize theweighted-semicircularity
(3.1) as follows: a self-adjoint operator a is t0-semicircular in (B, ϕ), if and only if

ϕ(an) = ωn

(
t
n
2
0 c n

2

)
, (3.3)

where

ωn
def=
{
1 if n is even
0 if n is odd,

for all n ∈ N, and

ck = 1

k + 1

(
2k
k

)
= (2k)!

k!(k + 1)!
are the k-th Catalan numbers for all k ∈ N0 = N ∪ {0}.

Similarly, a self-adjoint free random variable a is semicircular in (B, ϕ), if and
only if a is 1-semicircular in (B, ϕ), if and only if

ϕ(an) = ωnc n
2
, (3.4)

by (3.3), for all n ∈ N, where ωn are in the sense of (3.3).
So, we will use the t0-semicircularity (3.1) (or the semicircularity (3.2)) and its

characterization (3.3) (resp., (3.4)) alternatively from below.
If a is a self-adjoint free random variable in (B, ϕ), then

the free moments
(
ϕ(an)

)∞
n=1 ,
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and
the free cumulants (kn(a, . . . , a))

∞
n=1

provide equivalent free-distributional data of a in (B, ϕ) (e.g., [17]). Indeed, the
Möbius inversion makes us have

ϕ(an) =
∑

π∈NC(n)

(
�
V∈π

k|V |(a, . . . , a)
)

,

and

kn(a, . . . , a) =
∑

π∈NC(n)

(
�
V∈θ

ϕ(a|V |)
)

μπ,

where NC(n) is the lattice consisting of all noncrossing partitions over {1, . . . , n},
and “V ∈ π” means “V is a block of π ,” and where

μπ = μ(π, 1n)

the Möbius functional value at (π, 1n), where 1n is the maximal partition of NC(n)
consisting of only one block, for all n ∈ N.

In the rest of this section, we fix a C∗-probability space (A, ψ), and assume that
there are |Z|-many projections {qj}j∈Z in theC∗-algebraA, i.e., the operators qj satisfy

q∗
j = qj = q2j inA,

for all j ∈ Z. Assume further that these projections {qj}j∈Z are mutually orthogonal
from each other in A, in the sense that:

qiqj = δi,jqj inA, for all i, j ∈ Z, (3.5)

where δ is the Kronecker delta.
Now, we fix the family {qj}j∈Z of mutually orthogonal projections (3.5) of A, and

we denote it by Q, i.e.,

Q = {qj : j ∈ Z} inA, (3.6)

satisfying (3.5).

Remark 3.1 One can have such a C∗-algebraic structure A containing a family Q in
the sense of (3.6), naturally, or artificially. Clearly, in the settings of [5, 8], one can
naturally take such structures.

Suppose there is aC∗-algebraA0 containing a familyQN = {q1, . . . , qN } ofmutu-
ally orthogonal N -many projections q1, . . . , qN , for N ∈ N∞ = N ∪ {∞}. Then,
under suitable direct product, or tensor product, or free product of copies of A0

with product topology, one can construct a C∗-algebra A containing a familyQ with
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|Z|-many mutually orthogonal projections, where Q0 is contained in Q, and every
projection of Q is unitarily equivalent to a projection of Q0 in A.

And let Q be the C∗-subalgebra of A generated by the family Q of (3.6),

Q
def= C∗ (Q) ⊆ A. (3.7)

Then it is easy to check that:

Proposition 3.1 Let Q be a C∗-subalgebra (3.7) of a C∗-algebra A, generated by
Q of (3.6). Then

Q
∗-iso= ⊕

j∈Z
(
C · qj

) ∗-iso= C
⊕|Z|, (3.8)

in A.

Proof The proof of (3.8) is straightforward by the mutual-orthogonality (3.5) of the
generator set Q of Q in A. �

Define now linear functionals ψj on the C∗-algebra Q by

ψj (qi) = δijψ(qj), for all i ∈ Z, (3.9)

for all j ∈ Z, whereψ is the linear functional of the fixedC∗-probability space (A, ψ).
The linear functionals {ψj}j∈Z of (3.9) are well-defined onQ by the structure theorem
(3.8).

Assumption Let (A, ψ) be a fixed C∗-probability space, and let Q be the C∗-
subalgebra (3.7) of A. In the rest of this paper, we further assume that

ψ(qj) ∈ C
×, for all j ∈ Z.

�	
By (3.7) and (3.8), if T ∈ Q, then

T =
∑
j∈Z

tjqj (with tj ∈ C),

and hence,

ψj(T ) = tjψ(qj),

by (3.9), for all j ∈ Z.

Definition 3.2 TheC∗-probability spaces
(
Q, psij

)
are called the j-thC∗-probability

spaces of Q in a given C∗-probability space (A, ψ), where Q is in the sense of (3.7),
and ψj are in the sense of (3.9), for all j ∈ Z.
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Now, let’s define bounded linear transformations c and a acting on theC∗-algebra
Q, by linear morphisms satisfying

c
(
qj
) = qj+1, and a

(
qj
) = qj−1, (3.10)

for all j ∈ Z. Then c and a are well-defined bounded linear operators “onQ.” One can
understand they are Banach-space operators in the operator space B(Q) consisting
of all bounded linear transformations acting onQ, by regardingQ as a Banach space
equipped with its C∗-norm (e.g., [9]).

Definition 3.3 We call these Banach-space operators c and a of (3.10), the creation,
respectively, the annihilation on Q.

The creation c and the annihilation a on Q are indeed well-defined because of the
structure theorem (3.8) of Q. Define now a new Banach-space operator l on Q by

l = c + a ∈ B(Q). (3.11)

Definition 3.4 We call the Banach-space operator l ∈ B(Q) of (3.11), the radial
operator on Q.

By the definition (3.11), one has

l

⎛
⎝∑

j∈Z
tjqj

⎞
⎠ =

∑
j∈Z

tj
(
qj+1 + qj−1

)
, onQ.

Now, define a closed subspace L of B(Q) by

L
def= C[{l}]‖.‖, (3.12)

generated by the radial operator l of (3.11), where the operator norm ‖.‖ on the
operator space B(Q) is defined to be

‖T‖ = sup{‖Tq‖Q : ‖q‖Q = 1},

for all T ∈ B(Q), where ‖.‖Q is the C∗-norm on Q (inherited from the C∗-norm on

A), and where X
‖.‖

mean the operator-norm closures of subsets X of the operator
space B(Q) (e.g., [9]). It is not difficult to check that, by the definition (3.12), this
subspaceL forms an algebra in the vector space B(Q), i.e., it forms a Banach algebra.

On this Banach algebra L of (3.12), define a unary operation (∗) by
( ∞∑

n=0

tnl
n

)∗
=

∞∑
n=0

tnl
n inL, (3.13)
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where z mean the conjugates of z ∈ C.
Then this operation (3.13) becomes a well-defined adjoint on the Banach algebra

L of (3.12) (e.g., [11]), and hence, every element of L is adjointable in B(Q) (e.g.,
[9]). So, the algebra L forms a Banach ∗-algebra in B(Q) with the adjoint (3.13).

Definition 3.5 We call the Banach ∗-algebra L of (3.12), the radial (Banach
∗-)algebra on Q (or, in the operator space B(Q)).

Now, letL be the radial algebra onQ. Define the tensor product Banach ∗-algebra
LQ,

LQ = L ⊗C Q, (3.14)

where ⊗C is the tensor product of Banach ∗-algebras.
Since L is a Banach ∗-algebra, and Q is a C∗-algebra, the tensor product LQ of

(3.14) is a well-defined Banach ∗-algebra under product topology.
Definition 3.6 We call the tensor product Banach ∗-algebra LQ of (3.14), the radial
projection (Banach ∗-)algebra on Q.

4 Weighted-Semicircular Elements Induced by Q

Throughout this section, let’s fix the settings of Sect. 3. We here construct weighted-
semicircular elements induced by the family Q of mutually orthogonal projections
generating the radial projection algebra LQ of (3.14). Let (Q, ψj) be the j-th C∗-
probability spaces of Q in (A, ψ), where ψj are in the sense of (3.9), for all j ∈ Z.

Remark that, if uj are the generating operators of LQ,

uj
def= l ⊗ qj ∈ LQ, for all j ∈ Z, (4.1)

then

unj = (l ⊗ qj
)n = ln ⊗ qj, for all n ∈ N,

since qnj = qj, for all n ∈ N, for j ∈ Z.
Thenone can construct a linear functionalϕj onLQ by a linearmorphismsatisfying

that

ϕj
(
(l ⊗ qi)

n
) def= ψj

(
ln(qi)

)
, (4.2)

for all n ∈ N, for all i, j ∈ Z.
These linear functionals ϕj of (4.2) are well-defined by (3.8), (3.12) and (3.14),

for all j ∈ Z.
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Definition 4.1 We call the Banach ∗-probability spaces
(
LQ, ϕj

)
, for all j ∈ Z, (4.3)

the j-th (Banach-∗-)probability spaces on Q.

Observe that, if c and a are the creation, respectively, the annihilation on Q of
(3.10), then

ca = 1Q = ac, the identity operator onQ. (4.4)

Indeed, for any generators qj ∈ Q of Q,

ca
(
qj
) = c

(
a
(
qj
)) = c

(
qj−1

) = qj−1+1 = qj,

and

ac
(
qj
) = a

(
c
(
qj
)) = a

(
qj+1

) = qj+1−1 = qj,

for all j ∈ Z. More generally, one has

cnan = 1Q = ancn, for all n ∈ N, and
cn1an2 = an2cn1 , for all n1, n2 ∈ N,

(4.4)′

by (4.4).
Thus, one obtains that

ln = (c + a)n =
n∑

k=0

(
n
k

)
ckan−k , (4.5)

for all n ∈ N, by (4.4)′, where
(
n
k

)
= n!

k!(n − k)! ,∀k ≤ n ∈ N0 = N ∪ {0}.

Note that, for any n ∈ N,

l2n−1 =
2n−1∑
k=0

(
2n − 1

k

)
ckan−k , (4.6)

by (4.5). So, the formula (4.6) does not contain 1Q-terms by (4.4) and (4.4)′.
Note also that, for any n ∈ N, one has
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l2n =
2n∑
k=0

(
2n
k

)
ckan−k =

(
2n
n

)
cnan + [Rest terms] , (4.7)

by (4.5). So, l2n contains

(
2n
n

)
-many 1Q-terms by (4.4)′ and (4.7).

Proposition 4.1 Let l be the radial operator (3.1) on Q. Then

(4.8) l2n−1 does not contain 1Q − terms inL,

(4.9) l2n contains

(
2n
n

)
· 1Q inL.

Proof The statements (4.8) and (4.9) are proven by (4.6), respectively, by (4.7). �

Remark that, since

unj = (l ⊗ qj
)n = ln ⊗ qj,

one has

ϕj

(
u2n−1
j

)
= ψj

(
l2n−1

(
qj
)) = 0, (4.10)

for all n ∈ N, by (3.9) and (4.8).
Similarly, we have

ϕj

(
u2nj
)

= ψj
(
l2n
(
qj
)) = ψj

((
2n
n

)
qj + [Rest terms]

)

by (4.7)

=
(
2n
n

)
ψj
(
qj
) =

(
2n
n

)
ψ
(
qj
)
,

by (3.9) and (4.9). I.e.,

ϕj

(
u2nj
)

=
(
2n
n

)
ψ
(
qj
)
, (4.11)

for all n ∈ N.
Thus, one obtains the following free-distributional data on the j-th probability

space
(
LQ, ϕj

)
, for j ∈ Z.

Theorem 4.2 Fix j ∈ Z, and let uk = l ⊗ qk be the k-th generating operators of the
j-th probability space (LQ, ϕj), for all k ∈ Z, for j ∈ Z. Then

ϕj
(
unk
) = δj,kωn

((n
2

+ 1
)

ψ
(
qj
))

c n
2
, (4.12)
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where ωn are in the sense of (3.3) for all n ∈ N, and ck are the k-th Catalan numbers
for all k ∈ N.

Proof First, take the j-th generating operator uj in the j-th probability space
(
LQ, ϕj

)
,

for j ∈ Z. By (4.10) and (4.11), one can get that:

ϕj

(
u2n−1
j

)
= 0,

and

ϕj

(
u2nj
)

=
(
2n
n

)
ψ
(
qj
) =

(
n + 1

n + 1

)(
2n
n

)
ψ
(
qj
)

= ((n + 1)ψ
(
qj
)) ( 1

n + 1

(
2n
n

))

= ((n + 1)ψ
(
qj
))
cn,

for all n ∈ N. So,

ϕj

(
unj
)

= ωn
(
(n + 1)ψ(qj)

)
cn, for all n ∈ N.

Assume now that k �= j in Z. Then, by the definition (4.2) of ϕj (and by the
definition (3.9) of ψj),

ϕj
(
unk
) = 0, for all n ∈ N.

Therefore, the formula (4.12) holds. �

Motivated by (4.12), we define a linear morphism,

Ej,Q : LQ → LQ

by a surjective linear transformation satisfying

Ej,Q
(
uni
) def=

⎧⎪⎨
⎪⎩

ψ(qj)
n−1

([ n2 ]+1)
unj if i = j

0LQ , the zero operator of LQ otherwise,

(4.13)

for all n ∈ N, i, j ∈ Z, where [ n2 ] mean the minimal integers greater than or equal to
n
2 , for example,

[
3

2

]
= 2 =

[
4

2

]
.
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The linear transformations Ej,Q of (4.13) are well-defined bounded linear trans-
formations on LQ, because of the cyclicity (3.12) of the tensor factor L of LQ, and
the structure theorem (3.8) of the other tensor factor Q of LQ, for all j ∈ Z.

Define now new linear functionals τj on LQ by

τj
def= ϕj ◦ Ej,Q onLQ, for all j ∈ Z, (4.14)

where ϕj are in the sense of (4.2), and Ej,Q are in the sense of (4.13).

Definition 4.2 The well-defined Banach ∗-probability spaces

LQ(j)
denote= (

LQ, τj
)

(4.15)

are called the j-th filtered (Banach-∗-)probability spaces ofLQ, where τj are the linear
functionals (4.14) on LQ, for all j ∈ Z.

On the j-th filtered probability space LQ(j) of (4.15), One can get that

τj

(
unj

)
= ϕj

(
Ej,Q

(
unj

))

= ϕj

(
ψ(qj)

n−1

([ n2 ]+1)

(
unj

))
= ψ(qj)

n−1

([ n2 ]+1)
ϕj

(
unj

)

= ψ(qj)
n−1

([ n2 ]+1)
ωn
((

n
2 + 1

)
ψ
(
qj
))
c n

2
,

by (4.12), i.e.,

τj

(
unj
)

= ωnψ(qj)
nc n

2
, (4.16)

for all n ∈ N, for j ∈ Z, where ωn are in the sense of (3.3).

Lemma 4.3 Let LQ(j) = (LQ, τj) be the j-th filtered probability space of LQ, for an
arbitrarily fixed j ∈ Z. Then

τj
(
uni
) = δj,i

(
ωnψ(qj)

nc n
2

)
, (4.17)

where ωn are in the sense of (3.3), for all n ∈ N, for all i ∈ Z.

Proof If i = j in Z, then the free-momental data (4.17) holds true by (4.16), for all
n ∈ N.

If i �= j in Z, then, by the very definition (4.13) of the j-th filterization Ej,Q, and
also by the definition (4.2) of ϕj,

τj
(
uni
) = 0, for all n ∈ N.

Therefore, the free-distributional data (4.17) holds true, for all i ∈ Z. �
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The following theorem is proven by the above free-distributional data (4.17)
in terms of the weighted-semicircularity characterization (3.3) of the weighted-
semicircularity (3.1).

Theorem 4.4 Let LQ(j) be the j-th filtered probability space
(
LQ, τj

)
of LQ, for

j ∈ Z, and let uj = l ⊗ qj be the “j-th” generating operator ofLQ. Then uj isψ(qj)2-
semicircular in LQ(j).

Proof First of all, the operator uj is self-adjoint in LQ (for all j ∈ Z). Indeed,

u∗
j = (l ⊗ qj

)∗ = l ⊗ qj = uj

(for all j ∈ Z) by (3.13).
Let’s fix j ∈ Z, and let uj = l ⊗ qj be the j-th generating operator of the j-th filtered

probability space LQ(j). Then, by (4.17), we have that

τj

(
unj
)

= ωn

(
ψ
(
qj
)2) n

2
c n

2
,

for all n ∈ N, and where ck are the k-th Catalan numbers, for all k ∈ N0.
Therefore, by the characterization (3.3) of the weighted-semicircularity (3.1), this

self-adjoint element uj is ψ(qj)2-semicircular in LQ(j). �

The above theorem shows that, for any j ∈ Z, the j-th generating operator uj
is ψ(qj)2-semicircular in the j-th filtered probability space LQ(j) of Q, by (4.17).
Meanwhile, also by (4.17), one can verify the following result, too.

Theorem 4.5 Let ui = l ⊗ ui be the i-th generating operators of the j-th filtered
probability space LQ(j), for all j �= i ∈ Z. Then ui have the zero free distribution in
LQ(j).

Proof Let LQ(j) be the j-th filtered probability space for a fixed j ∈ Z, and assume
i �= j in Z. Consider the i-th generating operators ui of LQ(j). It is shown already
that ui are self-adjoint in LQ, and hence, the free distributions of ui are completely
characterized by the free-momental sequences

(
τj(u

n
i )
)∞
n=1 = (0, 0, 0, . . .) ,

the zero sequence, by (4.17). It guarantees that the free distributions of ui ∈ LQ(j)
are the zero free distribution, for all j �= i ∈ Z. �

The above two theorems characterize the free-probabilistic information of the
generators {ui}i∈Z of our j-th filtered probability space LQ(j), for j ∈ Z. From below,
we focus on “non-zero” free-distributional data on LQ(j), for j ∈ Z.

By the Möbius inversion of [17], if ui are the i-th generating operators of the j-th
filtered probability space LQ(j), then
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kjn (ui, . . . , ui) =
{

δj,iψ
(
qj
)2

if n = 2
0 otherwise,

(4.18)

for all n ∈ N, and i ∈ Z, by (4.17), where kjn(. . .) is the free cumulant on LQ with
respect to the linear functional τj, for j ∈ Z.

5 Semicircular Elements Induced by Q

As in Sect. 4, let LQ(j) be the j-th filtered probability space of Q for j ∈ Z. Then the
j-th generating operator uj = l ⊗ qj ofLQ isψ(qj)2-semicircular inLQ(j), satisfying
that

τj

(
unj

)
= ωnψ(qj)nc n

2
, equivalently,

kjn
(
uj, . . . , uj

) =
{

ψ(qj)2 if n = 2
0 otherwise,

(5.1)

for all n ∈ N, by (4.17) and (4.18).
By the weighted-semicircularity (5.1), one may/can obtain the following semicir-

cular element of LQ(j) (under an additional condition); let

Uj
def= 1

ψ(qj)
uj ∈ LQ(j), (5.2)

for j ∈ Z. Recall that we assumed ψ(qk) ∈ C
×, for all k ∈ Z, and hence, the above

operator Uj of (5.2) is well-defined in LQ(j).

Theorem 5.1 Let Uj = 1
ψ(qj)

uj be a free random variable (5.2) of the j-th filtered
probability space LQ(j), for j ∈ Z, where uj is the j-th generating operator l ⊗ qj of
LQ. If

ψ(qj) ∈ R
× = R \ {0} inC×,

then Uj is semicircular in LQ(j).

Proof Fix j ∈ Z, and assume ψ(qj) ∈ R
× in C×. Then

U ∗
j =

(
1

ψ(qj)
uj

)∗
= Uj,

by the self-adjointness of uj in LQ, because ψ(qj) ∈ R
×.
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Consider now that

kjn

⎛
⎜⎝Uj,Uj, . . . ,Uj︸ ︷︷ ︸

n-times

⎞
⎟⎠ = kjn

(
1

ψ(qj)
uj, . . . ,

1
ψ(qj)

uj
)

=
(

1
ψ(qj)

)n
kjn

⎛
⎜⎝uj, uj, . . . , uj︸ ︷︷ ︸

n-times

⎞
⎟⎠ ,

(5.3)

for all n ∈ N, by the bimodule map property of free cumulants (e.g., [17]). Thus, by
(5.3), one has that

kjn
(
Uj, . . . ,Uj

) =
{(

1
ψ(qj)

)2
kj2(uj, uj) if n = 2

0 otherwise

=
{
1 if n = 2
0 otherwise,

(5.4)

by the ψ(qj)2-semicircularity (5.1) of uj in LQ(j).
Therefore, by (5.4) and (3.2), the self-adjoint free random variable Uj is semicir-

cular in LQ(j). �

The above theorem shows that, from our ψ(qj)2-semicircular elements uj = l ⊗
qj in LQ(j), the corresponding semicircular elements Uj = 1

ψ(qj)
uj are canonically

obtained in the j-th filtered probability space LQ(j), whenever ψ(qj) ∈ R
× in C, for

j ∈ Z.

Assumption From below, for convenience, we will automatically assume that

ψ(qj) ∈ R
× inC, for qj ∈ Q,

for all j ∈ Z. �	

6 The Free Filterization �
j∈Z

LQ(j) of Q

Let (A, ψ) be a fixed C∗-probability space containing a familyQ = {qj}j∈Z of mutu-
ally orthogonal projections qj satisfying

ψ(qj) ∈ R
×, for all j ∈ Z,

and let LQ(j) be the corresponding j-th filtered probability space of Q, for all j ∈ Z.
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For the system

{LQ(j) : j ∈ Z}

of Banach ∗-probability spaces, define the free product Banach ∗-probability space
LQ(Z) by

LQ(Z)
denote= (

LQ(Z), τ
)

def= 

j∈Z

LQ(j) =
(



j∈Z

LQ,j, 

j∈Z

τj

)
,

(6.1)

with

LQ(Z) = 

j∈Z

LQ,j, withLQ,j = LQ,∀j ∈ Z,

and

τ = 

j∈Z

τj onLQ(Z).

For more about free product ∗-probability spaces, see [17, 19].

Definition 6.1 Let LQ(Z) be the free product Banach ∗-probability space (6.1) of
the system {LQ(j)}j∈Z of all j-th filtered probability spaces of Q. Then it is said to be
the free filterization of Q ⊂ (A, ψ).

Now, construct two subsets X and S of LQ(Z),

X = {uj ∈ LQ(j) : j ∈ Z}, and
S = {Uj ∈ LQ(j) : j ∈ Z}. (6.2)

Recall that a subset Y of an arbitrary topological ∗-probability space (B, ϕ) is
said to be a free family, if all elements ofY are free from each other in (B, ϕ). Also, a
free family Y is called a free (weighted-)semicircular family in (B, ϕ), if this family
Y is not only a free family in (B, ϕ), but also a subset of B whose elements are
(weighted-)semicircular in (B, ϕ). (e.g., [7, 19]).

Theorem 6.1 Let X and S be in the sense of (6.2) in the free filterization LQ(Z) of
(6.1).

(6.3) The family X is a free weighted-semicircular family in LQ(Z).
(6.4) The family S is a free semicircular family in LQ(Z).

Proof Let X be in the sense of (6.2) in LQ(Z). All elements uj of X are taken from
mutually distinct free blocks LQ(j) of LQ(Z), for all j ∈ Z, and hence, they are free
from each other in LQ(Z). Thus, this family X is a free family in LQ(Z). Moreover,
every element uj isψ(qj)2-semicircular inLQ(j) by (4.17) and (4.18). So, the powers
unj of each self-adjoint operator uj ∈ X are again contained in the free block LQ(j)
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as free reduced words with their lengths-1 in LQ(Z), for all n ∈ N, for j ∈ Z. Thus,
we have

τ
(
unj
)

= τj

(
unj
)

= ωnψ(qj)
nc n

2
,

for alln ∈ N, for all j ∈ Z. It shows that each elementuj ∈ X isψ(qj)2-semicircular in
LQ(Z), for all j ∈ Z. Therefore, the familyX of (6.2) is a free weighted-semicircular
family in LQ(Z). Equivalently, the statement (6.3) holds.

Similarly, one can verify that the family S of (6.2) is a free family in LQ(Z),
becauseUj are the scalar-products 1

ψ(qj)
uj of uj in the free familyX of LQ(Z), for all

j ∈ Z. So, the semicircularity (5.4) ofUj’s guarantees that this free family S is a free
semicircular family in the free filterization LQ(Z), i.e., the statement (6.4) holds. �

By (4.17) and (4.18), the only “j-th” generating operators uj of the free blocks
LQ(j) provide non-zero free distributions on LQ(Z) by (6.1). Thus, we now restrict
our interests to the Banach ∗-subalgebra LQ of the free filterization LQ(Z), whose
elements have possible non-zero free distributions.

Definition 6.2 LetLQ(Z)be the freefilterizationofQ.Define aBanach∗-subalgebra
LQ of LQ(Z) by

LQ
def= C [X ], (6.5)

where X is the free weighted-semicircular family (6.3) in LQ(Z), and Y are the
Banach-topology closures of the subsets Y of LQ(Z). Construct the Banach ∗-
probability space,

LQ
denote= (

LQ, τ = τ |LQ

)
, (6.6)

as a free-probabilistic sub-structure of LQ(Z) = (LQ(Z), τ
)
.

We call the Banach ∗-algebra LQ of (6.5), or the Banach ∗-probability space LQ

of (6.6), the semicircular (free-sub-)filterization of LQ(Z).

By the definitions (6.5) and (6.6), the operators of the semicircular filterization
LQ are the free random variables in the free filterization LQ(Z), having “possible”
non-zero free distributions. In particular, all free reduced words of LQ(Z) in X (and
hence, elements of LQ) have non-zero free distributions in LQ(Z), by (4.17) and
(4.18).

Theorem 6.2 Let LQ be the semicircular filterization (6.5) in the free filterization
LQ(Z). Then

LQ
def= C [X ] = C[S]
∗-iso= 


j∈Z
C[{uj}] ∗-iso= C

[


j∈Z

{uj}
]
,

(6.7)
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in LQ(Z), where “
∗-iso= ” means “being Banach-∗-isomorphic,” and where (
) in the

first ∗-isomorphic relation of (6.7) means the free-probabilistic free product of [17,
19], and (
) in the second ∗-isomorphic relation of (6.7) is the pure-algebraic free
product inducing noncommutative free words in X .

Proof The free weighted-semicircular family X of (6.3) can be re-written by

X = {ψ(qj)Uj ∈ LQ(j) : j ∈ Z}

in the free filterization LQ(Z) of Q, where Uj are the semicircular elements 1
ψ(qj)

uj
of the free semicircular family S of (6.4). Therefore,

C[X ] = C[S] inLQ(Z).

It shows that the first (set-)equality (=) of (6.7) holds.
By the definition (6.5) of LQ, it is generated by the free family X , and hence, the

first ∗-isomorphic relation of (6.7) holds in the free filterization LQ(Z) by (6.1).
Since

LQ
∗-iso= 


j∈Z
C[{uj}] inLQ(Z),

every element T of LQ is a limit of linear combinations of free reduced words (in
the sense of [17, 19]). Also, all (pure-algebraic) free words in X have their unique
free-reduced-word forms under operator-product onLQ(Z). Furthermore, if we have
a free (reduced) word

W = N
�
l=1

ujl inX ,

then, as an operator, its adjoint W ∗ satisfies

W ∗ = N
�
l=1

ujN−l+1 inLQ,

by the self-adjointness of uj ∈ X . Therefore, the second ∗-isomorphic relation of
(6.7) holds, too. �

The equality LQ = C[S] in (6.7) shows that the name, the semicircular filteriza-
tion, is well-fit for the Banach ∗-probabilistic sub-structure LQ of (6.6) in the free
filterization LQ(Z).

Theorem 6.3 Let LQ be the semicircular filterization (6.5) in the free filterization
LQ(Z) of Q, and let

X = N
�
l=1

unljl ∈ LQ, for n1, . . . , nN ∈ N,
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where the integer sequence (j1, . . . , jN ) is alternating in Z (if N > 1 in N) in the
sense that:

j1 �= j2, j2 �= j3, . . . , jN−1 �= jN inZ.

(6.8) If N = 1, then

τ
(
X n
) = τ

(
(X ∗)n

) = ωnn1ψ(qj1)
nn1c n

2
,

for all n ∈ N.
(6.9) If N > 1 and if j1, . . . , jN are mutually distinct from each other in Z then

τ(X ) = τ(X ∗) = N
�
l=1

(
ωnlψ(qjl )

nl c nl
2

)
.

Proof Suppose first that N = 1, and X = un1j1 ∈ LQ. Then, by (6.7), this operator X

is a free reduced word with its length-1, contained in the free block C[{uj1}] of the
semicircular filterization LQ. So, the operators X n = unn1j1

are free reduced words

with their lengths-1 in C[{uj1}] embedded in LQ. Thus, one can get that

τ(X n) = τj1

(
unn1j1

)
= ωnn1ψ(qj1)

nn1c nn1
2

,

for all n ∈ N, by the ψ(qj1)
2-semicircularity of uj1 ∈ X .

By the self-adjointness of uj1 , one also has that X = X ∗ in LQ. Therefore, the
statement (6.8) holds.

Assume now that N > 1 in N. Then, by the assumption that (j1, . . . , jN ) is alter-
nating inZ, the operators X and X ∗ form the free reduced words with their lengths-N
in LQ (e.g., [17, 19]). Moreover, since j1, . . . , jN are assumed to be mutually distinct
in Z, one has that

τ(X ) = N
�
l=1

τjl

(
unljl

)
= N

�
l=1

(
ωnlψ(qjl )

nl c nl
2

)

by the weighted-semicircularity of uj1 , . . . , ujN ∈ X in LQ(Z)

= N
�
l=1

τjN−l+1

(
u
nN−j+1

jN−l+1

)
= τ

(
N
�
l=1

unN−l+1
jN−l+1

)
= τ(X ∗). (6.10)

So, the statement (6.9) holds, by (6.10). �

The above theorem characterizes free distributions of free reduced words of the
semicircular filterization LQ in the free weighted-semicircular family X .
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Observation 6.1 Let S be the free semicircular family (6.3) in LQ(Z). In the above
theorem, if we replace ujl ∈ X to Ujl ∈ S, for l = 1, . . . ,N , then the similar free-
distributional data can be obtained by replacing ψ(qjl ) in the formulas (6.8), (6.9)
and (6.10) to 1, under similar conditions, for all l = 1, . . . ,N . I.e.,

τ
(
Un

j1

)
= τ

((
U ∗

j1

)n) = ωnc n
2
, ∀n ∈ N, and

τ

(
N
�
l=1

Unl
jl

)
= τ

((
N
�
l=1

Ujl

)∗)
= N

�
l=1

(
ωnl c nl

2

)
, (6.11)

etc. (also, see [6, 7]). �	

7 Shifts on Z and Integer-Shifts on LQ

In this section, let (A, ψ) be a fixed C∗-probability space containing a family Q =
{qj}j∈Z of mutually-orthogonal projections qj’s having

ψ(qj) ∈ R
×, for all j ∈ Z,

and let LQ be the semicircular filterization of the free filterization LQ(Z) of Q =
C∗ (Q).

7.1 (±)-Shifts on Z

Let Z be the set of all integers. Define bijective functions h+ and h− on Z by

h+(j) = j + 1, and

h−(j) = j − 1,
(7.1.1)

for all j ∈ Z.
Then, for these bijections h± of (7.1.1), one can construct the following bijections

h(n)
± on Z,

h(n)
± = h± ◦ h± ◦ · · · ◦ h±︸ ︷︷ ︸

n-times

, (7.1.2)

for all n ∈ N0 = N ∪ {0}, with identities, h(1)
± = h±, and

h(0)
± = idZ, the identity map on Z,
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satisfying

idZ(j) = j, for all j ∈ Z,

where (◦) is the usual functional composition.
By (7.1.2),

h(n)
± (j) = j ± n, for all j ∈ Z,

for all n ∈ N0.

Definition 7.1 Let h(n)
± be in the sense of (7.1.2), for all n ∈ N0. Then we call h(n)

± ,
the n-(±)-shifts on Z. If n = 1, then the 1-(±)-shifts h± of (7.1.1) are simply said to
be (±)-shifts on Z. Of course, if n = 0 in N0, then 0-(±)-shifts are identified to be
the identity map idZ on Z.

From these shifting processes h(n)
± on Z, we construct certain ∗-isomorphisms on

the semicircular filterization LQ.

7.2 Integer-Shifts on LQ

Let LQ be the semicircular filterization in the free filterization LQ(Z) of Q, and let
h(n)

± be n-(±)-shifts on Z, for all n ∈ N0. In this section, by using these shifts, certain
∗-isomorphisms β

(n)
± on LQ are constructed, and we study how the ∗-isomorphisms

act on LQ, for n ∈ N.
Define a “multiplicative” bounded linear transformation β± onLQ by amorphism

satisfying that:

β±
(
Uj
) = Uh±(j), (7.2.1)

for Uj ∈ S, for all j ∈ Z.
Remark that, by (6.7), the free semicircular family S of (6.4) is the generator set

of LQ. So, by (6.6), the above multiplicative linear transformation β± of (7.2.1) is
well-defined on LQ. By (7.2.1), we obtain the following computations.

Lemma 7.1 Let Y = N
�
l=1

Unl
jl

∈ LQ, for Uj1 , . . . ,UjN ∈ S, and n1, . . . , nN ∈ N, for

N ∈ N. Then

β± (Y ) = N
�
l=1

Unl
jl±1. (7.2.2)

Proof Let Y be given as above in LQ. Then, by the multiplicativity of the linear
transformations β± of (7.2.1), one has that
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β±(Y ) = N
�
l=1

β±
(
Unl

jl

)
= N

�
l=1

(
β±
(
Ujl

))nl = N
�
l=1

Unl
h±(jl)

.

Therefore, the formula (7.2.2) holds. �

Now, let uj1 , . . . , ujN ∈ X be weighted-semicircular elements generating LQ, for
N ∈ N, and let

X = N
�
l=1

unljl , for n1, . . . , nN ∈ N.

Then

β± (X ) = β±
((

N
�
l=1

ψ(qjl )
nl

)(
N
�
l=1

Unl
jl

))

since

Ujl = 1

ψ(qjl )
ujl ∈ S ⇐⇒ ujl = ψ(qjl )Ujl ∈ X

in LQ, and hence, the above equality goes to

=
(

N
�
l=1

ψ(qjl )
nl

)
β±
(

N
�
l=1

Unl
jl

)

=
(

N
�
l=1

ψ(qjl )
nl

)(
N
�
l=1

Unl
h±(jl)

)
,

by (7.2.2).

Corollary 7.2 Let X = N
�
l=1

unljl ∈ LQ, for uj1 , . . . , ujN ∈ X in LQ, for n1, . . . ,

nN ,N ∈ N. Then

β±(X ) =
(

N
�
l=1

ψ(qjl )
nl

)(
N
�
l=1

Unl
h±(jl)

)

=
(

N
�
l=1

ψ(qjl )
nl

)(
β±
(

N
�
l=1

Unl
jl

))
,

(7.2.2)′

in LQ, where Ujl = 1
ψ(qjl )

ujl ∈ S in LQ, for all l = 1, . . . ,N.

Proof The proof of (7.2.2)′ is done by (7.2.2). �

By (7.2.2) and (7.2.2)′, one can realize that the free-reduced-word-ness on LQ is
preserved by that on the set β±(LQ). Indeed, if an arbitrary N -tuple (j1, . . . , jN ) is
alternating in Z, then the N -tuples (h±(j1), . . . , h±(jN )) are alternating in Z, too, for
allN ∈ N. It guarantees thatβ± preserves the freeness on the semicircular filterization
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LQ. So, if the operators Y and X are in the sense of the above lemma, respectively,
of the above corollary, and if we further assume they are free reduced words with
their lengths-N in LQ, with

j1 �= j2, j2 �= j3, . . . , jN−1 �= jN in Z,

then the images

β±(Y ), and β±(X )

are again free reduced words with their lengths-N in LQ.

Theorem 7.3 Let β± be the multiplicative linear transformations (7.2.1) on LQ.
Then they are ∗-isomorphisms on LQ.

Proof By (6.5), (6.6) and (6.7), all elements of the semicircular filterization LQ are
the limits of linear combinations of free reducedwords in the free semicircular family
S of (6.4). So, let’s focus on free reduced words of LQ in S.

Let (j1, . . . , jN ) be an alternating N -tuple in Z for N ∈ N, and

Y = N
�
l=1

Unl
jl

, for n1, . . . , nN ∈ N.

By the alternating-ness of (j1, . . . , jN ), the above operator Y is a free reduced
word with its length-N in LQ by (6.7).

Then, by (7.2.2),

β±(Y ) = N
�
l=1

Unl
h±(jl)

, (7.2.3)

where h± are the (±)-shifts (7.1.1) on Z.
By the bijectivity of h±, the relation (7.2.3) guarantees the bijectivity of β± on

LQ. I.e., these multiplicative linear transformations β± of (7.2.1) are generator-
preserving, and hence, they are bounded and bijective on LQ.

Consider now that if Y is as above, then

β±(Y ∗) = β±
(

N
�
l=1

UnN−l+1
jN−j+1

)

by the self-adjointness of Uj1 , . . . ,UjN

= N
�
l=1

UnN−l+1

h±(jN−l+1)

by (7.2.2)
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=
(

N
�
l=1

Unl
h±(jl)

)∗
= (β±(Y ))∗ . (7.2.4)

So,

β±(T ∗) = (β±(T ))∗ , for all T ∈ LQ,

by (7.2.4), under linearity.
Therefore, the bounded multiplicative linear transformations β± of (7.2.1) are

both bijective, and adjoint-preserving on LQ, equivalently, they are well-defined ∗-
isomorphisms on LQ. �

From the above theorem, one can realize that the (±)-shifts h± on Z induce the
corresponding ∗-isomorphisms β± on LQ.

Definition 7.2 Letβ± be the∗-isomorphisms (7.2.1) on the semicircular filterization
LQ, induced by the (±)-shifts h± of (7.1.1) onZ. Then they are said to be (±)-integer-
shift(-∗-isomorphism)s on LQ.

These two ∗-isomorphisms β± satisfy the following identity relation on LQ.

Proposition 7.4 Let β± be the (±)-integer-shifts (7.2.1) on LQ. Then

β+β− = 1LQ = β−β+ on LQ, (7.2.5)

where 1LQ is the identity map on LQ, satisfying

1LQ (T ) = T , for all T ∈ LQ.

Proof As we discussed above, it suffices to consider the cases where we have free
reduced words

Y = N
�
l=1

Unl
jl
of LQ, for n1, . . . , nN ∈ N,

for N ∈ N, where Ujl ∈ S, for l = 1, . . . ,N , and (j1, . . . , jN ) is alternating in Z, by
(7.2.2), (7.2.2)′, and (6.7).

Observe that

β+β−(Y ) = β+
(

N
�
l=1

Unl
h−(jl)

)
= β+

(
N
�
l=1

Unl
jl−1

)

= N
�
l=1

Unl
h+(jl−1) = N

�
l=1

Unl
jl−1+1 = Y ,

similarly,

β−β+(Y ) = Y .
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Therefore, for any arbitrary operators S ∈ LQ,

β+β−(S) = β−β+(S) in LQ.

Therefore, the identity (7.2.5) holds. �

Let β± be the (±)-integer-shifts on LQ. Then one can construct ∗-isomorphisms
βn±,

βn
± = β±β± · · · · · ·β±︸ ︷︷ ︸

n-times

on LQ, (7.2.6)

for all n ∈ N0 = N ∪ {0}, with identity,

β0
+ = 1LQ = β0

−.

Since β± and 1LQ are ∗-isomorphisms, the morphisms βn± are well-defined ∗-
isomorphisms on LQ, too, for all n ∈ N0.

Definition 7.3 Letβn± be the∗-isomorphisms (7.2.6) on the semicircular filterization
LQ, for all n ∈ N0. Then they are called the n-(±)-(integer-)shifts on LQ, for all
n ∈ N0.

By (7.2.5) and (7.2.6), one obtains the following relations on the system {βn± :
n ∈ N0} of ∗-isomorphisms.

Theorem 7.5 Let βn± be the n-(±)-shifts on the semicircular filterization LQ, for
n ∈ N0. Then they satisfy

β
n1+ β

n2− = β
n2− β

n1+ =
⎧⎨
⎩
1LQ if n1 = n2
β
n1−n2+ if n1 > n2

β
n2−n1− if n1 < n2,

(7.2.7)

on LQ, for all n1, n2 ∈ N0. Also,

β
n1+ β

n2+ = β
n1+n2+ , and β

n1− β
n2− = β

n1+n2− , (7.2.8)

on LQ, for all n1, n2 ∈ N0.

Proof By the identity (7.2.5), two ∗-isomorphisms β+ and β− are not only com-
mutative on LQ, but also their products β+β− and β−β+ become the identity ∗-
isomorphism 1LQ on LQ. So, for any n1, n2 ∈ N0,

β
n1+ β

n2− = β
n2− β

n1+ on LQ.

Thus, let’s focus on the ∗-isomorphisms β
n1+ β

n2− , for arbitrarily fixed n1, n2 ∈ N0.
Suppose first that n1 = n2 = n in N0. Then, by (7.2.5),
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β
n1+ β

n2− = βn
+βn

− = (β+β−)n = (1LQ

)n = 1LQ . (7.2.9)

Assume now that n1 > n2 in N0. Then

β
n1+ β

n2− = β
n1−n2+ β

n2+ β
n2− = β

n1−n2+ , (7.2.10)

on LQ, by (7.2.9).
Similar to (7.2.10), if n1 < n2 in N0, then

β
n1+ β

n2− = β
n1+ β

n1− β
n2−n1− = β

n2−n1− , (7.2.11)

on LQ.
So, the formula (7.2.7) is proven by (7.2.9), (7.2.10) and (7.2.11).
For any free generators Uj ∈ S of LQ (by (6.7)), one can get that

β
n1+ β

n2+
(
Un

j

)
= β

n1+
(
Un

j+n2

)
= Un

j+n1+n2
= β

n1+n2+
(
Un

j

)
,

and

β
n1− β

n2−
(
Un

j

)
= β

n1−
(
Un

j−n2

)
= Un

j−n2−n1

= Un
j−(n1+n2)

= β
n1+n2−

(
Un

j

)
,

(7.2.12)

for all j ∈ Z, for all n ∈ N, for all n1, n2 ∈ N0.
Therefore, the formula (7.2.8) holds on LQ by (7.2.2), (7.2.2)′, and (7.2.12). �

The above relations (7.2.7) and (7.2.8) can be re-expressed as follows;

βn1
e1 β

n2
e2 = βn2

e2 β
n1
e1 = β

|e1n1+e2n2|
sgn(e1n1+e2n2)

on LQ, with

sgn(e1n1 + e2n2) =
{+ if e1n1 + e2n2 ≥ 0

− if e1n1 + e2n2 < 0,
(7.2.13)

for all e1, e2 ∈ {±}, and n1, n2 ∈ N0, where sgn in (7.2.13) is the sign map on Z,

sgn(j)
def=
{+ if j ≥ 0

− if j < 0,

for all j ∈ Z, and |.| is the absolute value on Z.
From below, we use the re-expression (7.2.13) for the results (7.2.7) and (7.2.8)

for convenience.
Now, consider the system B of n-(±)-shifts βn± on LQ, i.e.,

B = {βn
±}n∈N0 . (7.2.14)
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Let Aut(LQ) be the group,

Aut
(
LQ
) =

⎛
⎝
⎧⎨
⎩α : LQ → LQ

∣∣∣∣∣∣
α are

∗-isomorphisms
on LQ

⎫⎬
⎭ , ·

⎞
⎠ (7.2.15)

consisting of all ∗-isomorphisms on LQ, where the operation (·) means the prod-
uct (or compositions) of ∗-isomorphisms. We call Aut(LQ) of (7.2.15), the (∗-)
automorphism group on LQ. (Recall that ∗-isomorphisms on a ∗-algebra are called
∗-automorphisms.)

By the construction (7.2.14), the system B is definitely a “subset” of the auto-
morphism group Aut(LQ) of (7.2.15). Note that the operation (·) is closed on B, in
the sense that:

(
βn1
e1 , β

n2
e2

) ∈ B × B �−→ βn1
e1 β

n2
e2 ∈ B, (7.2.16)

for all e1, e2 ∈ {±}, and n1, n2 ∈ N0, by (7.2.13).
Clearly, by (7.2.8), one can get that

(
βn1
e βn2

e

)
βn3
e = βn1+n2+n3

e = βn1
e

(
βn2
e βn3

e

)
, (7.2.17)

for all e ∈ {±}, and n1, n2, n3 ∈ N0.
Observe now that

(
β
n1+ β

n2−
)
β
n3+ = β

|n1−n2|
σ(n1,n2)

β
n3+ = β

||n1−n2|−n3|
σ(|n1−n2|,n3), and

β
n1+
(
β
n2− β

n3+
) = β

n1+ β
|n2−n3|
σ(n2,n3)

= β
|n1−|n2−n3||
σ(n1,|n2−n3|), (7.2.18)

by (7.2.7) (and (7.2.13)), for all n1, n2, n3 ∈ N0, where

σ (n, k)
def= sgn (n − k) , for all n, k ∈ N0,

in (7.2.18).
Consider two positive quantities a1 and a2,

a1 = ||n1 − n2| − n3| , and

a2 = |n1 − |n2 − n3|| , (7.2.19)

for n1, n2, n3 ∈ N0.
If either n1 ≤ n2 ≤ n3, or n1 ≥ n2 ≥ n3 in N0, then

a1 = |n2 − n1 − n3| = a2; (7.2.20)

and if either n1 ≤ n3 ≤ n2, or n1 ≥ n3 ≥ n2 in N0, then
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a1 = |n2 − n1 − n3| = a2; (7.2.21)

and if either n2 ≤ n3 ≤ n1, or n2 ≥ n3 ≥ n1 in N0, then

a1 = |n1 − n2 − n3| = a2, (7.2.22)

where a1 and a2 are the quantities (7.2.19).

Lemma 7.6 Let B = {βn±}n∈N0 be the system (7.2.14). Then

(
βn1
e1 β

n2
e2

)
βn3
e3 = βn1

e1

(
βn2
e2 β

n3
e3

)
on LQ, (7.2.23)

for all e1, e2, e3 ∈ {±}, and n1, n2, n3 ∈ N0.

Proof By (7.2.17), we have

(
βn1
e βn2

e

)
βn3
e = βn1

e

(
βn2
e βn3

e

)
on LQ,

for all e ∈ {±}, and n1, n2, n3 ∈ N0.
By (7.2.18), (7.2.20), (7.2.21) and (7.2.22),

(
β
n1+ β

n2−
)
β
n3+ = β

||n1−n2|−n3|
sgn(|n1−n2|−n3)

= β
a1
sgn(a′

1)

= β
a2
sgn(a′

2)
= β

|n1−|n2−n3||
sgn(n1−|n2−n3|)

= β
n1+
(
β
n2− β

n3+
)
,

(7.2.24)

on LQ, for all n1, n2, n3 ∈ N0, where a1 = ∣∣a′
1

∣∣ and a2 = ∣∣a′
2

∣∣ are in the sense of
(7.2.19), and sgn is the sign map on Z in (7.2.13).

Similar to (7.2.24), one can obtain that

(
β
n1− β

n2+
)
β
n3− = β

||n1−n2|−n3|
sgn(|n1−n2|−n3)

= β
|n1−|n2−n3||
sgn(n1−|n2−n3|) = β

n1−
(
β
n2+ β

n3−
)
,

(7.2.25)

on LQ, for all n1, n2, n3 ∈ N0.
Therefore, the formula (7.2.23) holds onB, by (7.2.17), (7.2.24) and (7.2.25). �

By the above lemma, we obtain the following structure theorem of the systemB
of (7.2.14) in the automorphism group Aut(LQ).

Theorem 7.7 Let B be the subset (7.2.14) of the automorphism group Aut(LQ) of
(7.2.15). Then B is a subgroup of Aut(LQ).

Proof LetB be in the sense of (7.2.14). Then, by (7.2.16), the operation (·) is closed
on B. So, the algebraic pair B = (B, ·) is well-constructed as an algebraic sub-
structure of Aut(LQ). By (7.2.23), this operation is associative on B, and hence, it
forms a semigroup. Since
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β0
+ = 1LQ = β0

−inB,

and since

βn
e · 1LQ = βn

e = 1LQ · βn
e ,

for all e ∈ {±}, and n ∈ N0, the semigroup B contains its (·)-identity 1LQ . Thus, it
forms a monoid.

Finally, by (7.2.7), all elements βn± ∈ B have their unique (·)-inverses βn∓ ∈ B,
such that

βn
+βn

− = 1LQ = βn
−βn

+ onLQ,

for all n ∈ N0, i.e.,

(
βn

±
)−1 = βn

∓ onLQ, for all n ∈ N0,

where x−1 mean the group-inverses of x. So, this monoid B forms a group.
Therefore, the systemB is a subgroup of the automorphism group Aut(LQ). �

By the above theorem, the systemB of (7.2.14) is a group. As a group,B satisfies
the following group-property.

Theorem 7.8 LetB be the subgroup (7.2.14) of the automorphism group Aut(LQ).
Then B is group-isomorphic to the infinite abelian cyclic group Z = (Z,+). I.e.,

B
Group= (Z,+), (7.2.26)

where “
Group= ” means “being group-isomorphic.”

Proof Define now a function � : Z → B by

� : j ∈ Z �−→ β
|j|
sgn(j) ∈ B, (7.2.27)

where sgn is the sign map on Z (for example, �(2) = β2+, and �(−3) = β3−, etc.),
with identity,

0 ∈ Z �−→ 1LQ = β0
± ∈ B.

It is not hard to check that this function � of (7.2.27) is a well-defined bijection
from Z onto B, by (7.2.14). Consider now that

�(j1 + j2) = β
|j1+j2|
sgn(j1+j2)

= β
|j1|
sgn(j1)

β
|j2|
sgn(j2)

= �(j1)�(j2),
(7.2.28)
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inB, by (7.2.13), for all j1, j2 ∈ Z.
So, the bijection� of (7.2.27) is a group-homomorphismby (7.2.28), equivalently,

it is a group-isomorphism from Z ontoB. Therefore, the group-isomorphic relation
(7.2.26) holds true. �

The above theorem characterizes the group-structure of the subgroup B =
{βn±}n∈N0 of the automorphism group Aut(LQ). I.e., B is an infinite cyclic abelian
group.

Definition 7.4 LetB be the subgroup (7.2.14) of the automorphism group Aut(LQ).
We call B, the integer-shift (sub)group (of Aut(LQ) acting) on LQ.

7.3 Free Distributions on LQ Under the Action ofB

LetB be the integer-shift group (7.2.14) acting on the semicircular filterizationLQ of
Q, which is an infinite abelian cyclic subgroup of the automorphism group Aut(LQ),
by (7.2.26). In this section, we consider how our ∗-isomorphisms βn± ∈ B affects
the free probability on the semicircular filterization LQ. To do that, we fix n0 ∈ N0

arbitrarily throughout this section, and fix the corresponding n0-(±)-shifts β
n0± inB,

and construct new linear functionals τ±(n0) on LQ,

τ±(n0)
def= τ ◦ β

n0± onLQ, i.e.,
τ+(n0) = τ ◦ β

n0+ , and τ−(n0) = τ ◦ β
n0− ,

(7.3.1)

on LQ, where τ is the linear functional of (6.6).
Since β

n0± ∈ B are well-defined ∗-isomorphisms, and τ is a linear functional on
LQ, the morphism τ±(n0) of (7.3.1) are well-determined bounded linear functionals
on LQ.

Proposition 7.9 Suppose n0 = 0 in N0, and hence, β
n0± = β0± = 1LQ is the group-

identity of the integer-shift group B. Then

τ±(0) = τ ◦ β0
± = τ, (7.3.2)

on the semicircular filterization LQ.

Proof The identity (7.3.2) is trivial by (7.3.1) and (7.2.7). �

By (7.3.2), we are not interested in the case where n0 = 0 in N0. So, if there is no
confusion, we will automatically assume below that n0 ∈ N in N0, and τ±(n0) are the
corresponding linear functionals (7.3.1) on LQ.

Definition 7.5 Let LQ be the semicircular filterization (as a Banach ∗-algebra), and
let τ±(n0) be the linear functionals (7.3.1) on LQ. The pairs
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L
+(n0)
Q = (LQ, τ+(n0)

)
, and

L
−(n0)
Q = (LQ, τ−(n0)

) (7.3.3)

are called the n0-(+)-shifted (Banach-)∗-probability space of LQ, respectively, the
n0-(−)-shifted (Banach-)∗-probability space of LQ.

Define operators X , Y ∈ LQ by

X = N
�
l=1

unljl , and Y = N
�
l=1

Unl
jl
inLQ (7.3.4)

where ujl ∈ X are ψ(qjl )
2-semicircular elements, and Ujl = 1

ψ(qjl )
ujl ∈ S are the

corresponding semicircular elements, generating the semicircular filterization LQ

(by (6.7)), for all l = 1, . . . ,N , for N ∈ N.

Theorem 7.10 Let X and Y be in the sense of (7.3.4), as free random variables of
the n0-(±)-shifted probability spaces L±(n0)

Q of (7.3.3).

(7.3.5) If N = 1 in N, then

τ±(n0)
(
X n
) = ωnn1ψ

(
qjl
)nn1 c nn1

2
,

and

τ±(n0)
(
Y n
) = ωnn1c nn1

2
,

for all n ∈ N.
(7.3.6) Let N > 1 in N, and let the integer-sequence (j1, . . . , jN ) be alternating in

Z. Assume further that j1, . . . , jN are mutually distinct in Z. Then

τ±(n0)(X ) = N
�
l=1

(
ωnlψ

(
qjl
)nl c nl

2

)
= τ±(n0)

(
X ∗)

and

τ±(n0)(Y ) = N
�
l=1

(
ωnl c nl

2

)
= τ±(n0)(Y

∗).

Proof First assume that N = 1, and hence, X = un1j1 , and Y = Un1
j1

in the n0-(±)-

shifted probability spaces L
±(n0)
Q . Then both X n and Y n are regarded as the free

reduced words with their lengths-1 in LQ, for all n ∈ N, by (6.5) and (6.7). Thus,

τ±(n0)

((
un1j1

)n) = ψ(qj1)
nn1τ

(
β
n0± (Unn1

j1
)
)

= ψ(qj1)
nn1τj1±n0

(
Unn1

j1±n0

)
= ωnn1ψ

(
qj1
)nn1 c nn1

2
,
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by (7.2.2)′, and

τ±(n0)

((
Un1

j1

)n) = τ
(
Unn1

j1±n0

)
= ωnn1c nn1

2
,

by (7.2.2) and (7.2.3), for all n ∈ N, by the semicircularity of Uj1±n0 ∈ S, in the
semicircular filterization LQ. Therefore, the statement (7.3.5) holds.

Assume now thatN > 1 inN, and the operators X and Y are in the sense of (7.3.4)
in LQ. By the condition that (j1, . . . , jN ) is alternating in Z, these operators X and
Y are free reduced words with their lengths-N in LQ, by (6.5) and (6.7). Moreover,
since j1, . . . , jN are assumed to be mutually distinct in Z, one can get that

τ±(n0)(X ) = ψX τ

(
β
n0±

(
N
�
l=1

Unl
jl

))
= ψX τ

(
N
�
l=1

Unl
jl±n0

)

by (7.2.2)′, and (7.2.3)

= ψX

N
�
l=1

τjl±n0

(
Unl

jl±n0

)

= N
�
l=1

(
ωnlψ

(
qjl±n0

)nl c nl
2

)
, (7.3.7)

by the semicircularity of Ujl±n0 ∈ S, where

ψX = N
�
l=1

ψ(qjl )
nl ∈ R

×inC.

Similar to (7.3.7),

τ±(n0)(Y ) = N
�
l=1

(
ωnl c nl

2

)
,

by (7.2.2), (7.2.3) and by the semicircularity of Ujl±n0 ∈ S. Remark that, by the
self-adjointness of ujl and Ujl , for all l = 1, . . . ,N ,

X ∗ = N
�
l=1

unN−l+1
jN−l+1

and Y ∗ = N
�
l=1

UnN−l+1
jN−l+1

are free reduced words with their lengths-N in LQ, with mutually distinct jN , jN−1,

. . . , j1 in Z. Thus,

τ±(n0)(X
∗) = τ±(n0)(X ),

and

τ±(n0)(Y
∗) = τ±(n0)(Y ).
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Therefore, the statement (7.3.6) holds true. �

The above theorem shows how the original free distributional data on the semicir-
cular filterization

(
LQ, τ

)
are affected by the n0-(±)-shift β

n0± on LQ. Compare the
free-distributional data (6.8), (6.9), and the above results (7.3.5), (7.3.6).

Corollary 7.11 Let LQ = (LQ, τ ) be the semicircular filterization, and L
±(n0)
Q =

(LQ, τ±(n0)), the n0-(±)-shifted ∗-probability spaces (7.3.3) of LQ.

(7.3.8) The semicircular law on LQ induced by Uj ∈ S on LQ is preserved to that
on L

±(n0)
Q .

(7.3.9) The ψ(qj)2-semicircular laws induced by uj ∈ X on LQ are preserved to be

the ψ
(
qj
)2
-semicircular laws on L±(n0)

Q .

Proof Now, let Uj ∈ S be a semicircular element 1
ψ(qj)

uj in the semicircular filter-
ization LQ, for uj ∈ X , for j ∈ Z. By understanding it as a free random variable in
the n0-(±)-shifted ∗-probability spaces L±(n0)

Q , one has that

τ±(n0)

(
Un

j

)
= τ

(
Un

j±n0

)
= ωnc n

2
,

for all n ∈ N, by (7.3.5), (7.3.6) and (7.3.7). It means that the self-adjoint free random
variable Uj is semicircular in L

±(n0)
Q , too. I.e., the semicircular law on LQ induced

by Uj ∈ S is preserved to be the semicircular law on L
±(n0)
Q induced by Uj±n0 ∈ S.

Therefore, the statement (7.3.8) holds.
Now, consider the ψ(qj)2-semicircular element uj = ψ(qj)Uj ∈ X in the semi-

circular filterization LQ, and regard it as a self-adjoint free random variable in the
n0-(±)-shifted ∗-probability spaces L±(n0)

Q . Then

τ±(n0)

(
unj
)

= ψ(qj)
nτ
(
Un

j±n0

)
= ωnψ

(
qj
)n
c n

2
,

for all n ∈ N, by (7.2.2)′, (7.3.5), (7.3.6) and (7.3.7).
It shows that the ψ(qj)2-semicircular law on LQ induced by uj ∈ X is preserved

to be the ψ(qj)2-semicircular laws on L
±(n0)
Q induced by

β
n0±
(
uj
) = ψ(qj)Uj±n0 ∈ LQ,

respectively, where Uj±n0 ∈ S. So, the statement (7.3.9) holds true. �

As we have seen above, the (weighted-)semicircular law(s) induced by our free
semicircular family (X∪)S on the semicircular filterization LQ is (are) preserved
to be the “same” (weighted-)semicircular law(s) induced by (X∪)S on the n0-(±)-
shifted ∗-probability spaces L±(n0)

Q of (7.3.3), by (7.3.8) and (7.3.9).

Definition 7.6 Let (B1, ϕ1) and (B2, ϕ2) be arbitrary topological ∗-probability
spaces. We say that they are free-(∗-)isomorphic, if (i) B1 and B2 are ∗-isomorphic
via a ∗-isomorphism � : B1 → B2, and (ii)
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ϕ2 (�(a)) = ϕ1(a), for all a ∈ (B1, ϕ1),

where �(a) ∈ (B2, ϕ2). In other words, (B1, ϕ1) and (B2, ϕ2) are free-isomorphic, if
and only if they are equivalent in the sense of Voiculescu (e.g., [19]).

By (7.3.8), (7.3.9) and (6.7), we obtain the following theorem.

Theorem 7.12 Let LQ be the semicircular filterization, and let L±(n0)
Q be the n0-

(±)-∗-probability spaces (7.3.3) of LQ. Then they are free-isomorphic from each
other.

Proof By the structure theorem (6.7) of LQ, it suffices to show that free reduced
words in the generator set S, our free semicircular family, of LQ preserves their free
distributions to those of L±(n0)

Q , under the identity operator on LQ. But, by (7.3.5),
(7.3.6), (7.3.8) and (7.3.9), free distributions of free generators of LQ are preserved
to be the same free distributions of L±(n0)

Q , under the identity operators,

I+ : LQ → L
+(n0)
Q , and I− : LQ → L

−(n0)
Q ,

where

I±(T ) = T ∈ L
±(n0)
Q , for all T ∈ LQ.

Therefore, the Banach ∗-probability spaces LQ and L
+(n0)
Q (resp., LQ and L

−(n0)
Q )

are free-isomorphic. And hence, L+(n0)
Q and L

−(n0)
Q are free-isomorphic, too. �

The above theorem fully characterize how each ∗-isomorphism β of the integer-
shift group B affects the free probability on the semicircular filterization LQ. By
acting β ∈ B on LQ, the free probability on LQ is preserved to that on β(LQ) = LQ.

8 Actions ofB on LQ

Let LQ = (LQ, τ ) be the semicircular filterization, and let B be the integer-shift
group acting on LQ, an infinite abelian cyclic subgroup of the automorphism group
Aut(LQ). In Sect. 7.3, we showed howB acts onLQ, and how it preserves the original
free-distributional data on LQ, by (7.3.8) and (7.3.9).

Corollary 8.1 LetB be the integer-shift group acting on the semicircular filteriza-
tion LQ, and let

h = βn1
e1 β

n2
e2 . . . βnN

eN ∈ B, (8.1)

where (e1, . . . , eN ) ∈ {±}N , and n1, . . . , nN ∈ N
N , for N ∈ N. Then
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τ
((
h(uj)

)n) = ωnψ
(
qj
)n
c n

2
= τ

(
unj

)
, and

τ
((
h(Uj)

)n) = ωnc n
2

= τ
(
Un

j

)
,

(8.2)

for all n ∈ N.

Proof Let h be a ∗-isomorphism (8.1) in the integer-shift group B, acting on LQ.
Since B is a well-defined group, and B = {βn±}n∈N0 , set-theoretically, there exist
unique e ∈ {±}, and n0 ∈ N0, such that

h = βn0
e ∈ B.

Indeed, one can take

e1n1 + e2n2 + · · · + eNnN ∈ Z, where

elnl =
{
nl if el = +
−nl if el = −,

(8.3)

for all l = 1, . . . ,N . Then

e = sgn (e1n1 + e2n2 + · · · + eNnN ) ∈ {±} and
n0 = |e1n1 + e2n2 + · · · + eNnN | ∈ N0,

(8.4)

by (7.2.6) and (8.3).
Therefore, one obtains that

τ
((
h(uj)

)n) = τ
(
h(unj )

)
= τ

(
βn0
e (unj )

)

= ψ(qj)
nτ
(
Un

jen0

)
= ωnψ

(
qj
)n
c n

2
,

by (8.4), for all n ∈ N. Therefore, the free-distributional data in (8.2) hold. �

Now, let’s re-consider the structure theorem (7.2.6) of our integer-shift groupB.
By (7.2.6), one can directly act the group Z on the semicircular filterization LQ. Let
j ∈ Z. Then

j = ejnj inZ, with
ej = sgn(j) ∈ {±}, and nj = |j| ∈ N0.

(8.5)

For instance, if j = 3, then ej = +, and nj = 3; if j = −2, then ej = −, and nj = 2;
if j = 0, then ej = +, or −, and nj = 0, etc.

By regarding every integer j ∈ Z as its unique expression (8.5), one can define an
action α of Z acting on LQ by

α : j ∈ Z �−→ β
nj
ej ∈ B ⊂ Aut(LQ), (8.6)
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where ej and nj for an integer j are in the sense of (8.5). Then, by (7.2.6), the above
action α of (8.6) is well-defined.

Recall now that if G is a group, and A is a topological ∗-algebra, and if there
exists a group-action γ of G acting onA, i.e., γ (g) ∈ Hom(A), for all g ∈ G, where
Hom(A) is the (∗-)homomorphism group consisting of all ∗-homomorphisms onA,
satisfying

γ (g1g2) = γ (g1)γ (g2) onA, ∀g1, g2 ∈ G,

then the mathematical triple

(G,A, γ )

is called the group (topological-∗-)dynamical system of G acting onA via a group-
action γ . In particular, if A is a C∗-algebra, or a W ∗-algebra (von Neumann alge-
bra), or a Banach ∗-algebra, then the triple is said to be a group C∗-dynamical
system, respectively, a group W ∗-dynamical system, respectively, a group Banach
∗-dynamical system (or a group B∗-dynamical system), etc. Remark that the auto-
morphism group Aut(A) is a subgroup of the homomorphism group Hom(A). So,
there are well-defined group B∗-dynamical systems,

(
Z,LQ, α

)
,

where α is in the sense of (8.6), and

(
B,LQ, β

)
,

with

β : βn
e ∈ B �−→ βn

e ∈ Aut(LQ), (8.7)

for all e ∈ {±}, and n ∈ N0.

Theorem 8.2 LetB be the integer-shift group embedded in the automorphism group
Aut(LQ) of the semicircular filterization LQ, and let Z = (Z,+) be the infinite
abelian cyclic group. Then the group B∗-dynamical systems

(
B,LQ, β

)
and

(
Z,LQ, α

)

are equivalent in the sense that: (i) B and Z are group-isomorphic via a group-
isomorphism � : Z → B, and (ii) β (�(j)) = α(j) on LQ, for all j ∈ Z, where α

and β are in the sense of (8.6) and (8.7), respectively. I.e.,

(
B,LQ, β

) equi= (
Z,LQ, α

)
. (8.8)
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Proof Let
(
B,LQ, β

)
and

(
Z,LQ, α

)
be the above group B∗-dynamical systems,

where α and β are in the sense of (8.6), respectively, (8.7).
By (7.2.6), there exists a group-isomorphism � : Z → B,

�(j) = β
nj
ej ∈ B, for all j ∈ Z,

where j = ejnj in the sense of (8.5).
By (8.6) and (8.7), one has that

β (�(j)) = β
(
β
nj
ej

) = β
nj
ej = α(j), onLQ,

for all j ∈ Z. Therefore, these two group B∗-dynamical systems
(
B,LQ, β

)
and(

Z,LQ, α
)
are equivalent. �

The above theorem shows that the group action α of Z acting on LQ affects the
free probability on the semicircular filterization LQ just like the group action β of
B.

Observation 8.1 All same results of Sect. 7.3 are re-obtained, if we replace βn
e ∈ B

to α(en) ∈ α(Z), for all e ∈ {±} and n ∈ N0, where α and β are in the sense of (8.6)
and (8.7), respectively. The proof is done by the equivalence (8.8). �	

9 Banach-Space Operators on LQ Preserving Free
Probability

Let (A, ψ) be a fixed C∗-probability space containing the family Q = {qj}j∈Z of
mutually orthogonal projections, and letQ be the C∗-subalgebra C∗(Q) of A, and let
LQ be the corresponding semicircular filterization of Q. Also, let B be the integer-
shift group in the automorphism group Aut(LQ), which is group-isomorphic to Z =
(Z,+). Let X be an arbitrary Banach space, and let B(X ) be the operator space
consisting of all bounded linear transformations, the Banach-space operators, on X
(e.g., [9]). Let IX be the identity operator on X ,

IX (x) = x, for all x ∈ X .

A Banach-space operator T ∈ B(X ) is said to be invertible on X , if there exists a
unique Banach-space operator T−1 ∈ B(X ), such that

TT−1 = IX = T−1T onX .

The operator T−1 is called the inverse (operator) of T on the Banach space X .
Now, for our semicircular filterization LQ, we consider the operator space B(LQ) by
regarding the Banach ∗-algebra LQ as a Banach space. Then the integer-shift group
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B is contained in B(LQ), as a subset, because all integer-shifts of B are bounded
(multiplicative) linear transformations on LQ. Equivalently, every group element βn

e
of B is a Banach-space operator on LQ, for all e ∈ {±}, n ∈ N0.

Theorem 9.1 LetLQ be our semicircular filterization ofQ. There exists an invertible
Banach-space operator T in the operator space B(LQ) such that T preserves the free
probability on LQ.

Proof The proof of this theorem is done by construction. Indeed, let βn
e be the n-

(e)-shift in the integer-shift group B contained in the operator space B(LQ), which
is a Banach-space operator on LQ, for e ∈ {±} and n ∈ N0. Then this Banach-space

operator βn
e is invertible with its inverse

(
βn
e

)−1
,

(
βn
e

)−1 = βn
−e ∈ B ⊂ B(LQ),

where βn−e is the group-inverse of βn
e inB, satisfying

(
βn
e

) (
βn
e

)−1 = 1LQ = (βn
e

)−1 (
βn
e

)
,

on LQ, where 1LQ is the identity operator on the Banach space LQ (which is also the
group-identity ofB).

Moreover, this operatorβn
e preserves the free-distributional data of all free reduced

words in the free semicircular family S generating the Banach space LQ, by (7.3.8),
(7.3.9) and (8.2). Therefore, by (6.5), (6.6) and (6.7), the free probability on LQ is
preserved by βn

e . �

The above theorem illustrates that there are sufficiently many invertible Banach-
space operators on LQ preserving free probability on LQ.
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1 Motivations and Main Results

It is well known [4, 7, 8, 35, 39] that the Cauchy numbers of the first kind Cn can
be generated by

t

ln(1 + t)
=

∞∑

n=0

Cn
tn

n! .

In [2], degenerate Cauchy numbers Cn(λ) were defined by

λ
[
e[(1+t)λ−1]/λ − 1

]

(1 + t)λ − 1
=

∞∑

n=0

Cn(λ)
tn

n! .

Because

lim
λ→0

(1 + t)λ − 1

λ
= ln(1 + t) or lim

λ→0
e[(1+t)λ−1]/λ = 1 + t,

it follows that
lim
λ→0

Cn(λ) = Cn, n ≥ 0. (1)

In [2, Theorem 2.1], it was established that the family of nonlinear differential
equations

(1 + t)n
[
(1 + t)λ − 1

]n F(n)
λ (t) = Fλ(t)

2n∑

i=1

ai (n,λ)(1 + t)iλ +
2n−1∑

i=1

bi (n,λ)(1 + t)iλ

(2)
for n ∈ N has the same solution

Fλ(t) = e[(1+t)λ−1]/λ − 1

(1 + t)λ − 1
, (3)

where ai (n,λ) for 1 ≤ i ≤ 2n and bi (n,λ) for 1 ≤ i ≤ 2n − 1 are uniquely deter-
mined by

a1(n,λ) = − 1

λ
〈n − 1 − λ〉n+1, a2(n,λ) = 〈n − 1 − 2λ〉n−1

− 1

λ

n−2∑

i=0

[λ − (λ + 1)(n − i)]〈n − i − 2 − λ〉n−i 〈n − 1 − 2λ〉i ,

ai (n,λ) = [(i − 1)λ − (λ + 1)n]ai (n − 1,λ)

+ ai−2(n − 1,λ) + (n − 1 − iλ)ai (n − 1,λ), 3 ≤ i ≤ 2n − 2,

a2n−1(n,λ) = 1

2
n[(λ − 1)(n − 1) − 2(λ + 1)],
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a2n(n,λ) = 1, b1(n,λ) = 〈n − 1 − λ〉n−1,

bi (n,λ) = [(i − 1)λ − (λ + 1)(n − 1)]bi−1(n − 1,λ)

+ ai−1(n − 1,λ) + (n − 1 − iλ)bi (n − 1,λ), 2 ≤ i ≤ 2n − 3,

b2n−2(n,λ) = (λ − 1)

(
n − 1

2

)
− 2(n − 1) − λ, b2n−1(n,λ) = 1

in terms of the falling factorials

〈x〉n =
n−1∏

k=0

(x − k) =
{
x(x − 1) · · · (x − n + 1), n ≥ 1;
1, n = 0.

It is clear that the generating function Fλ(t) defined by (3) satisfies

lim
λ→0

[λFλ(t)] = t

ln(1 + t)
.

It is obvious that

(1) the above expressions for ai (n,λ) and bi (n,λ) are recursive and can not be
computed easily;

(2) the original proof of [2, Theorem 2.1] is inductive, recursive, and long;
(3) there was no any application given in [2].

In this paper, by virtue of the Faà di Bruno formula (9) and two identities (10)
and (11) for the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1), we
will establish an explicit expression (4) for degenerate Cauchy numbers Cn(λ) and
find explicit, meaningful, and significant expressions (7) and (8) for coefficients
ai (n,λ) and bi (n,λ) in the family of nonlinear differential equations (2) related to
the generating function Fλ(t) of degenerate Cauchy numbers Cn(λ).

Our main results can be stated as the following theorems.

Theorem 1 For n ≥ 0, degenerate Cauchy numbers Cn(λ) and the Cauchy numbers
Cn can be explicitly and respectively computed by

Cn(λ) =
n∑

k=0

(−1)k

(k + 1)!λk

k∑

�=0

(−1)�
(
k

�

)
〈�λ〉n (4)

and

Cn =
n∑

k=0

s(n, k)

k + 1
. (5)
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Theorem 2 For n ∈ N, the generating function Fλ(t) and its derivatives of degen-
erate Cauchy numbers Cn(λ) satisfy

F (n)

λ (t) = Fλ(t)

(1 + t)n
[
1 − (1 + t)λ

]n
2n∑

i=1

αi (n,λ)(1 + t)iλ +
2n−1∑

i=1

βi (n,λ)(1 + t)iλ

(6)
with

αi (n,λ) =
∑

k+m=i
1≤k≤n
0≤m≤n

(−1)m Ak(n,λ)

min{n−m,k}∑

�=0

λ�

(k − �)!
(
n − �

m

)
(7)

for 1 ≤ i ≤ 2n and

βi (n,λ) =
∑

k+m=i
1≤k≤n

0≤m≤n−1

(−1)m+1Ak(n,λ)

min{k−1,n−m−1}∑

�=0

λ�

(k − �)!
(
n − � − 1

m

)
(8)

for 1 ≤ i ≤ 2n − 1, where

Ak(n,λ) = (−1)k

λk

k∑

�=0

(−1)�
(
k

�

) n−1∏

q=0

(�λ − q).

2 Lemmas

In order to obtain our main results, we need the following lemmas.

Lemma 1 ([1, pp. 134 and 139]). For n ≥ k ≥ 0, the Bell polynomials of the second
kind, denoted by Bn,k(x1, x2, . . . , xn−k+1), are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
�i∈{0}∪N∑n−k+1
i=1 i�i=n∑n−k+1
i=1 �i=k

n!
∏n−k+1

i=1 �i !
n−k+1∏

i=1

( xi
i !

)�i
.

The Faà di Bruno formula can be described in terms of the Bell polynomials of the
second kind Bn,k(x1, x2, . . . , xn−k+1) by

dn

d tn
f ◦ h(t) =

n∑

k=0

f (k)(h(t))Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (9)



Explicit Expressions Related to Degenerate Cauchy Numbers … 45

Lemma 2 ([1, p. 135]). For n ≥ k ≥ 0, we have

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

) = akbn Bn,k(x1, x2, . . . , xn−k+1), (10)

where a and b are any complex numbers.

Lemma 3 For n ≥ k ≥ 0 and λ,α ∈ C, we have

Bn,k

(
1, 1 − λ, (1 − λ)(1 − 2λ), . . . ,

n−k∏

�=0

(1 − �λ)

)
= (−1)k

k!
k∑

�=0

(−1)�
(
k

�

) n−1∏

q=0

(� − qλ)

(11)
or, equivalently,

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1) = (−1)k

k!
k∑

�=0

(−1)�
(
k

�

)
〈α�〉n . (12)

Proof This explicit formula (11) was first established in [25, Remark 1] and then
was applied in [16, Sect. 2], [17, First proof of Theorem 2], [19, Lemma 2.2], [22,
Remark 6.1], [23, Lemma 4], and [32, Lemma 2.6]. The formula (12) and the equiv-
alence were presented in [33, Theorems 2.1 and 4.1].

3 Proofs of Theorems 1 and 2

We are now in a position to prove our main results.

Proof of Theorem 1 Forn ≥ 0, applyingu = h(t) = (1+t)λ−1
λ

and f (u) = eu−1
u to (9)

and making use of (10) and (11) in sequence arrive at

dn[λFλ(t)]
d tn

=
n∑

k=0

dk

d uk

(
eu − 1

u

)
Bn,k

(
λ(1 + t)λ−1

λ
,
λ(λ − 1)(1 + t)λ−2

λ
,

. . . ,
λ(λ − 1) · · · [λ − (n − k)](1 + t)λ−(n−k+1)

λ

)

=
n∑

k=0

dk

d uk

( ∞∑

�=1

u�−1

�!
)

(1 + t)kλ−n Bn,k(1,λ − 1, . . . , (λ − 1) · · · [λ − (n − k)])

=
n∑

k=0

dk

d uk

( ∞∑

�=0

u�

(� + 1)!
)

(1 + t)kλ−n

× Bn,k

(
1,λ

(
1 − 1

λ

)
, . . . ,λn−k

(
1 − 1

λ

)
· · ·

(
1 − n − k

λ

))
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=
n∑

k=0

[ ∞∑

�=0

dk

d uk

(
u�

(� + 1)!
)]

(1 + t)kλ−n

× λn−k Bn,k

(
1, 1 − 1

λ
, . . . ,

(
1 − 1

λ

)
· · ·

(
1 − n − k

λ

))

=
n∑

k=0

[ ∞∑

�=k

�!
(� − k)!

u�−k

(� + 1)!
]
(1 + t)kλ−nλn−k (−1)k

k!
k∑

�=0

(−1)�
(
k

�

) n−1∏

q=0

(
� − q

λ

)

=
n∑

k=0

[ ∞∑

�=k

1

(� − k)!
u�−k

� + 1

]
(1 + t)kλ−n 1

λk

(−1)k

k!
k∑

�=0

(−1)�
(
k

�

) n−1∏

q=0

(�λ − q)

→
n∑

k=0

1

k + 1

1

λk

(−1)k

k!
k∑

�=0

(−1)�
(
k

�

) n−1∏

q=0

(�λ − q)

=
n∑

k=0

(−1)k

(k + 1)!λk

k∑

�=0

(−1)�
(
k

�

)
〈�λ〉n

as t → 0 and, consequently, u → 0. This implies that

Cn(λ) = λ lim
t→0

F (n)

λ (t) =
n∑

k=0

(−1)k

(k + 1)!λk

k∑

�=0

(−1)�
(
k

�

)
〈�λ〉n.

The explicit formula (4) is thus proved.
It is well known [1, Theorem A] that the Stirling numbers of the first kind s(n, k)

can be generated by

〈x〉n =
n∑

k=0

s(n, k)xk .

Hence, by the L’Hôspital rule, we have

lim
λ→0

1

λk

k∑

�=0

(−1)�
(
k

�

)
〈�λ〉n = lim

λ→0

1

λk

k∑

�=0

(−1)�
(
k

�

) n∑

m=0

s(n,m)(�λ)m

= 1

k! limλ→0

k∑

�=0

(−1)�
(
k

�

) n∑

m=0

s(n,m)〈m〉k�k(�λ)m−k

= 1

k!
k∑

�=0

(−1)�
(
k

�

)
s(n, k)〈k〉k�k = s(n, k)

k∑

�=0

(−1)�
(
k

�

)
�k = (−1)kk!s(n, k).

Combining this with (1) and (4) gives

Cn = lim
λ→0

Cn(λ) =
n∑

k=0

(−1)k

(k + 1)! limλ→0

1

λk

k∑

�=0

(−1)�
(
k

�

)
〈�λ〉n =

n∑

k=0

s(n, k)

k + 1
.

The explicit formula (5) follows. The proof of Theorem 1 is complete. �
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Proof of Theorem 2 Forn ∈ N, applyingu = h(t) = (1+t)λ−1
λ

and f (u) = eu−1
u to (9)

and making use of (10) and (11) in sequence arrive at
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where an empty sum is understood to be 0 and
(p
q

) = 0 for q > p ≥ 0, the Eq. (6)
and the formulas (7) and 8 are thus proved. The proof of Theorem 2 is complete. �

4 Remarks

Finally, we list several remarks on our main results and closely related things.

Remark 1 Comparing (6) with (2) reveals that

ai (n,λ) = (−1)nαi (n,λ) and bi (n,λ) = (−1)nβi (n,λ).

Remark 2 It is easy to see that explicit expressions (7) and (8) for αi (n,λ) and
βi (n,λ) are more meaningful and more significant than those in [2, Theorem 2.1]
for ai (n,λ) and bi (n,λ) mentioned above.

Remark 3 The formula (5) was derived in [3] and mentioned in [4, 8].

Remark 4 Per requests of anonymous referees, the preprint [17] is split into and
simplified as two formally published papers [18, 29].

Remark 5 The motivations in the papers [5, 6, 9–16, 20, 21, 24–27, 30–32, 34,
36–38, 40–42] are same as the one in this paper.

Remark 6 This paper is a slightly revised version of the preprint [28].
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Abstract The notion of deferred weighted statistical convergence was introduced
by Srivastava et al. (Math Methods Appl Sci 41:671–683, 2018) [20]. In the present
investigation, we have used (presumably new) the notion of approximation via sta-
tistical deferred weighted (Riesz) summability mean for trigonometrical periodic
functions defined over a Banach space C2π (R) and accordingly established a new
approximation theorem (Korovkin-type). Furthermore, we have introduced the idea
of the rate of statistical deferred weighted summability and also established another
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1 Introduction, Preliminaries and Motivation

The theory of statistical convergence was initially studied by Fast [8] and Steinhaus
[24]. Gradually, this theory became an active research area due basically to the cause
that it is more extensive than that of usual convergence. Furthermore, such theory
has been fairly discussed in the study in the areas of (for example) Number Theory,
Fourier Analysis and Approximation Theory. For details, see the current research
works [3, 6, 9, 10, 12, 14, 17–21], etc.

Let K ⊆ N (set of Naturals) and let

Kn = {k : k � n and k ∈ K }.

The natural (asymptotic) density of K is given by

d(K ) = lim
n→∞

|Kn|
n

,

provided the limit exists.
Recall that, a sequence (xn) is statistically convergent (or stat-convergent) to L

if, for every ε > 0,

Kε = {k : k ∈ N and |xk − L| � ε}

has natural density zero (see [8, 24]). That, for each ε > 0,

d(Kε) = lim
n→∞

|Kε |
n

= 0.

Here, we write

stat lim
n→∞ xn = L .

Consider the following example:

Example 1 Let us consider a sequence x = (xn) by

xn =
⎧
⎨

⎩

1
2 (n = m2, m ∈ N)

n3

n3+1 (otherwise).

Observe that, the sequence (xn) is statistically convergent to 1 but it is not usually
classical convergent. Also, every convergent sequence is statistically convergent in
the sense that, the subset to be discarded has natural density zero. Thus, statistical
convergence is more general than usual convergence.
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The basic concept of weighted statistical convergence was initially studied by
Karakaya and Chishti [11]. Gradually, it was improved byMursaleen et al. (see [16])
and accordingly some important approximation results were proved. Formore results
in this direction one may refers to the following works (see [4, 20]).

Suppose that (pk) be a sequence of nonnegative numbers such that Pn = ∑n
k=0 pk

with p0 > 0 (n → ∞). Setting

tn = 1

Pn

n∑

k=0

pk xk (n = 0, 1, 2, . . .),

we say (xn) is weighted statistically convergent to a number L if, for each ε > 0, the
following set:

{k : k � Pn and pk |xk − L| � ε}

has zero weighted density (see [7]). This means that, for each ε > 0, we have

lim
n→∞

1

Pn
|{k : k � Pn and pk |xk − L| � ε}| = 0.

Similarly a sequence (xn) is said to be statistical weighted summable to L if, for
each ε > 0, the following set:

{k : k � n and |tk − L| � ε}

has zero weighted density, that is,

lim
n→∞

1

n
|{k : k � n and |tk − L| � ε}| = 0.

Motivated essentially by the above-mentioned works, here we wish to present the
(presumably new) notion of statistical deferred weighted summability to establish
certain new approximation results.

Let (an) and (bn)be sequences of non-negative integers andwe recall the regularity
conditions of the deferred weighted mean due to Agnew [1] as an < bn(n ∈ N) and
lim

n→∞ bn = ∞.

Furthermore, let (pn) and (qn) be the sequences of real numbers (non-negative)
such that

Pn =
bn∑

m=an+1

pm and Qn =
bn∑

m=an+1

qm .
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Let

Rbn
an+1 =

bn∑

v=an+1

pvqv,

setting

σn = 1

Rbn
an+1

bn∑

m=an+1

pmqm xm,

it is said that (xn) is summable to L under the deferred weighted (Riesz) summa-
bility mean defined by the associated sequences (pn) and (qn) or, briefly, summable
Db

a(N , p, q), if
lim

n→∞ σn = L .

Next, for our proposed method consider a definition as follows.

Definition 1 A sequence (xn) is statistical deferred weighted summable
(or statD(N )-summable) to L if, for each ε > 0,

{m : m � n and |σm − L| � ε}

has deferred weighted density zero, that means,

lim
n→∞

1

n
|{m : m � n and |σm − L| � ε}| = 0.

Here, we write
statD(N ) lim xn = L .

Remark 1 If, qn = 1(∀ n), then Db
a(N , p, q) mean is same as Db

a(N , p) mean
(see [5]) and if an = 0, bn = n(∀ n) and qn = 1, then Db

a(N , p, q) mean becomes
(N , pn) mean (see [15]). Finally, if an = 0, bn = n(∀ n), pn = 1 and qn = 1, then
Db

a(N , p, q) mean is same as (C, 1) mean (see [14]).
The following example illustrates that, a sequence (xn) is statistical deferred

weighted summable to L , but not deferred weighted statistical convergent to L .

Example 2 For an = 2n and bn = 4n, choose a sequence x = (xn) as,

xn =
{
0 (n is odd)

1 (n is even).
(1.1)

Clearly, (xn) is neither convergent nor deferred weighted statistically convergent.
But, (xn) is statistical deferred weighted summable to 1 with

pn = 1 and qn = 1.
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2 A Korovkin-Type Approximation Theorem Based on
Deferred Riesz Mean

In this section, by using the idea of deferred Riesz statistical summability mean for
periodic functions 1, cos x, sin x over C2π (R), we have proved an approximation
theorem (Korovkin-type). Also, our theorem effectively extends most of the results
established earlier. In this direction, one may refer to the recent works [7, 19–22].

Let F(R) be the linear space of all functions (real-valued) f on the set of real
numbers R and C(R) be the space of all continuous functions defined on R. Recall
that, C(R) is a Banach space with norm

‖ f ‖∞ = sup
x∈R

| f (x)| ( f ∈ C(R)).

SupposeC2π (R) be the space of all continuous 2π -periodic functions (real valued)
defined over R and L : C2π (R) → C2π (R) be a linear operator. That means

L( f ; x) � 0 for x ∈ R.

Also C2π (R) is a Banach space and for f ∈ C2π (R), the norm of f is given by

‖ f ‖2π = sup
x∈R

| f (x)|.

Theorem 1 Let Lm(m ∈ N) be a sequence of linear operators (positive) from
C2π (R) into itself and let f ∈ C2π (R). Then

stat D(N ) lim
m→∞ ‖Lm( f ; x) − f (x)‖2π = 0 (2.1)

i f and only i f

stat D(N ) lim
m→∞ ‖Lm(1; x) − 1‖2π = 0, (2.2)

stat D(N ) lim
m→∞ ‖Lm(cos x; x) − cos x‖2π = 0, (2.3)

stat D(N ) lim
m→∞ ‖Lm(sin x; x) − sin x‖2π = 0. (2.4)

Proof. Since the functions

f0(x) = 1, f1(x) = cos x and f2(x) = sin x

are in C2π (R), the following implication:

(2.1) =⇒ (2.2)−(2.4)
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is trivial. Now, for the completion of the proof of our Theorem,we have to assume that
the assentations (2.2)–(2.4) are true. Suppose f ∈ C2π (R) and let I = [−π, π ] ⊂ R.
Then, there is a constant k > 0 such that

| f (x)| � k (∀ x ∈ I ),

It, thus implies that,

| f (t) − f (x)| � 2k (t, x ∈ I ). (2.5)

Clearly, for a given ε > 0, there exists δ > 0 such that

| f (t) − f (x)| < ε whenever |t − x | < δ (2.6)

for all t, x ∈ I .
Also, f is bounded, so it follows that

| f (t) − f (x)| � 2‖ f ‖2π (∀ t, x ∈ I ). (2.7)

From equation (2.6) and (2.7), we get

| f (t) − f (x)| < ε + 2‖ f ‖2π
sin2( δ

2 )
ϕ(t) (t ∈ (x − δ, 2π + x − δ]) , (2.8)

where

ϕ(t) = sin2
(

t − x

2

)

.

Since f ∈ C2π (R) is a periodic function with period 2π , the inequality (2.8) satisfied
for t ∈ R.

Moreover, the operator Lm(1; x) being linear and monotone, so the inequality in
(2.8) follows that

|Lm( f ; x) − f (x)| � (ε + | f (x)|)|Lm(1; x) − 1| + ε + ‖ f ‖2π
sin2( δ

2 )
{|Lm(1; x) − 1|

+ | cos x ||Lm(cos t; x) − cos x | + | sin x ||Lm(sin t; x) − sin x |}.

� ε +
(

ε + | f (x)| + ‖ f ‖2π
sin2( δ

2 )

)

{|Lm(1; x) − 1| + |Lm(cos t; x)

− cos x | + |Lm(sin t; x) − sin x |}. (2.9)

Next, taking supx∈I , in both side of (2.9), we get

‖Lm( f ; x) − f (x)‖2π � ε +B{‖Lm(1; x) − 1‖2π + ‖Lm(cos t; x) − cos x‖2π
+‖Lm(sin t; x) − sin x‖2π }, (2.10)
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where

B =
{

ε + | f (x)|2π + ‖ f ‖2π
sin2( δ

2 )

}

.

Now replacing Lm( f ; x) by

1

Rbn
an+1

bn∑

m=an+1

pmqm Tm( f ; x)

and then by �m( f ; x) in (2.10), we have for a given r > 0, we choose ε′ > 0, such
that 0 < ε′ < r . Then, by setting

�m(x, r) =
∣
∣
∣
∣
∣

{

m : m � n and

∣
∣
∣
∣
∣

1

Rbn
an+1

bn∑

m=an+1

pmqm Tm( f ; x) − f (x)

∣
∣
∣
∣
∣
� r

}∣
∣
∣
∣
∣

and

�0,m(x, r) =
∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
m : m � n and

∣
∣
∣
∣
∣
∣

1

Rbn
an+1

bn∑

m=an+1

pmqm Tm(1; x) − 1

∣
∣
∣
∣
∣
∣
� r − ε′

3B

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
,

�1,m(x, r) =
∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
m : m � n and

∣
∣
∣
∣
∣
∣

1

Rbn
an+1

bn∑

m=an+1

pmqm Tm(cos t; x) − cos x

∣
∣
∣
∣
∣
∣
� r − ε′

3B

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
,

�2,n(x, r) =
∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
m : m � n and

∣
∣
∣
∣
∣
∣

1

Rbn
an+1

bn∑

m=an+1

pmqm Tm(sin t; x) − sin t

∣
∣
∣
∣
∣
∣
� r − ε′

3B

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
,

we clearly find from (2.10) that

�m(x, r) �
2∑

i=0

�i,m(x, r).

Thus, we get

‖�m(x, r)‖2π
n

�
2∑

i=0

‖�i,m(x, r)‖2π
n

. (2.11)

Finally, under the above assumption for the implication in (2.2)–(2.4) and also by
Definition 1, the right-hand side of (2.11) tend to zero as n → ∞. It clearly follows
that,

statD(N ) lim
n→∞ ‖Ln( f ; x) − f (x)‖2π = 0.
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Therefore, the implication (2.1) is true. Which completes the proof of Theorem 1. ��
Next, to recall the Fejér convolution operators, we consider the Fourier series of

f at t = x of the form,

fm(x) = a0

2
+

∞∑

m=0

(am cosmx + bm sinmx).

Let the nth partial sum of the Fourier series of fm(x) be

Sn( f ; x) = a0

2
+

n∑

m=0

(am cosmx + bm sinmx) (∀ n ∈ N)

and we write by Cesàro mean of fm(x),

Fn( f ; x) = 1

n + 1

n∑

m=0

Sm( f ; x).

Further, by simple calculation, we obtain:

Fn( f ; x) = 1

2π

∫ π

−π

f (t)
1

n + 1

n∑

m=0

sin2
[

(n+1)(x−t)
2

]

sin2
[

(x−t)
2

] dt

= 1

2π

∫ π

−π

f (t)φn(x − t)dt,

where

φn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

sin2
[

(n+1)(x−t)
2

]

(n+1) sin2
[

(x−t)
2

] (x is an even multiple of π)

n + 1 (if x is not an even multiple of π).

Note that, the sequence {φn(x) : n ∈ N} is the Fejér kernel and the operators
Fn( f ; x) are the Fejér convolution operators.

Furthermore, consider the operator x(1 + x D),where D is a differential operators.
This operator was earlier used by Al-Salam [2] (Also, see [23, 25]).

Now for the validity of the operators Lm( f ; x) for our Theorem 1, we present the
following example.

Example 3 Let Lm : C2π (R) → C2π (R) be defined by,

Lm( f ; x) = [1 + xm]x(1 + x D)Fm( f ) ( f ∈ C2π (R), (2.12)

where (xm) is the same sequence as defined in Example 2. Then, we obtain
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Lm(1; x) = [1 + xm]x(1 + x D)1 = x,

Lm(cos t; x) = [1 + xm]x(1 + x D)
m − 1

m
cos x

= [1 + xm]m − 1

m
(x cos x − x2 sin x)

and

Lm(sin t; x) = [1 + xm]x(1 + x D)
m − 1

m
sin x

= [1 + xm]m − 1

m
(x sin x + x2 cos x).

Thus, we obtain:

statD(N ) lim
m→∞ ‖Lm(1; x) − 1‖2π = 0,

statD(N ) lim
m→∞ ‖Lm(cos x; x) − cos x‖2π = 0,

statD(N ) lim
m→∞ ‖Lm(sin x; x) − sin x‖2π = 0.

It now implies, the operators Lm( f ; x) fairly satisfy the conditions (2.2)–(2.4).
Hence, by Theorem 1, we certainly have

statD(N ) lim
m→∞ ‖Lm( f ; x) − f ‖2π = 0.

However, since (xn) is not deferred weighted statistically convergent, so the result
of Srivastava et al. ([20], p. 5, Theorem 1) is not true for our operators defined by
(2.12). Moreover, since (xn) is statistical deferred weighted summable, therefore we
conclude that our Theorem 1 works for the same operators.

3 Rate of the Statistical Deferred Weighted (Riesz)
Summability

In the present section of our investigation under the consideration of the modulus of
continuity, we study the rate of the statistical deferred weighted summability for a
sequence of linear operators (positive) defined over C2π (R).

Definition 2 Let (un) be a positive non-increasing sequence. A sequence x = (xn)

is said to be statistical deferred weighted summable to a number L with rate o(un)

if, for each ε > 0,

lim
n→∞

1

unn

∣
∣
{
m : m � n and |σm − L| � ε

}∣
∣ = 0.
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Here, in this case, we may write

xn − L = statD(N ) − o(un).

We now state and prove a Lemma as follows.

Lemma 1 Suppose (un) and (vn) be two non-increasing positive sequences and let
x = (xm) and y = (ym) be two sequences such that

xm − L1 = statD(N ) − o(un)

and
ym − L2 = statD(N ) − o(vn).

Then each of the following assertions hold true:

(i) (xm + ym) − (L1 + L2) = statD(N ) − o(wn);
(ii) (xm − L1)(ym − L2) = statD(N ) − o(unvn);

(iii) β(xm − L1) = statD(N ) − o(un) (for any scalar β);
(iv)

√|xm − L1| = statD(N ) − o(un),
where wn = max{un, vn}.

Proof. To prove the assertion (i) of Lemma 1, we consider the following sets for
ε > 0 and x ∈ [0, 2π ]:

An(x; ε) = ∣
∣
{
m : m � n and |(σm(x) + σm(y)) − (L1 + L2)| � ε

}∣
∣ ,

A0;n(x; ε) =
∣
∣
∣

{
m : m � n and |σm(x) − L1| � ε

2

}∣
∣
∣

and

A1,n(x; ε) =
∣
∣
∣

{
m : m � n and |σm(y) − L2| � ε

2

}∣
∣
∣ .

Clearly, we have

An(x; ε) ⊆ A0,n(x; ε) ∪ A1n(x; ε).

Moreover, since

wn = max{un, vn}, (3.1)

by applying the assertion (2.1) of Theorem 1, we obtain

‖Am(x; ε)‖2π
wnn

� ‖A0,n(x; ε)‖2π
unn

+ ‖A1,n(x; ε)‖π

vnn
. (3.2)

Also, by using the assertion (2.2)–(2.4) of Theorem 1, we obtain
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‖An(x; ε)‖2π
wnn

= 0, (3.3)

which proves the assertion (i) of Lemma 1.
The other assertion (ii) to (iv) of Lemma 1 being similar to (i), so in the similar

lines, it can be proved. Which completes the proof Lemma 1. ��
We recall here the modulus of continuity of a function f ∈ C2π (R) of the form

ω( f, δ) = sup
|t−x |�δ (t,x∈R)

| f (t) − f (x)| (δ > 0),

which implies

| f (t) − f (x)| � ω( f, δ)

( |x − t |
δ

+ 1

)

. (3.4)

Theorem 2 Let Lm : C2π (R) → C2π (R) be sequences of linear operators (posi-
tive). Suppose that the following conditions:

(i) ‖Lm(1; x) − 1‖2π = statD(N ) − o(un);
(ii) ω( f, λm) = statD(N ) − o(vn),

where

λm =
√
Lm(ϕ2, x) and ϕ(t) = sin2

(
t − x

2

)

are satisfied. Then, for all f ∈ C2π (R), the following assertion holds true:

‖Lm( f ; x) − f ‖2π = statD(N ) − o(wn), (3.5)

where (wn) is given by (3.1).

Proof. Let f ∈ C2π (R) and x ∈ [−π, π ]. Using (3.4), we have
|Lm( f ; x) − f (x)| � Lm(| f (t) − f (x)|; x) + | f (x)||Lm(1; x) − 1|,

� Lm

( |x − t |
δ

+ 1; x

)

ω( f, δ) + | f (x)||Lm(1; x) − 1|,

� Lm

(

1 + π2

δ2
sin2

(
t − x

2

)

; x

)

ω( f, δ) + | f (x)||Lm(1; x) − 1|

�
(

Lm(1; x) + π2

δ2
Lm(ϕ(t); x)

)

ω( f, δ) + | f (x)||Lm(1; x) − 1|.



64 M. Patro et al.

Now, putting δ = λm = √
Lm(ϕ2; x), we get

‖Lm( f ; x) − f (x)‖2π
� (1 + π2)ω( f, λm) + ω( f, λm)‖Lm(1; x) − 1‖2π + ‖ f (x)‖2π‖Lm(1; x) − 1‖2π
� μ{ω( f, λm) + ω( f, λm)‖Lm(1; x) − 1‖2π + ‖Lm(1; x) − 1‖2π },

where
μ = {‖ f ‖C2π (R), 1 + π2}.

This yields

∥
∥
∥
∥
∥

1

Rbn
an+1

bn∑

m=an+1

pmqm Tm( f ; x) − f (x)

∥
∥
∥
∥
∥
2π

� μ

{

ω( f, λm) + ω( f, λm)

∥
∥
∥
∥
∥

1

Rbn
an+1

bn∑

m=an+1

pmqm Tm( f0; x) − f0(x)

∥
∥
∥
∥
∥
2π

+
∥
∥
∥
∥
∥

1

Rbn
an+1

bn∑

m=an+1

pmqm Tm( f0; x) − f0(x)

∥
∥
∥
∥
∥
2π

}

. (3.6)

Finally, in view of the conditions (i) and (ii) of Theorem 2 in association with
Lemma 1, this last inequality (3.6) motivates us to the assertion (3.5) of Theorem 2.
Which completes the proof of Theorem 2. ��

4 Conclusion

In the last section of our study, we present some further remarks and observations
concerning the different results which we have provided here.

Remark 2 Let (xn)n∈N be a given sequence as in Example 2. As

statD(N ) lim
n→∞ xn → 1 on [0, 2π ],

we have

statD(N ) lim
n→∞ ‖Ln( fi ; x) − fi (x)‖2π = 0 (i = 0, 1, 2). (4.1)

Hence, by using Theorem 1, we have

statD(N ) lim
n→∞ ‖Ln( f ; x) − f (x)‖2π = 0, ( f ∈ C2πR), (4.2)
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where
f0(x) = 1, f1(x) = cos x and f2(x) = sin x .

However, since (xn) is neither ordinarily convergent nor uniformly convergent. So,
the usual Korovkin Theorem will not work here for the operators defined by (2.12).
Hence, this application clearly leads that our Theorem 1 is a non-trivial extension of
the classical Korovkin-type theorem (see [12, 13]).

Remark 3 Let (xn)n∈N be a given sequence as in Example 2. As

statD(N ) lim
n→∞ xn → 1 on [0, 2π ],

so (4.1) holds. Now by applying (4.1) and our Theorem 1, condition (4.2) holds.
However, since (xn) does not weighted statistically convergent, so we can say that
the result of Srivastava et al. ([20], p. 5, Theorem 1) does not hold true for our
operator defined in (2.12). Thus, our Theorem 1 is also a non-trivial extension of
[13, 20]. Moreover, based on the above results, it is infered here that our proposed
method has truly worked for the operators defined in (2.12) and hence it is stronger
than the earlier established classical and statistical versions of the Korovkin-type
approximation theorem (see [12, 13, 20]).

Remark 4 If, we replace the conditions (i) and (ii) in our Theorem2 by the condition,

|Lm( fi ; x) − fi (x)|2π = statD(N ) − o(uni ) (i = 0, 1, 2), (4.3)

then, since

Lm(ϕ2; x) = |Lm(1; x) − 1| + | cos x ||Lm(cos t; x) − cos x |
+ | sin x ||Lm(sin x; x) − sin x |,

we can clearly write

Lm(ϕ2; x) ≤ M
2∑

i=0

|Lm( fi ; x) − fi (x)|2π , (4.4)

where
M = 1 + ‖ f1‖2π + ‖ f2‖2π .

It now follows from (4.3), (4.5) and Lemma 1 that

λm =
√
Lm(ϕ2) = SD(N ) − o(dn) on [0, 2π ], (4.5)

where
o(dn) = max{un0 , un1 , un2}.
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Hence, clearly, we get

ω( f, δ) = statD(N ) − o(dn) on [0, 2π ].

By using (4.6) in Theorem 2, we subsequently see for all f ∈ C2π (R) that

Lm( f ; x) − f (x) = statD(N ) − o(dn) on [0, 2π ]. (4.6)

Hence, if we use the condition (4.3) in Theorem 2 in place of conditions (i) and
(ii), then we fairly obtain the rates of the statistical deferred weighted summability
of the sequence (Lm) of linear operators (positive) in Theorem 1.
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to be either accumulation point of � or infinity. We assume that the function Kσ ,
Kσ : R × R → R, has finite Lebesgue integral value onR for all values of its second
variable and for any σ ∈ � and satisfies some conditions. The main purpose of this
work is to investigate the conditions under which Fatou type pointwise convergence
is obtained for the operators in the following setting:
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1 Introduction

In the year 1962, Gadjiev et al. [5] investigated the asymptotic value of the approxi-
mation of measurable functions by integral operators of the form:

Lσ ( f, x) =
∫

R

∞∑
k=1

Pk,σ f
(
x + αk,σ t

)
Kσ (t) dt, x ∈ R, σ ∈ �, (1.1)

where � is a non-empty set of a non-negative real parameters σ , αk,σ are assumed to
be non-negative real numbers for all values of k and σ with sup

k,σ

{
αk,σ

} = α∗ < ∞
and Pk,σ are real numbers satisfying

∑∞
k=1

∣∣Pk,σ ∣∣ ≤ M (M is independent of σ ) and∑∞
k=1 Pk,σ = 1 for all σ ∈ �. Also, the kernel function Kσ : R → R satisfies some

certain conditions. The operators of type (1.1) were considered later in the works
[16, 17] presenting some theorems concerning convergence in the norms of L1 (R)

and L p (R) (1 < p < ∞), respectively. In these works, in order to obtain the desired
convergence, the new modulus of continuity definitions are given.

In the year 1983, Musielak [11] built a bridge between linear and nonlinear inte-
gral operators of convolution type by considering the following setting of integral
operators

Tw f (y) =
∫

G

Kw(x − y; f (x))dx, y ∈ G, w ∈ �, (1.2)

where � is a non-empty set of indices and Kw, Kw : G × R → R, for any w ∈ �,
is a kernel function satisfying some conditions including Lipschitz property with
respect to its second variable. For some advanced studies concerning approximation
by nonlinear integral operators, we refer the reader to [1, 6, 12, 20]. Also, for some
works, related to linear integral operators of convolution type, we refer the reader to
[2, 3, 7, 14, 21].

In [9], Mamedov handled the following m-singular integral operators

L [m]
λ ( f ; x) = (−1)m+1

∫

R

[
m∑

k=1

(−1)m−k

(
m
k

)
f (x + kt)

]
Kλ(t)dt, (1.3)

where x ∈ R, m ≥ 1 is a finite natural number and λ ∈ � which is a non-empty
set of non-negative indices, by harnessing m-th finite difference formulas. Under
certain conditions, the operators of type (1.1) may be reduced to the operators of type
(1.3). Fatou type convergence of nonlinear counterparts of the operators of type (1.3)
were studied in [8]. Also, for some studies concerning convergence of m-singular
integral operators in different function spaces, we refer the reader to [15, 22]. In
1965,Mamedov [10] studied the saturation classes of linear operators by considering
further generalization of the operators of type (1.1), that is, the summation inside the
operators runs from k = −∞ to +∞.
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Let � be a non-empty index set consisting of σ indices. Here, σ0 is allowed to
be either accumulation point of � or infinity. We assume that the function Kσ :
R × R → R has finite Lebesgue integral value on R for all values of its second
variable and satisfies some conditions. Themain purpose of this work is to investigate
the conditions under which Fatou type pointwise convergence is obtained for the
operators in the following setting:

(Tσ f ) (x) =
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f
(
x + αk,σ t

))
dt, x ∈ R, (1.4)

where αk,σ are positive real numbers with finite supremum value for all values of k
and σ , that is, sup

k,σ

{
αk,σ

} = α∗ < ∞, Pk,σ are real numbers with
∑∞

k=1

∣∣Pk,σ ∣∣ ≤ M

(M is independent of σ ) and
∑∞

k=1 Pk,σ = 1 for all σ ∈ �, at p − μ-Lebesgue point
of function f as (x, σ ) → (x0, σ0). As in [5, 17], we also suppose that f has a
majorant function, that is, there exists a function ϕ satisfying | f (x)| ≤ ϕ (x) < ∞
for all x ∈ R. Here, L p (R) (1 ≤ p < ∞) will denote the space of all measurable
functions f for which the Lebesgue integral of | f |p has finite value on R. The
obtained results are used for presenting some theorems for the rate of convergences.
Here, the operators of type (1.4) are obtained by incorporating the operators of type
(1.1) and (1.2).

The paper is organized as follows: In Sect. 2, we introduce fundamental notions. In
Sect. 3, we give some auxiliary theorems concerning existence and pointwise conver-
gence of the operators of type (1.4). In Sect. 4, we present a Fatou type convergence
theorem for these operators. In Sect. 5, we establish the rates of both pointwise and
Fatou type convergences by using the results obtained in the previous two sections.

2 Preliminaries

The following definition is obtained by incorporating the characterization of func-
tion μ given by Gadjiev [7] which helps to generalize well-known Lebesgue point
definition and the idea used in [16, 17] in order to create new modulus of continuity
definitions. For some other μ-Lebesgue point characterizations, we refer the reader
to [3, 8, 14, 15, 22].

Definition 1 Let δ0 ∈ R
+ be a fixed number. A point x ∈ R satisfying the following

relations:

lim
h→0+

⎛
⎝ 1

μ(h)

h∫

0

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x + αk,σ t

)− f (x)
]∣∣∣∣∣

p

dt

⎞
⎠

1
p

= 0, (2.1)
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lim
h→0+

⎛
⎝ 1

μ(h)

0∫

−h

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x + αk,σ t

)− f (x)
]∣∣∣∣∣

p

dt

⎞
⎠

1
p

= 0, (2.2)

where 0 < h ≤ δ0 and relations (2.1) and (2.2) are independent of the choice of
σ ∈ �, is called p − μ-Lebesgue point of f (1 ≤ p < ∞). Here, μ : R → R is an
increasing and absolutely continuous function on [0, δ0] with μ (0) = 0.

The following definition is obtained by incorporating kernel properties used in
the works [5, 17, 20]. Also, usage of Lipschitz condition is due by Musielak [11].

Definition 2 Let 1 ≤ p < ∞ and σ0 be an accumulation point of non-empty index
set � or infinity. A family K consisting of the functions Kσ : R × R → R, where
Kσ (ϑ, u) has finite Lebesgue integral value on R for all values of its second variable
and for any σ ∈ � and the following conditions hold:

(a) Kσ (ϑ, 0) = 0, for every ϑ ∈ R and σ ∈ �.
(b) There exists a function Lσ : R → R

+
0 whose Lebesgue integral has finite value

on R for any σ ∈ � such that the following inequality:

|Kσ (t, u) − Kσ (t, v)| ≤ Lσ (t) |u − v|

holds for every t ∈ R, u, v ∈ R and σ ∈ �.
(c) For every u ∈ R, we have lim

σ→σ0

∣∣∫
R
Kσ

(
t,
∑∞

k=1 Pk,σu
)
dt − u

∣∣ = 0.

(d) lim
σ→σ0

[∫
|t |>ξ

Lσ (t) dt
]

= 0 for every ξ > 0.

(e) lim
σ→σ0

[∫
|t |>ξ

ηp (α∗t) Lσ (t) dt
]

= 0 for every ξ > 0.

(f) For a certain real number δ1 > 0, the function Lσ (t) is non-decreasing on
(−δ1, 0] and non-increasing on [0, δ1) with respect to t , for any σ ∈ �.

(g)
∫
R

η (α∗t) Lσ (t) dt ≤ N1 < ∞ and
∫
R
Lσ (t) dt ≤ N2 < ∞ for all σ ∈ � (N1

and N2 are independent of σ ∈ �).

Here,

η (t) = sup
x∈R
|y|≤t

ϕ (x + y)

ϕ (x)
< ∞,

where ϕ : R → R
+ and ϕ is an aforementioned majorant function. Throughout this

manuscript, we assume that Kσ satisfies above conditions.

3 Existence of the Operators and Pointwise Convergence

Theorem 1 Let 1 ≤ p < ∞ such that there exists a positive function ϕ ∈ L p (R)

satisfying | f (x)| ≤ ϕ (x) < ∞ for all x ∈ R. Then, the functions Tσ f ∈ L p(R) and
the inequality
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‖Tσ f ‖L p(R) ≤ M ‖ϕ‖L p(R)

∫

R

η
(
α∗t
)
Lσ (t) dt,

holds for every σ ∈ �.

Proof First, under the hypotheses, the convergence of the series

∞∑
k=1

Pk,σ f
(
x + αk,σ t

)

is guaranteed for all fixed t ∈ R (for details, see [5, 17]), that is,

∣∣∣∣∣
∞∑
k=1

Pk,σ f
(
x + αk,σ t

)∣∣∣∣∣ ≤
∞∑
k=1

∣∣Pk,σ ∣∣ ∣∣ f (x + αk,σ t
)∣∣

≤ Mϕ (x) η
(
α∗t
)
.

Let p = 1. By conditions (a) and (b), we may write

‖Tσ f ‖L1(R) =
∫

R

∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f
(
x + αk,σ t

))
dt

∣∣∣∣∣∣ dx

≤
∫

R

∫

R

Lσ (t)
∣∣Mϕ (x) η

(
α∗t
)∣∣ dtdx .

In view of Fubini theorem (see, e.g., [2]), we obtain the desired result, that is,

‖Tσ f ‖L1(R) ≤ M ‖ϕ‖L1(R)

∫

R

η
(
α∗t
)
Lσ (t) dt.

Now, we prove the theorem for the case 1 < p < ∞. By conditions (a) and (b), we
may write

‖Tσ f ‖L p(R) =
⎛
⎝
∫

R

∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f
(
x + αk,σ t

))
dt

∣∣∣∣∣∣
p

dx

⎞
⎠

1
p

≤
⎛
⎝
∫

R

⎛
⎝
∫

R

Lσ (t)
∣∣Mϕ (x) η

(
α∗t
)∣∣ dt

⎞
⎠

p

dx

⎞
⎠

1
p

.
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Now, applying generalizedMinkowski inequality to the last inequality above (see,
e.g., [19]), we have

‖Tσ f ‖L p(R) ≤
∫

R

⎛
⎝
∫

R

L p
σ (t)

∣∣Mϕ (x) η
(
α∗t
)∣∣p dx

⎞
⎠

1
p

dt

= M
∫

R

Lσ (t) η
(
α∗t
)
dt

⎛
⎝
∫

R

|ϕ (x)|p dx
⎞
⎠

1
p

= M ‖ϕ‖L p(R)

∫

R

η
(
α∗t
)
Lσ (t) dt.

The desired result follows from condition (g). Thus the proof is completed. 	

Now, we give a theorem concerning pointwise convergence of the operators of

type (1.4).

Theorem 2 Suppose that there exists a positive function ϕ satisfying | f (x)| ≤
ϕ (x) < ∞ for all x ∈ R. If x0 ∈ R is a p − μ-Lebesgue point of the function f
(1 ≤ p < ∞), then

lim
σ→σ0

|(Tσ f ) (x0) − f (x0)| = 0

provided that σ ∈ �1 ⊆ � on which the function

δ∫

−δ

∣∣{μ (|t |)}′t
∣∣ Lσ (t)dt,

where 0 < δ < min {δ0, δ1}, is bounded as σ tends to σ0.

Proof We prove the theorem for the case 1 < p < ∞. The proof for the case p = 1
is similar. Let |Iσ (x0)| = |(Tσ f ) (x0) − f (x0)|.

From (c), we can write

|Iσ (x0)| =
∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f
(
x0 + αk,σ t

))
dt − f (x0)

+
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f (x0)

)
dt −

∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f (x0)

)
dt

∣∣∣∣∣∣ .
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Using (b), we may easily get

|Iσ (x0)| ≤
∫

R

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣ Lσ (t) dt

+
∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f (x0)

)
dt − f (x0)

∣∣∣∣∣∣ .

Sincewhenever A and B beingpositive numbers the inequality (A + B)p ≤ 2p(Ap +
Bp) holds (see, e.g., [13]), we have

|Iσ (x0)|p ≤ 2p

⎛
⎝
∫

R

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣ Lσ (t) dt

⎞
⎠

p

+2p

∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f (x0)

)
dt − f (x0)

∣∣∣∣∣∣
p

= 2p (I1 + I2) .

By (c), I2 tends to zero as σ tends to σ0. Next, applying Hölder’s inequality (see
[13]) to the integral I1 and condition (g), we obtain

I1 =
⎛
⎝
∫

R

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣ (Lσ (t))

1
p (Lσ (t))

1
q dt

⎞
⎠

p

≤
⎛
⎝
∫

R

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣

p

Lσ (t) dt

⎞
⎠
⎛
⎝
∫

R

Lσ (t) dt

⎞
⎠

p
q

≤ (N2)
p
q

∫

R

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣

p

Lσ (t) dt

= (N2)
p
q I11,

where 1
p + 1

q = 1.
Since x0 ∈ R is a p − μ-Lebesgue point of the function f in view of relations

(2.1) and (2.2) for all ε > 0, there exists a number δ > 0 such that the following
inequalities hold there:

h∫

0

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣

p

dt ≤ ε pμ (h) , (3.1)
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0∫

−h

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣

p

dt ≤ ε pμ (h) , (3.2)

where 0 < h ≤ δ provided that 0 < δ < min {δ0, δ1}.
Now, we consider I11. It is easy to see that the following equality holds:

I11 =

⎧⎪⎨
⎪⎩
∫

|t |>δ

+
δ∫

−δ

⎫⎪⎬
⎪⎭
∣∣∣∣∣

∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣

p

Lσ (t) dt

= I111 + I112.

For the integral I111, we can write

I111 =
∫

|t |>δ

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣

p

Lσ (t) dt

≤ 2p
∫

|t |>δ

∣∣∣∣∣
∞∑
k=1

Pk,σ f
(
x0 + αk,σ t

)∣∣∣∣∣
p

Lσ (t) dt

+ 2p | f (x0)|p
∫

|t |>δ

Lσ (t) dt

= 2p (I1111 + I1112) .

Under the hypotheses, we observe that

I1111 =
∫

|t |>δ

∣∣∣∣∣
∞∑
k=1

Pk,σ f
(
x0 + αk,σ t

)∣∣∣∣∣
p

Lσ (t) dt

=
∫

|t |>δ

∣∣∣∣∣
∞∑
k=1

Pk,σ
f
(
x0 + αk,σ t

)
ϕ
(
x0 + αk,σ t

) ϕ
(
x0 + αk,σ t

)
ϕ (x0)

ϕ (x0)

∣∣∣∣∣
p

Lσ (t) dt

≤ Mpϕ p (x0)
∫

|t |>δ

ηp
(
α∗t
)
Lσ (t) dt.

Using (e) and (d), I1111 tends to 0 and I1112 tends to 0 as σ tends to σ0, respectively.
Lastly, we have to show that I112 tends to 0 as σ tends to σ0.
Obviously, I112 may be written in the form

I112 =
⎧⎨
⎩

0∫

−δ

+
δ∫

0

⎫⎬
⎭
∣∣∣∣∣

∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ t

)− f (x0)
]∣∣∣∣∣

p

Lσ (t) dt
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= I1121 + I1122.

For I1121, let us define

F (t) :=
0∫

t

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x0 + αk,σ v

)− f (x0)
]∣∣∣∣∣

p

dv.

By (3.2) the inequality
F (t) ≤ ε pμ (−t) (3.3)

holds for every δ satisfying 0 < δ < min {δ0, δ1}. In view of (3.3) and following
similar strategy as in [7, 14], we have

|I1121| ≤ ε p

0∫

−δ

μ′ (−t) Lσ (t) dt.

Similarly,

|I1122| ≤ ε p

δ∫

0

μ′ (t) Lσ (t) dt.

Incorporating above results, we have

|I112| ≤ ε p

δ∫

−δ

∣∣{μ (|t |)}′t
∣∣ Lσ (t) dt.

The remaining part follows from the arbitrariness of ε and boundedness of∫ δ

−δ

∣∣{μ (|t |)}′t
∣∣ Lσ (t) dt as σ tends to σ0. This completes the proof. 	


4 Main Theorem

In this section we will prove the Fatou type pointwise convergence of the operators
of type (1.4). For the original description, we refer the reader to Fatou [4]. Some
related works may be found in [5, 8, 14, 18]. For this purpose, we suppose that for
a sufficiently small number δ > 0 such that the function �δ given as

�δ(x, σ ) =
δ∫

−δ

∞∑
k=1

∣∣Pk,σ ∣∣ ∣∣ f (x + αk,σ t
)− f

(
x0 + αk,σ t

)∣∣ Lσ (t) dt,
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where 0 < δ < min {δ0, δ1}, is bounded on the set defined as

ZC,δ = {(x, σ ) ∈ R × �1 : �δ(x, σ ) < C} ,

where C is positive constant which can be made arbitrarily small, as (x, σ ) tends
to (x0, σ0). Here, this set is given before the theorem, but it can be given inside the
theorem up to desire.

Theorem 3 Suppose such that there exists a positive function ϕ satisfying | f (x)| ≤
ϕ (x) < ∞ for all x ∈ R. If x0 ∈ R is a p − μ-Lebesgue point of the function f
(1 ≤ p < ∞), then

lim
(x,σ )→(x0,σ0)

|(Tσ f ) (x) − f (x0)| = 0

provided that (x, σ ) ∈ ZC,δ .

Proof We prove the theorem for the case 1 < p < ∞. The proof for the case p = 1
is similar. Let 0 < |x0 − x | < δ

2 for a given 0 < δ < min {δ0, δ1}.
Now, set Iσ (x) = |(Tσ f ) (x) − f (x0)|. Let us write

|Iσ (x)| =
∣∣∣∣∣∣
∫

R

Kσ

⎛
⎝t,

∞∑
k=1

Pk,σ f
(
x + αk,σ t

)
⎞
⎠ dt − f (x0)

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫

R

Kσ

⎛
⎝t,

∞∑
k=1

Pk,σ f
(
x + αk,σ t

)
⎞
⎠ dt − Kσ

⎛
⎝t,

∞∑
k=1

Pk,σ f
(
x0 + αk,σ t

)
⎞
⎠ dt

+ Kσ

⎛
⎝t,

∞∑
k=1

Pk,σ f
(
x0 + αk,σ t

)
⎞
⎠ dt − f (x0)

∣∣∣∣∣∣ .

It is easy to see that

|Iσ (x)|p ≤ 2p

⎛
⎝
∫

R

∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x + αk,σ t

)− f
(
x0 + αk,σ t

)]∣∣∣∣∣ Lσ (t) dt

⎞
⎠

p

+ 2p

∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f
(
x0 + αk,σ t

))
dt − f (x0)

∣∣∣∣∣∣
p

= 2p {I1 + I2} .

Clearly, by Theorem 2, I2 → 0 as σ tends to σ0.
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The following inequality holds for I1:

I1 =
⎛
⎝
∫

R

∣∣∣∣∣∣
∞∑
k=1

Pk,σ
[
f
(
x + αk,σ t

)− f
(
x0 + αk,σ t

)]
∣∣∣∣∣∣ Lσ (t) dt

⎞
⎠

p

≤
⎛
⎜⎝
⎧⎪⎨
⎪⎩
∫

|t |>δ

+
δ∫

−δ

⎫⎪⎬
⎪⎭

∞∑
k=1

∣∣Pk,σ ∣∣ ∣∣ f (x + αk,σ t
)− f

(
x0 + αk,σ t

)∣∣ Lσ (t) dt

⎞
⎟⎠

p

≤ 2p

⎛
⎜⎝
∫

|t |>δ

∞∑
k=1

∣∣Pk,σ ∣∣ ∣∣ f (x + αk,σ t
)− f

(
x0 + αk,σ t

)∣∣ Lσ (t) dt

⎞
⎟⎠

p

+ 2p

⎛
⎜⎝

δ∫

−δ

∞∑
k=1

∣∣Pk,σ ∣∣ ∣∣ f (x + αk,σ t
)− f

(
x0 + αk,σ t

)∣∣ Lσ (t) dt

⎞
⎟⎠

p

= 2p (I11 + I12) .

Applying Hölder’s inequality to I11 and using condition (g), we have

I11 ≤
⎛
⎜⎝
∫

|t |>δ

( ∞∑
k=1

∣∣Pk,σ ∣∣
)p ∣∣ f (x + αk,σ t

)− f
(
x0 + αk,σ t

)∣∣p Lσ (t) dt

⎞
⎟⎠
⎛
⎝
∫

R

Lσ (t) dt

⎞
⎠

p
q

≤
⎛
⎜⎝
∫

|t |>δ

( ∞∑
k=1

∣∣Pk,σ ∣∣
)p ∣∣ f (x + αk,σ t

)− f
(
x0 + αk,σ t

)∣∣p Lσ (t) dt

⎞
⎟⎠ (N2)

p
q

= I111 (N2)
p
q ,

where 1
p + 1

q = 1. It is easy to see that

I111 ≤ 2p
∫

|t |>δ

( ∞∑
k=1

∣∣Pk,σ ∣∣
)p ∣∣ f (x + αk,σ t

)∣∣p Lσ (t) dt

+ 2p
∫

|t |>δ

( ∞∑
k=1

∣∣Pk,σ ∣∣
)p ∣∣ f (x0 + αk,σ t

)∣∣p Lσ (t) dt.

Following same strategy as in Theorem 2, we have

I111 ≤ 2pM pϕ p (x)
∫

|t |>δ

ηp
(
α∗t
)
Lσ (t) dt

+ 2pM pϕ p (x0)
∫

|t |>δ

ηp
(
α∗t
)
Lσ (t) dt

= I1111 + I1112.
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Using condition (e), I1111 → 0 and I1112 → 0 as (x, σ ) → (x0, σ0). The result
follows from the hypothesis on the integral I12. Thus the proof is completed. 	


5 Rate of Convergence

Theorem 4 Suppose that the hypotheses of Theorem 2 are satisfied. Let


(σ, δ) =
δ∫

−δ

∣∣{μ (|t |)}′t
∣∣ Lσ (t)dt,

where 0 < δ < min {δ0, δ1}, and the following conditions are satisfied:

(i) 
(σ, δ) tends to 0 as σ → σ0 for some δ > 0.
(ii) For every ξ > 0, we have

∫

|t |>ξ

Lσ (t) dt = o(
(σ, δ))

as σ → σ0.
(iii) For every ξ > 0 and 1 ≤ p < ∞, we have

∫

|t |>ξ

ηp
(
α∗t
)
Lσ (t) dt = o(
(σ, δ))

as σ → σ0.
(iv) Letting σ → σ0, we have

∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f (x0)

)
dt − f (x0)

∣∣∣∣∣∣
p

= o(
(σ, δ)).

Then, at each p − μ-Lebesgue point of f (1 ≤ p < ∞), we have

|(Tσ f ) (x0) − f (x0)|p = o(
(σ, δ))

as σ tends to σ0.
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Proof By the hypotheses of Theorem 2, we have

|(Tσ f ) (x0) − f (x0)|p ≤ ε p2p (N2)
p
q

δ∫

−δ

∣∣{μ (|t |)}′t
∣∣ Lσ (t) dt.

+ 22pϕ p (x0) (N2)
p
q M p

∫

|t |>δ

ηp
(
α∗t
)
Lσ (t) dt.

+ 22p (N2)
p
q | f (x0)|p

∫

|t |>δ

Lσ (t) dt

+ 2p

∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f (x0)

)
dt − f (x0)

∣∣∣∣∣∣
p

.

The proof follows from (i)−(iv). 	

Theorem 5 Suppose that the hypotheses of Theorem 3 are satisfied. Let

�δ(x, σ ) =
δ∫

−δ

∞∑
k=1

∣∣Pk,σ ∣∣ ∣∣ f (x + αk,σ t
)− f

(
x0 + αk,σ t

)∣∣ Lσ (t) dt,

where 0 < δ < min {δ0, δ1}, and the following conditions are satisfied:

(i) �δ(x, σ ) tends to 0 as (x, σ ) tends to (x0, σ0) for some δ > 0.
(ii) For every ξ > 0 and 1 ≤ p < ∞, we have

∫

|t |>ξ

ηp
(
α∗t
)
Lσ (t) dt = o(�δ(x, σ ))

as (x, σ ) tends to (x0, σ0).
(iii) Letting (x, σ ) → (x0, σ0),

∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f
(
x0 + αk,σ t

))
dt − f (x0)

∣∣∣∣∣∣
p

= o (�δ(x, σ )) .

Then, at each p − μ-Lebesgue point of f (1 ≤ p < ∞), we have

|(Tσ f ) (x) − f (x0)|p = o (�δ(x, σ ))

as (x, σ ) tends to (x0, σ0).
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Proof Under the hypotheses of Theorem 3, we may write

|(Tσ f ) (x) − f (x0)|p ≤ (N2)
p
q 23pM pϕ p (x)

∫

|t |>δ

ηp (α∗t
)
Lσ (t) dt

+ (N2)
p
q 23pM pϕ p (x0)

∫

|t |>δ

ηp (α∗t
)
Lσ (t) dt

+ 22p

⎛
⎝

δ∫

−δ

∞∑
k=1

∣∣Pk,σ ∣∣ ∣∣ f (x + αk,σ t
)− f

(
x0 + αk,σ t

)∣∣ Lσ (t) dt

⎞
⎠

p

+ 2p

∣∣∣∣∣∣
∫

R

Kσ

(
t,

∞∑
k=1

Pk,σ f
(
x0 + αk,σ t

))
dt − f (x0)

∣∣∣∣∣∣
p

.

By conditions (i)−(i i i), we obtain the desired result. This completes the proof. 	
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Existence and Ulam’s Type Stability
of Integro Differential Equation
with Non-instantaneous Impulses
and Periodic Boundary Condition
on Time Scales

Vipin Kumar and Muslim Malik

Abstract The present manuscript is dedicated to the study of existence and sta-
bility of integro differential equation with periodic boundary condition and non-
instantaneous impulses on time scales. Banach contraction theorem and non-linear
functional analysis have been used to established these results. Moreover, to outline
the utilization of these outcomes an example is given.

Keywords Existence · Stability · Time scales · Non-instantaneous impulses

AMS Subject Classification 34A12 · 35F30 · 34A37 · 34N05

1 Introduction

There are many physical models which are subject to sudden changes in its states,
such rapid changes are known as impulsive response. In the current hypothesis, there
are two types of impulsive system, one is instantaneous and another one is known
as non-instantaneous impulsive system. In the instantaneous impulsive system, the
duration of these abrupt changes is very little correlation to the duration of the whole
process, for example pulses, stuns and cataclysmic events [7, 16], while in the non-
instantaneous impulses, the duration of these changes continues over a finite time
interval. For the initial studies related with the existence, uniqueness, and control-
lability of non-instantaneous impulsive systems of integer and fractional order, we
refer to [10, 15, 18, 21] and the references cited therein. Further, stability analy-
sis of dynamical systems becomes an important research area and various form of
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stabilities have been developed including Lyapunov stability,Mittag-Leffler function
and exponential for dynamical equations. Moreover, an interesting type of stability
was introduced by Ulam andHyers is known as Ulam-Hyers stability which is highly
useful in numerical analysis and optimization for dynamical equations. The Ulam-
Hyper’s stability for many dynamical equations of integer and fractional order has
been studied in lots of articles [4, 5, 25, 26].

In 1988, Hilger presented the time scales calculus. The investigation of analytics
on time scales incorporates the continuous and discrete analysis, therefore the inves-
tigation of dynamical system on time scales has picked up an awesome consideration
and numerous scientists have discovered the uses of time scales in heat transfer sys-
tem [19], population dynamics [28] and economics [11, 12]. For more details about
time scales one can refer the book [8, 9] and papers [2, 3, 17]. Further over the most
recent couple of years, many authors talked about the existence, uniqueness and sta-
bility of dynamical system on time scales [1, 6, 13, 14, 20, 22–24, 27]. Particularly,
Geng [13], presented the concepts of lower and upper solutions for a PBVP on time
scales.

According as far as anyone is concerned, there is no manuscript which examined
the existence, uniqueness and stability investigation of integro differential equa-
tions with non-instantaneous impulses on time scales. Spurred by the above actual-
ities, we take the differential equations with periodic boundary condition and non-
instantaneous impulses on time scale of the form:

v�(θ) = C

⎛
⎜⎝θ, v(θ),

θ∫

0

h(θ, τ , v(τ ))�τ

⎞
⎟⎠ , θ ∈ ∪l

k=0(λk , θk+1]T,

v(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, θ ∈ (θk , λk ]T, k = 1, 2, . . . , l, q ∈ (0, 1)

(1.1)

v(0) = v(T )

where T is a time scale with θk,λk ∈ T are right dense points with 0 = λ0 = θ0 <

θ1 < λ1 < θ2 < · · · λl < θl+1 = T , v(θ−
k ) = limh→0+ v(θk − h), v(θ+

k ) = limh→0+

v(θk + h), represent the left and right limits of v(θ) at θ = θk . The functions
gk(θ, v(θ−

k )) ∈ C(I, R) represent non-instantaneous impulses during the intervals
(θk,λk]T, k = 1, 2, . . . , l, so impulses at θk have some duration, namely on inter-
vals (θk,λk]T. C : I = [0, T ]T × R → R and h : Q × R → R are given functions,
where Q = {(θ, τ ) ∈ I × I : 0 ≤ τ ≤ θ ≤ T }.

Throughout the manuscript, we impose

M(v(θ)) =
θ∫

0

h(θ, τ , v(τ ))�τ .
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The structure of the manuscript is as: In second section, we give preliminaries,
fundamental definitions, useful lemmas and some important results. In the subsequent
sections, themain results of themanuscript are discussed. Finally, an example is given
to outline the utilization of these outcomes.

2 Preliminaries

Below, we give basic notations, fundamental definitions and useful lemmas. Let
(X, ‖.‖) be a Banach space.C(I, R) be the set of all continuous functions. In order to
define the solution of the Eq. (1.1), we define the space PC(I, R) of piecewise con-
tinuous functions defined as PC(I, R) = {v : I → R : v ∈ C(θk, θk+1]T, R), k =
0, 1, . . . , l and there exists v(θ−

k ) and v(θ+
k ), k = 1, 2, . . . , l with v(θ−

k ) = v(θk)}. It
can be seen easily that PC(I, R) is a Banach space with the TZ-norm

‖v‖� = sup
θ∈[a,b]

‖v(θ)‖
e�(θ, a)

, for some � ∈ R+.

A closed non-empty subset of real number is called time scales T. A time scale
interval is defined as [i,m]T = {θ ∈ T : i ≤ θ ≤ m}, accordingly, we define (i,m)T,

[i,m)T and soon.Nowonwards,weused a time scale interval [i,m] insteadof [i,m]T.
Also, now onward if maxT exists, thenwe takeT

k = T\{maxT}, otherwiseT
k = T.

The forward jump operator σ : T
k → T is defined by σ(θ) := inf{r ∈ T : r > θ}

with the substitution inf{φ} = supT and the graininess function μ : T
k → [0,∞) is

define as μ(θ) := σ(θ) − θ,∀θ ∈ T
k .

Definition 2.1 Let z : T → R and θ ∈ T
k . The delta derivative z�(θ) is the number

(when it exists) such that given any ε > 0, there is a neighbourhoodU of θ such that

|[z(σ(θ)) − z(τ )] − z�(θ)[σ(θ) − τ ]| ≤ ε|σ(θ) − τ |, ∀ τ ∈ U.

Definition 2.2 Function Z is said to be antiderivative of z : T → R provided
Z�(θ) = z(θ) for each θ ∈ T

k , then the delta integral is defined by

θ∫

θ0

z(ζ)�ζ = Z(θ) − Z(θ0).

A function z : T → R is called rd-continuous on T, if z has finite left-sided limits at
points θ ∈ T with sup{r ∈ T : r < θ} = θ and z is continuous at points θ ∈ T with
σ(θ) = θ. The collection of all rd-continuous functions z : T → R will be denoted
by Crd(T, R).

Definition 2.3 A function p : T → R is said to be regressive (positive regressive)
if 1 + μ(θ)p(θ) 	= 0(> 0), ∀θ ∈ T and the set of all regressive (positive regressive)
functions are denoted by R(R+).
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Definition 2.4 The generalized exponential function is defined as

ep(θ, r) = exp

⎛
⎝

θ∫

r

ξμ(ζ)(p(ζ))�ζ

⎞
⎠ , θ, r ∈ T, p ∈ R,

where ξμ(β)(p(β)) is given by

ξμ(β)(κ) =
⎧⎨
⎩

1

μ(β)
Log(1 + μ(β)κ), if μ(β) 	= 0.

κ, if μ(β) = 0.

Lemma 2.5 ([17]) Let θ1, θ2 ∈ T, such that θ1 ≤ θ2 and z : R → R be a non-
decreasing continuous function. Then,

θ2∫

θ1

z(ζ)�ζ ≤
θ2∫

θ1

z(ζ)dζ. (2.1)

Lemma 2.6 Let g : I → R be a right dense continuous function. Then, for any
k = 1, 2, . . . , l, the solution of the following problem

v�(θ) = g(θ), θ ∈ ∪l
k=0(λk, θk+1],

v(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, θ ∈ (θk,λk], k = 1, 2, . . . , l,

v(0) = v(T ),

is given by the following integral equation

v(θ) = 1

�(q)

λl∫

θl

(λl − ζ)q−1gl (ζ, v(θ−
l ))�ζ +

T∫

λl

g(ζ)�ζ +
θ∫

0

g(ζ)�ζ, ∀ θ ∈ [0, θ1],

v(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, ∀ θ ∈ (θk ,λk ], k = 1, 2, . . . , l,

v(θ) = 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, v(θ−
k ))�ζ +

θ∫

λk

g(ζ)�ζ, ∀ θ ∈ (λk , θk+1], k = 1, 2, . . . , l.

(H1): The non-linear function C : J1 × R × R → R, J1 = ∪l
k=0[λk, θk+1] is con-

tinuous and ∃ positive constants LC1 , LC2 such that
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|C(θ, v1, v2) − C(θ, w1, w2)| ≤ LC1 |v1 − w1| + LC2 |v2 − w2|,
∀ θ ∈ I, v j , w j ∈ R, j = 1, 2.

Also, ∃ positive constants CC, MC and NC such that

|C(θ, v, w)| ≤ CC + MC|v| + NC|w|, ∀ θ ∈ I, v, w ∈ R.

(H2): h : Q × R → R is continuous and ∃ positive constant Lh such that

|h(θ, τ , v) − h(θ, τ , w)| ≤ Lh |v − w|, ∀ θ, τ ∈ Q, v, w ∈ R.

Also, ∃ positive constants Ch, Mh such that

|h(θ, τ , v)| ≤ Ch + Mh |v|, ∀ θ, τ ∈ Q, v ∈ R.

(H3): The functions gk : Ik × R → R, Ik = [θk,λk], k = 1, 2, . . . , l are contin-
uous and ∃ a positive constant Lg such that

|gk(θ, v) − gk(θ, w)| ≤ Lg|v − w|, ∀ v,w ∈ R, θ ∈ Ik, k = 1, 2, . . . , l.

Also, ∃ a positive constant Mg such that |gk(θ, v)| ≤ Mg, ∀ θ ∈ Ik and v ∈ R.

(H4): max1≤k≤l

(
e�(T,λk)

(
MC
�

+ NCMh

�2

))
< 1.

3 Existence and Uniqueness

Theorem 3.1 Let the assumptions (H1)–(H4) are holds, then Eq. (1.1) has a unique
solution provided,

e�(T,λl)

(
LC1

�
+ LC2Lh

�2

)
< 1.

Proof Consider a subset D ⊆ PC(I, R) such that

D = {v ∈ PC(I, R) : ‖v‖� ≤ β},

where

β = max
1≤k≤l

⎛
⎜⎜⎝

MgT q

�(q + 1)
+ CC(T + θ1) + NCCh(T 2 + θ21)

1 − (1 + e�(T,λk))

(
MC
�

+ NCMh

�2

)

⎞
⎟⎟⎠ .
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Now, define an operator � : D → D given by

(�v)(θ) =
θ∫

0

C(ζ, v(ζ),M(v(ζ)))�ζ + 1

�(q)

λl∫

θl

(λl − ζ)q−1gl(ζ, v(θ−
l ))�ζ

+
T∫

λl

C(ζ, v(ζ),M(v(ζ)))�ζ, ∀ θ ∈ [0, θ1],

(�v)(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, ∀ θ ∈ (θk,λk], k = 1, 2, . . . , l,

(�v)(θ) = 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, v(θ−
k ))�ζ +

θ∫

λk

C(ζ, v(ζ),M(v(ζ)))�ζ,

∀ θ ∈ (λk, θk+1], k = 1, 2, . . . , l.

The proof of this theorem are divided into two steps.
Step 1: To use the Banach contraction theorem, we have to show that � : D → D.
For this, we are taking three cases as follows:
Case 1: For θ ∈ (λk, θk+1], k = 1, 2, . . . , l and v ∈ D, we have:

|(�v)(θ)| ≤ 1

�(q)

λk∫

θk

(λk − ζ)q−1|gk(ζ, v(θ−
k ))|�ζ +

θ∫

λk

|C(ζ, v(ζ),M(v(ζ)))|�ζ

≤ Mg

�(q)

λk∫

θk

(λk − ζ)q−1�ζ +
θ∫

λk

(CC + MC |v(ζ)| + NC |M(v(ζ))|)�ζ

≤ Mg(λk − θk)
q

�(q + 1)
+ (CC + NCChθk+1)(θk+1 − λk)

+
(
MCβ + NCMhβ

�

) θ∫

λk

e�(ζ, λk)�ζ

≤ MgT q

�(q + 1)
+ (CC + NCChT )T + MCβe�(θ, λk)

�
+ NCMhβe�(θ, λk)

�2 .

Hence,

‖�v‖� ≤ MgT q

�(q + 1)
+ (CC + NCChT )T + MCβ

�
+ NCMhβ

�2
. (3.1)
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Case 2: For θ ∈ [0, θ1] and v ∈ D, we have:

|(�v)(θ)| ≤
θ∫

0

|C(ζ, v(ζ),M(v(ζ)))|�ζ + 1

�(q)

λl∫

θl

(λl − ζ)q−1|gl(ζ, v(θ−
l ))|�ζ

+
T∫

λl

|C(ζ, v(ζ),M(v(ζ)))|�ζ

≤ Mg(λl − θl)
q

�(q + 1)
+ CC(T − λl) + MCβ

T∫

λl

e�(ζ,λl)�ζ + NCChT (T − λl)

+ NCMhβ

�

T∫

λl

e�(ζ,λl)�ζ + CCθ1 + NCChθ
2
1

+
(
MCβ + NCMhβ

�

) θ∫

0

e�(ζ, 0)�ζ

≤ MgT q

�(q + 1)
+ CC(T + θ1) + MCβe�(T,λl)

�
+ NCCh(T

2 + θ21)

+ NCMhβe�(T,λl)

�2 + MCβe�(θ, 0)

�
+ NCMhβe�(θ, 0)

�2 .

Hence,

‖�v‖� ≤ MgT q

�(q + 1)
+ CC(T + θ1) + MCβe�(T,λl)

�
+ NCCh(T

2 + θ21)

+ NCMhβe�(T,λl)

�2
+ MCβ

�
+ NCMhβ

�2
. (3.2)

Case 3: For θ ∈ (θk,λk], k = 1, 2, . . . , l and v ∈ D, we can easily get:

‖�v‖� = MgT q

�(q + 1)
. (3.3)

After summarizing the above inequalities (3.1)–(3.3), we get:

‖�v‖� ≤ β.

Therefore, � : D → D.
Step 2: In this step, we will show that the operator � is a contracting operator. Here
also, we are taking three cases as follows:
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Case 1: For any v,w ∈ D, θ ∈ (λk, θk+1], k = 1, 2, . . . , l, we have:

|(�v)(θ) − (�w)(θ)| ≤ 1

�(q)

λk∫

θk

(λk − ζ)q−1|gk(ζ, v(θ−
k )) − gk(ζ, w(θ−

k ))|�ζ

+
θ∫

λk

|C(ζ, v(ζ),M(v(ζ))) − C(ζ, v(ζ),M(w(ζ)))|�ζ

≤ Lg
�(q)

λk∫

θk

(λk − ζ)q−1|v(θ−
k ) − w(θ−

k )|e�(θ−
k , θk)

e�(θ−
k , θk)

�ζ

+ LC1

θ∫

λk

|v(ζ) − w(ζ)|e�(ζ,λk)

e�(ζ,λk)
�ζ

+ LC2

θ∫

λk

|M(v(ζ)) − M(w(ζ))|�ζ

≤ ‖v − w‖�Lge�(θ−
k , θk)(λk − θk)

q

�(q + 1)

+ LC1‖v − w‖�

θ∫

λk

e�(ζ,λk)�ζ

+ LC2 Lh‖v − w‖�

�

θ∫

λk

e�(ζ,λk)�ζ

≤ Lge�(θ−
k , θk)(λk − θk)

q‖v − w‖�

�(q + 1)
+ LC1e�(θ,λk)‖v − w‖�

�

+ LC2 Lhe�(θ,λk)‖v − w‖�

�2 .

Thus, we have:

‖�v − �w‖� ≤
[
Lge�(θ−

k , θk)T q

�(q + 1)
+ LC1

�
+ LC2Lh

�2

]
‖v − w‖�. (3.4)
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Case 2: For any v,w ∈ D, θ ∈ [0, θ1], we have:

|(�v)(θ) − (�w)(θ)| ≤
θ∫

0

|C(ζ, v(ζ),M(v(ζ))) − C(ζ, w(ζ),M(w(ζ)))|�ζ

+ 1

�(q)

λl∫

θl

(λl − ζ)q−1|gl(ζ, v(θ−
l )) − gl(ζ, w(θ−

l ))|�ζ

+
T∫

λl

|C(ζ, v(ζ),M(v(ζ))) − C(ζ, w(ζ),M(w(ζ)))|�ζ

≤ Lg

�(q)

λl∫

θl

(λl − ζ)q−1|v(θ−
l ) − w(θ−

l )|e�(θ−
l , θl)

e�(θ−
l , θl)

�ζ

+ LC1

T∫

λl

|v(ζ) − w(ζ)|e�(ζ, λl)

e�(ζ, λl)
�ζ

+ LC2

T∫

λl

|M(v(ζ)) − M(w(ζ))|�ζ

+ LC1

θ∫

0

|v(ζ) − w(ζ)|e�(ζ, 0)

e�(ζ, 0)
�ζ

+ LC2

θ∫

0

|M(v(ζ)) − M(w(ζ))|�ζ

≤ Lge�(θ−
l , θl)(λl − θl)

q‖v − w‖�

�(q + 1)
+ LC1‖v − w‖�

T∫

λl

e�(ζ, λl)�ζ

+ LC2 Lh‖v − w‖�

�

T∫

λl

e�(ζ, λl)�ζ + LC1‖v − w‖�

θ∫

0

e�(ζ, 0)�ζ

+ LC2 Lh‖v − w‖�

�

θ∫

0

e�(ζ, 0)�ζ

≤ LC2 Lhe�(T, λl)‖v − w‖�

�2 + Lge�(θ−
l , θl)(λl − θl)

q‖v − w‖�

�(q + 1)

+ ‖v − w‖�LC1e�(T, λl)

�
+ LC1e�(θ, 0)‖v − w‖�

�

+ LC2 Lhe�(θ, 0)‖v − w‖�

�2 .
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Therefore,

‖�v − �w‖� ≤
[
Lge�(θ−

l , θl)T q

�(q + 1)
+ (1 + e�(T,λl))

(
LC1
�

+ LC2Lh

�2

)]
‖v − w‖�.

(3.5)

Case 3: Similarly, for θ ∈ (θk,λk], k = 1, 2, . . . , l, we get:

|(�v)(θ) − (�w)(θ)| ≤ Lge�(θ−
k , θk)T q

�(q + 1)
‖v − w‖�.

Therefore,

‖�v − �w‖� ≤ LgT q

e�(θk, θ
−
k )�(q + 1)

‖v − w‖�. (3.6)

After summarizing the inequalities (3.4)–(3.6), we get:

‖�v − �w‖� ≤ L�‖v − w‖�,

where

L� = max
1≤k≤l

[
LgT qe�(θ−

k , θk)

�(q + 1)
+ (1 + e�(T,λl))

(
LC1

�
+ LC2Lh

�2

)]
.

Hence, for sufficiently large �, � is a strict contraction mapping. Therefore, � has
a unique fixed point and that fixed point is the solution of the taken Eq. (1.1). �


Let us consider a special casewhen C
(
θ, v(θ),

∫ θ

0 h(θ, τ , v(τ ))�τ
)

= P(θ, v) +
∫ θ

0 h(θ, τ , v(τ ))�τ then (1.1) becomes:

v�(θ) = P(θ, v) +
θ∫

0

h(θ, τ , v(τ ))�τ , θ ∈ ∪l
k=0(λk, θk+1],

v(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, θ ∈ (θk,λk], k = 1, 2, . . . , l,

(3.7)

v(0) = v(T ).

(H5): P : J1 × R → R is a non-linear continuous function and ∃ a positive con-
stant LP such that
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|P(θ, v) − P(θ, w)| ≤ LP |v − w|, ∀ θ ∈ I, v, w ∈ R.

Also, ∃ positive constants CP and MP such that

|P(θ, v)| ≤ CP + MP |v|, ∀ θ ∈ I, v ∈ R.

(H6): max1≤k≤l

(
e�(T,λk)

(
MP
�

+ Mh

�2

))
< 1.

Corollary 3.2 If the assumptions (H2)–(H3) and (H5)–(H6) are holds, then the
Eq. (3.7) has a unique solution, provided

e�(T,λl)

(
LP
�

+ Lh

�2

)
< 1.

4 Hyer-Ulam’s Stability

For ε > 0,ψ ≥ 0, and nondecreasing ϕ ∈ PC(I, R
+), consider the below inequali-

ties
⎧⎪⎨
⎪⎩

|w�(θ) − C(θ, w(θ),M(w(θ)))| ≤ ε, θ ∈ ∪l
k=0(λk, θk+1].∣∣∣∣w(θ) − 1

�(q)

θ∫
θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ

∣∣∣∣ ≤ ε, θ ∈ (θk, λk], k = 1, 2, . . . , l.

(4.1)

⎧⎪⎨
⎪⎩

|w�(θ) − C(θ, w(θ),M(w(θ))| ≤ εϕ(θ), θ ∈ ∪l
k=0(λk, θk+1].∣∣∣∣w(θ) − 1

�(q)

θ∫
θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ

∣∣∣∣ ≤ εψ, θ ∈ (θk, λk], k = 1, 2, . . . , l.

(4.2)

Definition 4.1 ([25]) Equation (1.1) is called Hyer’s-Ulam stable if there exists a
positive constant H(LC1 ,LC2 ,Lh ,Lg) such that for ε > 0 and for each solution w of
inequality (4.1), there exist a unique solution v of Eq. (1.1) satisfies the following
inequality

|w(θ) − v(θ)| ≤ H(LC1 ,LC2 ,Lh ,Lg)ε, ∀ θ ∈ I.

Definition 4.2 ([25]) Equation (1.1) is said to be generalized Hyer’s-Ulam stable if
there existsH(LC1 ,LC2 ,Lh ,Lg) ∈ C(R+, R

+),H(LC1 ,LC2 ,Lh ,Lg)(0) = 0 such that for each
solution w of inequalities (4.1), there exists a unique solution v of Eq. (1.1) satisfies
the following inequality
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|w(θ) − v(θ)| ≤ H(LC1 ,LC2 ,Lh ,Lg)(ε), ∀ θ ∈ I.

Remark 4.3 Definition (4.1) =⇒ Definition (4.2).

Definition 4.4 ([25]) Equation (1.1) is said to be Hyers-Ulam-Rassias stable w.r.t
(ϕ,ψ), if there exists H(LC1 ,LC2 ,Lh ,Lg,ϕ) such that for ε > 0 and for each solution w

of inequality (4.2), there exist a unique solution v of Eq. (1.1) satisfies the following
inequality

|w(θ) − v(θ)| ≤ H(LC1 ,LC2 ,Lh ,Lg,ϕ)ε(ϕ(θ),ψ), ∀ θ ∈ I.

Remark 4.5 A function w ∈ PC(I, R) is a solution of inequality (4.1) if and only
if there is G ∈ PC(I, R) and a sequence Gk, k = 1, 2, . . . , l, such that

(a) |G(θ)| ≤ ε,∀ θ ∈ ∪l
k=0(λk, θk+1] and |Gk | ≤ ε, ∀ θ ∈ (θk,λk], k = 1, 2, . . . , l.

(b) w�(θ) = C(θ, w(θ),M(w(θ))) + G(θ), θ ∈ (λk, θk+1], k = 0, 1, . . . , l.

(c) w(θ) = 1

�(q)

∫ θ
θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ + Gk, θ ∈ (θk, λk], k = 1, 2, . . . , l.

Now, by the above Remark 4.5, we have:

⎧⎪⎨
⎪⎩

w�(θ) = C(θ, w(θ),M(w(θ))) + G(θ), θ ∈ (λk, θk+1], k = 0, 1, . . . , l,

w(θ) = 1

�(q)

θ∫
θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ + Gk , θ ∈ (θk ,λk], k = 1, 2, . . . , l.

From Lemma 2.6, one can find that the solution w with w(0) = w(T ) of the above
equation is given by

w(θ) =
θ∫

0

(C(ζ, w(ζ),M(w(ζ))) + G(ζ))�ζ + 1

�(q)

λl∫

θl

(λl − ζ)q−1gl(ζ, w(θ−
l ))�ζ + Gl

+
T∫

λl

(C(ζ, w(ζ),M(w(ζ))) + G(ζ))�ζ, ∀ θ ∈ [0, θ1],

w(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ + Gk , ∀ θ ∈ (θk , λk ], k = 1, 2, . . . , l,

w(θ) = 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, w(θ−
k ))�ζ + Gk +

θ∫

λk

(C(ζ, w(ζ),M(w(ζ))) + G(ζ))�ζ,

∀ θ ∈ (λk , θk+1], k = 1, 2, . . . , l.

Therefore, for θ ∈ (λk, θk+1], k = 1, 2, . . . , l, we have:
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∣∣∣∣w(θ) − 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, w(θ−
k ))�ζ −

θ∫

λk

C(ζ, w(ζ),M(w(ζ)))�ζ

∣∣∣∣

≤ |Gk | +
θ∫

λk

|G(ζ)|�ζ ≤ ε(1 + T ).

Also, for θ ∈ [0, θ1], we have:
∣∣∣∣w(θ) − 1

�(q)

λl∫

θl

(λl − ζ)q−1gl(ζ, w(θ−
l ))�ζ −

T∫

λl

C(ζ, w(ζ),M(w(ζ)))�ζ

−
θ∫

0

C(ζ, w(ζ),M(w(ζ)))�ζ

∣∣∣∣ ≤ |Gl | +
T∫

λl

|G(ζ)|�ζ +
θ∫

0

|G(ζ)|�ζ

≤ ε(1 + 2T ).

Similarly, for θ ∈ (θk,λk], k = 1, 2, . . . , l, we have:

∣∣∣∣w(θ) − 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ

∣∣∣∣ ≤ ε.

We have similar remark for the inequality (4.2).

Theorem 4.6 If the assumptions of Theorem 3.1 are holds, then the Eq. (1.1) is
Hyer-Ulam stable.

Proof Let w ∈ PC(I, R) be the solution of inequality (4.1) and v ∈ PC(I, R) be
a unique solution of the Eq. (1.1). Therefore, for θ ∈ (λk, θk+1], k = 1, 2, . . . , l, we
have:

|w(θ) − v(θ)| ≤
∣∣∣∣w(θ) −

θ∫

λk

C(ζ, v(ζ),M(v(ζ)))�ζ

∣∣∣∣ − 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, v(θ−
k ))�ζ

≤
∣∣∣∣w(θ) − 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, w(θ−
k ))�ζ

−
θ∫

λk

C(ζ, w(ζ),M(w(ζ)))�ζ

∣∣∣∣

+
∣∣∣∣

1

�(q)

λk∫

θk

(λk − ζ)q−1(gk(ζ, w(θ−
k )) − gk(ζ, v(θ−

k )))�ζ

∣∣∣∣
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+
∣∣∣∣

θ∫

λk

(C(ζ, w(ζ),M(w(ζ))) − C(ζ, w(ζ),M(v(ζ))))�ζ

∣∣∣∣

≤ ε(1 + T ) + Lg

�(q)

λk∫

θk

(λk − ζ)q−1|w(θ−
k ) − v(θ−

k )|�ζ

+ LC1

θ∫

λk

|w(ζ) − v(ζ)|�ζ + LC2

θ∫

λk

|M(w(ζ)) − M(v(ζ))|�ζ

≤ ε(1 + T ) + Lge�(θ−
k , θk)(λk − θk)

q‖v − w‖�

�(q + 1)

+ LC1e�(θ, λk)‖v − w‖�

�
+ LC2 Lhe�(θ, λk)‖v − w‖�

�2 .

Hence,

‖w − v‖� ≤ ε(1 + T ) +
[
Lge�(θ−

k , θk)T q

�(q + 1)
+ LC1

�
+ LC2Lh

�2

]
‖v − w‖�. (4.3)

Also, for θ ∈ [0, θ1], we have:

|w(θ) − v(θ)| ≤
∣∣∣∣w(θ) −

θ∫

0

C(ζ, v(ζ),M(v(ζ)))�ζ

∣∣∣∣

− 1

�(q)

λl∫

θl

(λl − ζ)q−1gl(ζ, v(θ−
l ))�ζ −

T∫

λl

C(ζ, v(ζ),M(v(ζ)))�ζ

≤ ε(1 + 2T ) + Lg

�(q)

λl∫

θl

(λl − ζ)q−1|v(θ−
l ) − w(θ−

l )|�ζ

+ LC1

T∫

λl

|v(ζ) − w(ζ)|�ζ + LC2

T∫

λl

|M(v(ζ)) − M(w(ζ))|�ζ

+ LC1

θ∫

0

|v(ζ) − w(ζ)|�ζ + LC2

θ∫

0

|M(v(ζ)) − M(w(ζ))|�ζ

≤ ε(1 + 2T ) + Lge�(θ−
l , θl )(λl − θl)

q‖v − w‖�

�(q + 1)
+ LC1e�(T,λl )‖v − w‖�

�

+ LC2 Lhe�(T,λl )‖v − w‖�

�2 + LC1e�(θ, 0)‖v − w‖�

�

+ LC2 Lhe�(θ, 0)‖v − w‖�

�2 .
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Thus,

‖w − v‖� ≤ ε(1 + 2T ) +
[
Lge�(θ−

l , θl)T q

�(q + 1)
+ (1 + e�(T, λl))

(
LC1

�
+ LC2 Lh

�2

)]
‖v − w‖�.

(4.4)

Similarly, for θ ∈ (θk,λk], k = 1, 2, . . . , l, we can easily find that

|w(θ) − v(θ)| ≤
∣∣∣∣w(θ) − 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ

∣∣∣∣

≤ ε + Lg(λk − θk)
qe�(θ−

k , θk)‖w − v‖�

�(q + 1)
.

Therefore,

‖w − v‖� ≤ ε + LgT q

e�(θk, θ
−
k )�(q + 1)

‖v − w‖�. (4.5)

After summarizing the above inequalities (4.3)–(4.5), we get:

‖w − v‖� ≤ ε(1 + 2T ) +
[
Lge�(θ−

l , θl)T q

�(q + 1)
+ (1 + e�(T,λl))

(
LC1

�
+ LC2Lh

�2

)]

× ‖v − w‖�, ∀ θ ∈ I.

Hence,

‖w − v‖� ≤ H(LC1 ,LC2 ,Lh ,Lg)ε, θ ∈ I,

where H(LC1 ,LC2 ,Lh ,Lg) = 1 + 2T

1 − L�

> 0. Thus, the Eq. (1.1) is Ulam-Hyer’s stable.

Moreover, if we putH(LC1 ,LC2 ,Lh ,Lg)(ε) = H(LC1 ,LC2 ,Lh ,Lg)ε,H(LC1 ,LC2 ,Lh ,Lg)(0) = 0,
then the Eq. (1.1) is generalized Ulam-Hyer’s stable. �

(H7): There exists a δϕ > 0 such that

∫ θ

0 ϕ(ζ)�ζ ≤ δϕϕ(θ), ∀ θ ∈ I .

The following theorem is the consequence of the Theorem 4.6.

Theorem 4.7 If the conditions of Theorem 3.1 and (H7) are holds, then the Eq. (1.1)
is Hyer’s-Ulam-Rassias stable.
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5 Example

Consider the following equation with impulses on T, (0, 3/5, 4/5, 1 ∈ T)

v�(θ) = 5 + |v(θ)|
20eθ+3(1 + |v(θ)|) + 1

10

θ∫

0

θτ 2 sin(v(τ ))

eτ+5
�τ , θ ∈ I ′ = [0, 1]T \ (θ1,λ1]T,

v(θ) = 1

�(q)

θ∫

θ1

(θ − ζ)q−1(1 + ζ2 sin(v(θ−
1 )))

15
�ζ, θ ∈ (θ1,λ1]T, (5.1)

v(0) = v(1).

Set,

C(θ, v, w) = 5 + |v(θ)|
20eθ+3(1 + |v(θ)|) + 1

10
w, θ ∈ I ′, v, w ∈ R,

h(θ, τ , v) = θτ 2 sin(v(τ ))

eτ+5
, ∀ θ, τ ∈ I ′, v ∈ R,

and

g1(θ, v) = 1 + θ2 sin(v(θ−
1 ))

15
, θ ∈ (θ1,λ1], v ∈ R.

Then, ∀ θ, τ ∈ I = [0, 1], v, w, x, y ∈ R, we have:

| f (θ, v, w) − f (θ, x, y)| ≤ 1

20e3
|v − x | + 1

10
|w − y|,

| f (θ, v, w)| ≤ 5 + |v|
20e3

+ 1

10
|w|,

|g1(θ, v) − g1(θ, w)| ≤ 1

15
|v − w|, |h(θ, τ , v)| ≤ 1

e5
+ 1

e5
|v|,

|h(θ, τ , v) − h(θ, τ , w)| ≤ 1

e5
|v − w|.

Hence, the assumptions (H1)–(H4) are holds with LC1 = 1

20e3
, LC2 = 1

10
, CC =

5

20e3
, MC = 1

20e3
, NC = 1

10
, Lh = 1

e5
, Ch = 1

e5
, Mh = 1

e5
, Lg = 1

15
, Mg =

2

15
. Also, for l = 1, θ1 = 3/5, λ1 = 4/5, T = 1, � = 10, the condition

e�(T,λ1)

(
LC1

�
+ LC2Lh

�2

)
= 0.0039 (<1)
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holds. Thus, from Theorems 3.1 and 4.6, Eq. (5.1) has a Ulam Hyer’s stable solution
which is unique.

6 Conclusion

In thismanuscript,we have successfully established the existence of a unique solution
for the system (1.1) by using theBanach contraction theoremandnonlinear functional
analysis. Also, we established the Ulam-Hyer’s stability of the taken problem (1.1).
To illustrate the application of obtained results, we have given an example.
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Introduction to Class of Uniformly
Fractional Differentiable Functions

Krunal B. Kachhia and Jyotindra C. Prajapati

Abstract In this paper, authors introduced new concept of uniformly fractional dif-
ferentiable functions on an arbitrary interval I of R by using Caputo-type fractional
derivative instead of the commonly used first-order derivative. Their interesting prop-
erties with few illustrations have been discussed in this paper.

Keywords Uniformly differentiable functions · Uniformly continuous functions ·
Uniformly fractional differentiable functions · Caputo fractional derivative

Mathematics Subject Classification (2000) 26A33 · 34A08 · 34A12

1 Introduction

The fractional calculus is a theory of integrals and derivatives of arbitrary order,which
unify and generalize the notions of integer-order differentiation and n-fold integra-
tion. We shall explain the result connected to classical analysis, namely uniformly
differential functions given by Patel [1], can be extended to fractional calculus, i.e
they can be generalized by replacing the first order the first derivatives and integrals,
respectively, by derivatives and integrals of non-integer. The uniformly differentiable
function can be defined as:

Definition 1 Let I be an interval in R. A differentiable function f : I → R is uni-
formly differentiable, if for any ε > 0, there is a δ > 0 such that for any x, y ∈ I
satisfying |x − y| < δ,

K. B. Kachhia
Department of Mathematical Sciences, P. D. Patel Institute of Applied Sciences,
Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
e-mail: krunalmaths@hotmail.com

J. C. Prajapati (B)
Department of Mathematics, Sardar Patel University,
Vallabh Vidyanagar 388120, Gujarat, India
e-mail: drjyotindra18@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
J. Singh et al. (eds.), Mathematical Modelling, Applied Analysis
and Computation, Springer Proceedings in Mathematics & Statistics 272,
https://doi.org/10.1007/978-981-13-9608-3_6

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9608-3_6&domain=pdf
mailto:krunalmaths@hotmail.com
mailto:drjyotindra18@gmail.com
https://doi.org/10.1007/978-981-13-9608-3_6


104 K. B. Kachhia and J. C. Prajapati

∣
∣
∣
∣

f (x) − f (y)

x − y
− f ′(x)

∣
∣
∣
∣
< ε (1)

and ∣
∣
∣
∣

f (x) − f (y)

x − y
− f ′(y)

∣
∣
∣
∣
< ε (2)

The collection of all uniformly differentiable functions on I will be denoted by
UD(I ). The class of uniformly differentiable function has connection with class of
uniformly continuous functions which are well-known class of functions in classical
analysis. The uniform continuous defined by Apostol [2] as:

Definition 2 A function f : I → R is uniformly continuous function on interval I ,
if for any ε > 0, there is a δ > 0 such that for any x, y in I satisfying |x − y| < δ,

| f (x) − f (y)| < ε (3)

Definition 3 The Caputo fractional derivative of order α defined by Caputo [3] as

C Dα( f (t)) = 1

Γ (n − α)

t∫

0

f (n)(τ )

(t − τ )n−α−1
dτ (n − 1 < α < n) (4)

The following theorem is given by Diethelm [4].

Theorem 4 Let 0 < α ≤ 1, a < b and f ∈ C[a, b] be such that C Dα( f ) ∈ C[a, b].
Then there exist ξ ∈ (a, b) such that

f (b) − f (a)

(b − a)α
= 1

Γ (α)

C Dα( f (ξ)) (5)

Also some properties of Local fractional calculus was studied by Yang [5] and Yang
and Gao [6]. Kachhia and Prajapati [7] introduced concept of functions of bounded
fractional differential variation using the Caputo-type fractional derivative.

Definition 5 A Caputo fractional differentiable function f is absolutely fractional
differentiable function on interval I , if for any ε > 0, there is a δ > 0 such that for an
collection of pairwise disjoint intervals {(ai , bi )} in I satisfying

∑n
i=1(bi − ai ) < δ,

n
∑

i=1

∣
∣
∣
∣
Γ (α)

(
f (bi ) − f (ai )

(bi − ai )α

)

− C Dα( f (ai ))

∣
∣
∣
∣
< ε (6)

and
n

∑

i=1

∣
∣
∣
∣
Γ (α)

(
f (bi ) − f (ai )

(bi − ai )α

)

− C Dα( f (bi ))

∣
∣
∣
∣
< ε (7)

where 0 < α ≤ 1.
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The Hölder continuous function defined by Gilberg and Trudinger [8] as:

Definition 6 A function f : R → C is said to be Hölder continuous if for all x, y ∈
R, there are non-negative real constants M,α such that

| f (x) − f (y)| ≤ M |x − y|α

2 Uniformly Fractional Differentiable Functions

In this section, authors introduced the new concept of uniformly factional differen-
tiable functions as:

Definition 7 Let I be an interval in R. A Caputo fractional differentiable function f
is uniformly fractional differentiable function on I , if for any ε > 0, there is a δ > 0
such that for any x, y ∈ I satisfying |x − y| < δ,

∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
< ε (8)

and ∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (y))

∣
∣
∣
∣
< ε (9)

where 0 < α ≤ 1.

If we take α = 1, then Eqs. (8) and (9) reduces to Eqs. (1) and (2) respectively. The
collection of all uniformly fractional differentiable functions on I will be denoted
by UFD(I ).

Theorem 8 A function f is uniformly fractional differentiable function on an inter-
val I if and only if C Dα( f ) is uniformly continuous on I .

Proof Let f : I → R be uniformly fractional differentiable. Then for any ε > 0,
there is a δ > 0 such that for any x, y in I satisfying |x − y| < δ,

∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
<

ε

2
(10)

and ∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (y))

∣
∣
∣
∣
<

ε

2
(11)

Now for any ε > 0, there is a δ > 0 such that for any x, y in I satisfying |x − y| < δ,
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∣
∣C Dα( f (x)) − C Dα( f (y))

∣
∣ =

∣
∣
∣
∣
C Dα( f (x)) − Γ (α)

(
f (x) − f (y)

(x − y)α

)

+ Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (y))

∣
∣
∣
∣

(12)

We get

∣
∣C Dα( f (x)) − C Dα( f (y))

∣
∣ ≤

∣
∣
∣
∣
C Dα( f (x)) − Γ (α)

(
f (x) − f (y)

(x − y)α

)∣
∣
∣
∣

+
∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (y))

∣
∣
∣
∣

(13)

By using Eqs. (10) and (11), we obtain

|C Dα( f (bi )) − C Dα( f (ai ))| <
ε

2
+ ε

2
= ε (14)

Hence C Dα( f ) is a uniformly continuous on I .
Conversely suppose that C Dα( f ) is uniformly continuous on I . Let ε > 0 be given.
Then there exist a δ > 0 such that for any x, y in I satisfying |x − y| < δ,

∣
∣C Dα( f (x)) − C Dα( f (y))

∣
∣ < ε (15)

Then from Theorem 4, there exist c ∈ (y, x) such that

f (x) − f (y) =
C Dα( f (x))(x − y)α

Γ (α)
(16)

Since |c − y| < δ, for any ε > 0, there exist a δ > 0 such that for any x, y in I

|C Dα( f (c)) − C Dα( f (y))| < ε (17)

By using Eq. (16)

n
∑

i=1

∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (y))

∣
∣
∣
∣
< ε (18)

Again |x − c| < δ, then for any ε > 0, there exist a δ > 0 such that for any x, y in I

n
∑

i=1

∣
∣C Dα( f (x)) − C Dα( f (c))

∣
∣ < ε (19)
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By using Eq. (16)

n
∑

i=1

∣
∣
∣
∣
C Dα( f (x)) − Γ (α)

(
f (x) − f (y)

(x − y)α

)∣
∣
∣
∣
< ε (20)

Therefore f is uniformly fractional differentiable on I .

Example 9 The 1
2 order Caputo derivative of function f (t) = t is 2

√
t
π
which is uni-

formly continuous on [0, c]. Then by Theorem 8 uniformly fractional differentiable
functions on [0, c] of order 1

2 .

In fact, using Theorem 8, several examples of uniformly fractional differentiable
functions can be constructed.
The following is motivated by the principle that differentiability implies continuity.

Theorem 10 If f is uniformly fractional differentiable function on an interval I ,
then f is uniformly continuous on I .

Proof Since a function f : I → R is uniformly fractional differentiable, then if for
any ε > 0, there is a δ > 0 such that for any x, y in I satisfying |x − y| < δ,

∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
< ε (21)

and ∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (y))

∣
∣
∣
∣
< ε (22)

Since C Dα( f ) is bounded on I , so there exit M > 0 such that

|C Dα( f (t))| ≤ M (∀ t ∈ I ) (23)

Take δ0 = min{(δ) 1
α , ( ε

ε+M )
1
α }. Let x, y ∈ I satisfying |x − y| < δ0.

Now

| f (x) − f (y)| ≤
∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

(x − y)α − C Dα( f (x))(x − y)α + C Dα( f (x))(x − y)α
∣
∣
∣
∣

(24)

Therefore

| f (x) − f (y)| ≤
∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
|x − y|α + |C Dα( f (x))||x − y|α (25)
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Finally
| f (x) − f (y)| < δ0ε + Mδ0 = δ0(ε + M) < ε (26)

Hence f is an uniformly continuous on I .

Theorem 11 Every absolutely fractional differentiable function on I is uniformly
fractional differentiable on I .

Proof Since f : I → R is an absolutely fractional differentiable. Then for any ε > 0,
there is a δ > 0 such that for any finite collection of pairwise disjoint intervals
{(ai , bi )} in I satisfying

∑n
i=1(bi − ai ) < δ,

n
∑

i=1

∣
∣
∣
∣
Γ (α)

(
f (bi ) − f (ai )

(bi − ai )α

)

− C Dα( f (ai ))

∣
∣
∣
∣
< ε (27)

and
n

∑

i=1

∣
∣
∣
∣
Γ (α)

(
f (bi ) − f (ai )

(bi − ai )α

)

− C Dα( f (bi ))

∣
∣
∣
∣
< ε (28)

In particular
∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
< ε (29)

and ∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (y))

∣
∣
∣
∣
< ε (30)

Hence f is uniformly fractional differentiable function on I .

Proposition 12 If f is uniformly fractional differential function on I and if C Dα
a ( f )

is bounded on I , then f is Hölder continuous on I .

Proof Let f is uniformly fractional differential function. Then for x, y in I satisfying
|x − y| < δ, ∣

∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
< ε (31)

and ∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (y))

∣
∣
∣
∣
< ε (32)

Since C Dα( f ) is bounded on I , so there exit M > 0 such that

|C Dα( f (t))| ≤ M (∀ t ∈ I ) (33)
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Now

| f (x) − f (y)| =
∣
∣
∣
∣

(
f (x) − f (y)

(x − y)α

)

(x − y)α − C Dα
a ( f (y))(x − y)α + C Dα

a ( f (y))(x − y)α
∣
∣
∣
∣

≤
∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα
a ( f (y))

∣
∣
∣
∣
|x − y|α + |C Dα

a ( f (y))||x − y|α

≤ (ε + M)|x − y|α

Hence f is Hölder continuous function on R.

Theorem 13 The spaceU FD(I ) of uniformly fractional differentiable functions on
interval I is a vector space with pointwise operations.

Proof Let f, g ∈ UFD(I ). Then for any ε > 0, there is a δ > 0 such that for any
x, y in I satisfying |x − y| < δ,

∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
<

ε

2
(34)

∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
<

ε

2
(35)

∣
∣
∣
∣
Γ (α)

(
g(x) − g(y)

(x − y)α

)

− C Dα(g(x))

∣
∣
∣
∣
<

ε

2
(36)

and ∣
∣
∣
∣
Γ (α)

(
g(x) − g(y)

(x − y)α

)

− C Dα(g(x))

∣
∣
∣
∣
<

ε

2
(37)

Now for any ε > 0, there is a δ > 0 such that for any x, y in I satisfying |x − y| < δ,

∣
∣
∣
∣
Γ (α)

(
( f + g)(x) − ( f + g)(y)

(x − y)α

)

− C Dα(( f + g)(x))

∣
∣
∣
∣
=

∣
∣
∣
∣
Γ (α)

(
( f (x) + g(x)) − ( f (y) + g(y))

(x − y)α

)

− C Dα(( f (x) + (g(x))

∣
∣
∣
∣

(38)

Then
∣
∣
∣
∣
Γ (α)

(
( f + g)(x) − ( f + g)(y)

(x − y)α

)

− C Dα(( f + g)(x))

∣
∣
∣
∣
≤

∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
+

∣
∣
∣
∣
Γ (α)

(
g(x) − g(y)

(x − y)α

)

− C Dα(g(x))

∣
∣
∣
∣

(39)
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By using Eqs. (34) and (35) the Eq. (39) reduces to

n
∑

i=1

∣
∣
∣
∣
Γ (α)

(
( f + g)(x) − ( f + g)(x)

(x − y)α

)

− C Dα(( f + g)(x))

∣
∣
∣
∣
<

ε

2
+ ε

2
= ε

(40)
Similarly by using Eqs. (36) and (37) we obtain

∣
∣
∣
∣
Γ (α)

(
( f + g)(x) − ( f + g)(y)

(x − y)α

)

− C Dα(( f + g)(y))

∣
∣
∣
∣
< ε (41)

Hence f + g ∈ UFD(I ). Now let f ∈ UFD(I ) and k ∈ C . Then for any ε > 0,
there is a δ > 0 such that for any x, y in I satisfying |x − y| < δ,

∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (x))

∣
∣
∣
∣
<

ε

k
, (42)

and ∣
∣
∣
∣
Γ (α)

(
f (x) − f (y)

(x − y)α

)

− C Dα( f (y))

∣
∣
∣
∣
<

ε

k
, (43)

Now for any ε > 0, there is a δ > 0 such that for any x, y in I satisfying |x − y| < δ,

∣
∣
∣
∣
Γ (α)

(
(k f )(x) − (k f )(y)

(x − y)α

)

− C Dα((k f )(x))

∣
∣
∣
∣
=

∣
∣
∣
∣
kΓ (α)

(
f (x) − f (y)

(x − y)α

)

− k C Dα(( f (x))

∣
∣
∣
∣

(44)

By using Eq. (42) the above equation reduces to

∣
∣
∣
∣
Γ (α)

(
(k f )(x) − (k f )(y)

(x − y)α

)

− C Dα((k f )(x))

∣
∣
∣
∣
< k

ε

k
= ε (45)

Similarly by using Eq. (43) we obtain

∣
∣
∣
∣
Γ (α)

(
(k f )(x) − (k f )(y)

(x − y)α

)

− C Dα((k f )(y))

∣
∣
∣
∣
< ε (46)

Thus k f ∈ UFD(I ).
Therefore the space UFD(I ) of uniformly fractional differentiable functions on I
is a vector space with pointwise operations.
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Asymptotically Almost Automorphic
Solution for Neutral Functional Integro
Evolution Equations on Time Scales

Soniya Dhama and Syed Abbas

Abstract The script is dedicated to look at the existence, uniqueness with stabil-
ity consequence of asymptotically almost automorphic (AAA) solution for integro
neutral evolution equation on time scales by applying fixed point hypothesis. We
give the time scale adaptation of (AAA) functions. Toward the end, a precedent is
given for the adequacy of the hypothetical outcomes.

Keywords Asymptotically almost automorphic function · Evolution system ·
Neutral · Integro · Time scales

1 Introduction

Generally, one study the continuous and discrete cases differently and there are many
different sets which are very utilizable. Ergo, this an arduous task that we study dif-
ferently for all cases. So for evading this type quandary, Hilger, in 1988, [1] present
time scales hypothesis which cumulates discrete and continuous investigation. This
hypothesis present a robust actualize for applications to populace models, financial
matters and quantummaterial science among others. Thus,managing issues of differ-
ential conditions on time scales turns out to be extremely noteworthy and deliberate
in the examination field of dynamic frameworks. For more subtle elements of this
theme, we allude to the papers [2–4] and the books [5, 6]. These give a glorious
portrayal of time scale hypothesis and its apparatus.

Almost automorphy, which is a natural generalization of almost periodicity
introduced by Bochner [7]. In [8, 9], the literature of almost automorphy and its
applications to differential equations are describe. Recently, the existence of almost
automorphic (AA) type solutions for evolution equations has attracted more and
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more attention. The literature of the concept of asymptotically almost automorphy,
as a natural extension of almost automorphy, was introduced by N’Guérékata [10].
Now a days, these type of functions have made lots of developments and applications
in real life, we refer for more details [11–15].

There are numerousmarvels, for example, in the investigation of oscillatory frame-
works and in the displaying of a few physical issues, where the theory of neutral dif-
ferential equations arises [16]. There are many papers on existence ofAAA solution
for continuous cases. As per our knowledge, there is no paper on time scale where
these type of solution is discussed with neutral functional term in abstract space. The
rationale of the present article is discover the existence and uniqueness with stability
of AAA solution for the neutral integro evolution equation on periodic time scale
T,

[y(r) − g(r, y(κ(r)))]� = A(r)[y(r) − g(r, y(κ(r)))] + P(r, y(r))

+
r∫

−∞
k(r,σ(s))h(r, y(s))�s,

(1.1)

r ∈ T. A(r) : D(A(r)) ⊂ Y → Y is a family of linear operators, where Y is Banach
space. |k(r, s)| ≤ ce�λ(r, s), c and λ are positive constant and κ : T → T satisfy-
ing κ(r) ≤ r for all r ∈ T. The functions P : T × Y → Y, g, h : T × Y → Y are
defined later with specified conditions in next section.

Whatever is left of this article as follows. In Sect. 2, we give basic definitions,
results and lemmas. In Sect. 3, using Banach contraction principle, existence and
uniqueness ofAAA solution of system (1.1) is discussed. In Sect. 4, some conditions
for stability are obtained . In last Sect. 5 a numerical example is shown for potency
of hypothetical outcomes.

2 Preliminaries

In this segment, some essential hypothesis and facts for time scales is given which
is required for further work.

A time scale, T, is a non empty closed subset of real line. The backward and for-
ward operator is define by ρ(ζ) = sup{s ∈ T : s < ζ} andσ(ζ) = inf{s ∈ T : s > ζ}
respectively. A point ζ is a left dense point and left scattered point when ρ(ζ) = ζ
and ρ(ζ) < ζ respectively with ζ > inf T. Also, ζ is right scattered point and
right dense when σ(ζ) > ζ and σ(ζ) = ζ respectively with ζ < supT. A function
μ : T → [0,∞) is given by μ(ζ) = σ(ζ) − ζ, ∀ζ ∈ T, is known as the graininess
operator. We will mean the interval [c, d]T = {ζ ∈ T : c ≤ ζ ≤ d}.
Definition 2.1 If� : T → R is a function and at left dense points, its left-side limits
exist and continuous at right dense points ofT then it is known as rd-continuous. The
collection of all rd-continuous functions � : T → R will be mean by Crd(T, R).
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Definition 2.2 Reference [5] A function q : T → R is said to be regressive (positive
regressive) if 1 + μ(ζ)q(ζ) 	= 0(> 0), ∀ ζ ∈ T. The collection of regressive (positive
regressive) functions is represented by R(R+).

Definition 2.3 Reference [5] Let� : T → R and ζ ∈ T.�-derivative,��(ζ) is the
number if exist, such that given any ε > 0, ∃ a neighbourhood U of ζ such that

∣∣[�(σ(ζ)) − �(s)] − ��(ζ)[σ(ζ) − s]∣∣ ≤ ε|σ(ζ) − s|, ∀ s ∈ U.

Let � is rd-continuous; if ��∗ (ζ) = �(ζ), the delta integral is defined by,

s∫

r

�(ζ)�ζ = �∗(s) − �∗(r), s, r ∈ T.

Definition 2.4 The exp function on T is defined as

eq(τ , ζ) = exp

⎛
⎜⎝

τ∫

ζ

ξμ(t)(q(t))�t

⎞
⎟⎠ , τ , ζ ∈ T, q ∈ R.

For b > 0,

ξb(Z) = 1

b
log(1 + Zb).

For b = 0, ξ0(Z) = Z .

Definition 2.5 Reference [6] Let q, p ∈ R, define

�q = −q

1 + μq
, q ⊕ p = q + p + μqp, q � p = q ⊕ (�p).

Lemma 2.6 Reference [6] Let us suppose that p, q ∈ R, then

1. e0(ζ, r) = 1, ep(ζ, ζ) = 1;
2. ep(σ(ζ), r) = (1 + μ(ζ)p)ep(ζ, r);
3. ep(ζ, r) = 1/ep(r, ζ) = e�p(r, ζ);
4. ep(ζ, r)ep(r, s) = ep(ζ, s);
5. ep(ζ, r)eq(ζ, r) = ep⊕q(ζ, r);
6. (1/ep(ζ, r))� = −p(ζ)/ep(σ(ζ), r).

Lemma 2.7 Reference [6] Let q ∈ R and b, c, d ∈ T, then

c∫

b

q(ζ)eq(d,σ(ζ))�ζ = eq(d, b) − eq(d, c).
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Lemma 2.8 Reference [17] For 0 < λ, e�λ(ζ, η) ≤ 1, ∀η, ζ ∈ T, where η ≤ ζ.

Definition 2.9 Reference [17] T is called periodic time scale, if

� := {w ∈ R : ζ ± w ∈ T,∀ζ ∈ T} 	= {0}.

The notations in this section follow as: Y is Banach space with sup norm ‖y‖∞ =
supr∈T ‖y(r)‖. C(T,Y ) contains the collection of continuous functions from T to
Y . C0(T,Y ) is proper subset of C(T,Y ) containing functions g : T → Y which
vanish at infinity i.e., lim|r |→∞ ‖g(r)‖ = 0 and C0(T × Y,Y ) denotes the collection
of functions g : T × Y → Y such that lim|r |→∞ ‖g(r, y)‖ = 0 uniformly for y in any
compact subset of Y.

Definition 2.10 A function g(r) ∈ C(T,Y ) is called almost automorphic (AA) if
for every sequence (τ ′

n) ⊂ �, we can extract a subsequence (τn) such that

g∗(r) := lim
n→∞ g(r + τn),

and
lim
n→∞ g∗(r − τn) = g(r),

for each r ∈ T. We note that the convergence is pointwise. Then, the function g∗
not necessarily continuous, but measurable. Moreover, we note if we consider that
convergence is uniform on T instead of pointwise convergence, we get that the
function g is almost periodic.

We set AA(T,Y ) for the collection of all almost automophic functions from T

into Y .

Example 2.11 Let G : T → X be a function defined by

G(r) = sin

(
1

2 + sin(r) + sin(
√
2r)

)
.

It is AA. However, it not almost periodic because this function is not uniformly
continuous on T.

Definition 2.12 A continuous function g : T × Y → Y is called AA if g(r, y) is
AA in r ∈ T uniformly ∀y in any bounded subset of Y.

AA(T × Y,Y ) is the collection of all such functions.

Definition 2.13 A continuous function g : T → Y is said to beAAA if g(r) can be
decomposed into two parts like that g(r) = g1(r) + g2(r),where g1(r) ∈ AA(T,Y )

and g2(r) ∈ C0(T,Y ).

AAA(T,Y ) is the collection of all such functions.
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Definition 2.14 A continuous function g : T × Y → Y is said to be AAA in r
uniformly for y in any compact subset of Y if g(r, y) can be decomposed into two
parts like that g(r, y) = g1(r, y) + g2(r, y), where g1 ∈ AA(T × Y,Y ) and g2(r) ∈
C0(T × Y,Y ).

We set AAA(T × Y,Y ) is the collection of all such functions.

Example 2.15 Let χ : T → Y be a function such that

χ(r) = sin

(
1

2 + sin(r) + sin(
√
2r)

)
+ e−|r |.

This function is AAA as first part belongs to AA(T,Y ) and second part belongs to
C0(T,Y ).

Example 2.16 Let ℘ : T × Y → Y be a function such that

℘(r) = sin

(
1

2 + sin(r) + sin(
√
2r)

)
cos y + 1

1 + r2
sin y.

This function isAAA in r ∈ T for each y ∈ Y because first part belongs toAA(T ×
Y,Y ) and second part belongs to C0(T × Y,Y ).

Lemma 2.17 If g1, g2, g ∈ AAA(T,Y ), then:

• g1 + g2 ∈ AAA(T,Y );
• λg ∈ AAA(T,Y ), for any scalar λ;
• Ifα ∈ R is a constant then, gα ∈ AAA(T,Y ),where gα : T → Y defineas gα(·) =

g(· + α);
• The range Rg = {g(r) : r ∈ T} is relatively compact of Y, thus g is bounded with
respect to norm.

Definition 2.18 A function g(r, s) is said to be bi-AA if for every sequence τ ′
n ⊂ �,

there is a subsequence τn and a function g∗(r, s) such that the translation of g converge
to g∗, that is ‖g(r + τn, s + τn) − g∗(r, s)‖ → 0 as n → ∞ and ‖g∗(r − τn, s −
τn) − g(r, s)‖ → 0 as n → ∞, ∀ r, s ∈ T.

We set biAA(T × T,Y ) is the collection of all such functions.

Remark 2.19 Exponential function on time scale is bi AA function.

Lemma 2.20 The decomposition of AAA function g = g1 + g2, where g1 ∈ AA
(T,Y ) and g2 ∈ C0(T,Y ) is unique i.e., g = g1 ⊕ g2.

Proof From the definition, we can easily observe g1(T) ⊂ g(T). Assume that g =
g1 + g2 and g = h1 + h2 then 0 = (g1 − h1) + (g2 − h2) ∈ AAA(T,Y ), where
(g1 − h1) ∈ AA(T,Y ) and (g2 − h2) ∈ C0(T,Y ). In view of above result g1 − h1 =
0. Consequently, g2 − h2 = 0, i.e., g1 = h1 and g2 = h2.
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Lemma 2.21 The space AAA(T,Y ) is a Banach space with sup norm

‖g‖∞ = sup
r∈T

‖g(r)‖.

Proof Consider {gn}n∈N is a Cauchy sequence in AAA(T,Y ). We can express
uniquely gn = fn + hn, where fn is a sequence inAA(T,Y ) and hn is in C0(T,Y ).

From Lemma 2.20, we see ‖ fn − fm‖∞ ≤ ‖gn − gm‖∞. We deduce from here that
{ fn}n∈N is Cauchy sequence in AA(T,Y ). So, hn = gn − fn is Cauchy sequence
in C0(T,Y ). We conclude that fn → f ∈ AA(T,Y ) and hn → h ∈ C0(T,Y ) and
finally gn → f + h ∈ AAA(T,Y ).

Lemma 2.22 Let g : T × Y → Y, (r, y) → g(r, y) ∈ AAA(T × Y,Y ) in r ∈ T,

for each y ∈ Y and assume that g satisfies Lipschitz condition i.e.,

‖g(r, y) − g(r, y∗)‖ ≤ L‖y − y∗‖,

for all y, y∗ ∈ Y and for every r ∈ T, where L > 0 is constant. Then G : T → Y
given by G(·) = g(·, y(·)) is AAA provided y : T → Y is AAA .

Proof Since g, y ∈ AAA, then we can decompose as

g = g1 + g2, y = y1 + y2,

where g1 ∈ AA(T × Y,Y ), g2 ∈ C0(T × Y,Y ), y1 ∈ AA(T,Y ), y2 ∈ C0(T,Y ).

We can write

g(r, y(r)) = g1(r, y1(r)) + g(r, y(r)) − g(r, y1(r)) + g2(r, y1(r))

By Lemma 3.3 in [18] g1(r, y1(r)) ∈ AA(T,Y ). Noticing that ‖g(r, y(r)) −
g(r, y1(r))‖ ≤ L‖y2(r)‖ → 0 as |r | → ∞. Hence g(r, y(r)) − g(r, y1(r)) ∈ C0

(T,Y ). Now, since {y1(r), r ∈ T} is compact set of Y , g2(r, y1(r)) ∈ C0(T,Y ).

In conclusion, g(r, y(r)) ∈ AAA(T,Y ).

Definition 2.23 Acontinuous function y : T → Y is calledAAA solution of system
(1.1) on T if y(r) is and satisfies AAA

y(r) = S(r, a)[y(a) − g(a, y(κ(a)))] + g(r, y(κ(r))) +
r∫

a

S(r, σ(s))P(s, y(s))�s

+
r∫

a

S(r, σ(s))

s∫

−∞
k(s, σ(ζ))h(ζ, y(ζ))�ζ�s, ∀ r ≥ a ∈ T.

(2.1)
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3 Main Result

To prove main result of this manuscript, we assume the following assumptions which
are further mandatory:
A1. The system

y�(r) = A(r)y(r), s ≤ r, r, s ∈ T,

has an evolution family of operators {S(r, s) : s ≤ s, s, r ∈ T}. S(r, s) is asymptot-
ically stable i.e., ∃ constants R0,ω > 0 satisfying

‖S(r, s)‖ ≤ R0e�ω(r, s)

for all r, s ∈ T with r ≥ s.
A2. For any sequence {τ ′

n}n∈N ⊂ �, we can find a subsequence {τn}∞n=1 such that for
any ε > 0, ∃N ∈ N,

||S(r + τn, s + τn) − S(r, s)|| ≤ εe�ω(r,s) and ||S(r − τn, s − τn) − S(r, s)|| ≤ εe�ω(r,s),

∀n > N , ∀r, s ∈ T, r ≥ s.
A3. g ∈ AAA(T × Y,Y ) and there exist constant Lg > 0 such that

‖g(r, y) − g(r, x)‖ ≤ Lg‖y − x‖, r ∈ T, x, y ∈ Y.

A4. h ∈ AAA(T × Y,Y ) and there exist a constant Lh > 0 such that

‖h(r, y) − h(r, x)‖ ≤ Lh‖y − x‖, r ∈ T, x, y ∈ Y.

A5. P ∈ AAA(T × Y,Y ) and there exist a constant LP > 0 such that

‖P(r, y) − P(r, x)‖ ≤ LP‖y − x‖, r ∈ T, x, y ∈ Y.

Lemma 3.1 Suppose ξ ∈ AAA(T,Y ) holds, �(η) : T → Y defined by

�(η) =
η∫

−∞
k(η,σ(ζ))ξ(ζ)�ζ, η ∈ T,

is AAA(T,Y ).

Proof Since ξ ∈ AAA(T,Y ). So, we can decompose it as ξ(η) = ξ1(η) + ξ2(η),
where ξ1(η) ∈ AA(T,Y ) and ξ2(η) ∈ C0(T,Y ). Now,

�(η) = �1(η) + �2(η),
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where �1(η) = ∫ η

−∞ k(η,σ(ζ))ξ1(ζ)�ζ and �2(η) = ∫ η

−∞ k(η,σ(ζ))ξ2(ζ)�ζ. To
proof complete, we have to prove�1(η) ∈ AA(T,Y ),�2(η) ∈ C0(T,Y ).Since ξ1 ∈
AA(T,Y ), there exists ξ∗

1 and a subsequence {τn} ⊂ � for each sequence {τ ′
n} such

that

lim
n→∞ ‖ξ1(η + τn) − ξ∗

1(η)‖ = 0 and lim
n→∞ ‖ξ∗

1(η − τn) − ξ1(η)‖ = 0. (3.1)

Now, corresponding to ξ∗
1 , let us define �∗

1(η) = ∫ η

−∞ k(η,σ(s))ξ∗
1(s)ds. Now, we

compute

‖�1(η + τn) − �∗
1(η)‖ =

∥∥∥
η+τn∫

−∞
k(η + τn,σ(ζ))ξ1(ζ)�ζ −

η∫

−∞
k(η,σ(ζ))ξ∗

1 (ζ)�ζ
∥∥∥

=
∥∥∥

η∫

−∞
k(η + τn,σ(ζ) + τn)ξ1(ζ + τn)�ζ −

η∫

−∞
k(η,σ(ζ))ξ∗

1 (ζ)�ζ
∥∥∥

≤ c

η∫

−∞

∥∥∥e�λ(η + τn,σ(ζ) + τn) − e�λ(η,σ(ζ))

∥∥∥∥∥ξ1(ζ + τn)
∥∥�ζ

+ c

η∫

−∞
e�λ(η,σ(ζ))

∥∥ξ1(ζ + τn) − ξ∗
1 (ζ)

∥∥�ζ

≤ c‖ξ1‖∞

η∫

−∞

∥∥∥e�λ(η + τn,σ(ζ) + τn) − e�λ(η,σ(ζ))

∥∥∥

+ c(1 + μ̄λ)

λ
sup
η∈T

∥∥ξ1(η + τn) − ξ∗
1 (η)

∥∥,

where μ̄ = supη∈T μ(η). From Remark 2.19 and Eq. 3.1, we have limn→∞ ‖�1(η +
τn) − �∗

1(η)‖ = 0. Using the similar arguments, we get limn→∞ ‖�∗
1(η − τn) −

�1(η)‖ = 0. Hence �1(η) ∈ AA(T,Y ).

Now, since ξ2(η) ∈ C0(T,Y ) then ∀ε > 0, ∃ a constant R > 0 such that

‖ξ2(η)‖ < ε, |η| > R. (3.2)

which yields that

‖�2(η)‖ =
∥∥∥

R∫

−∞
k(η,σ(ζ))ξ2(ζ)�ζ +

η∫

R

k(η,σ(ζ))ξ2(ζ)�ζ
∥∥∥

≤ c‖ξ2‖∞

R∫

−∞
e�λ(η,σ(ζ))�ζ + εc

η∫

R

e�λ(η,σ(ζ))�ζ
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≤ c‖ξ2‖∞
(1 + μ̄λ)

λ
eλ(R, |η|) + εc

(1 + μ̄λ)

λ
[1 − e�λ(η, R)]

≤ c‖ξ2‖∞
(1 + μ̄λ)

λ
eλ(R−|η|) + εc

(1 + μ̄λ)

λ
lim|η|→∞ ‖�2(η)‖ = 0.

Therefore, �2(η) ∈ C0(T,Y ). ��
Lemma 3.2 Let P ∈ AAA(T,Y ) and suppose (A1)–(A2) is satisfied. IfP : T →
Y is defined by

P(r) =
r∫

−∞
S(r,σ(s))P(s)�s, r ∈ T,

then P(·) ∈ AAA(T,Y ).

Proof Since P ∈ AAA(T,Y ). So, we can decompose it as P(r) = P1(r) + P2(r),
where P1(r) ∈ AA(T,Y ) and P2(r) ∈ C0(T,Y ). Now,

P(r) = P1(r) + P2(r)

where P1(r) = ∫ r
−∞ S(r,σ(s))P1(s)�s and P2(r) = ∫ r

−∞ S(r,σ(s))P2(s)�ζ. To
proof complete, we have to prove P1(r) ∈ AA(T,Y ), P2(r) ∈ C0(T,Y ). Since
P1 ∈ AA(T,Y ) there exists P∗

1 and a subsequence {τn} ⊂ � for each sequence {τ ′
n}

such that

lim
n→∞ ‖P1(r + τn) − P∗

1 (r)‖ = 0 and lim
n→∞ ‖P∗

1 (r − τn) − P1(r)‖ = 0 (3.3)

Now, corresponding to P∗
1 , let us defineP∗

1(r) = ∫ r
−∞ S(r,σ(s))P∗

1 (s)ds. Now, we
compute

‖P1(r + τn) − P∗
1(r)‖ =

∥∥∥
r+τn∫

−∞
S(r + τn,σ(s))P1(s)�s −

r∫

−∞
S(r,σ(s))P∗

1 (s)�s
∥∥∥

=
∥∥∥

r∫

−∞
S(r + τn,σ(s) + τn)P1(s + τn)�s −

r∫

−∞
S(r,σ(s))P∗

1 (s)�s
∥∥∥

≤
r∫

−∞

∥∥∥S(r + τn,σ(s) + τn) − S(r,σ(s))
∥∥∥∥∥P1(s + τn)

∥∥�s

+
r∫

−∞
‖S(r,σ(s))‖∥∥P1(s + τn) − P∗

1 (s)
∥∥�s

≤ ‖P1‖∞
ε(1 + μ̄ω)

ω
+ R0(1 + μ̄ω)

ω
sup
r∈T

∥∥P1(r + τn) − P∗
1 (r)

∥∥.
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From Eq. 3.3, we have limn→∞ ‖P1(r + τn) − P∗
1(r)‖ = 0. Using the similar argu-

ments, we get limn→∞ ‖P∗
1(r − τn) − P1(r)‖ = 0. Hence P1(r) ∈ AA(T,Y ).

Now, analogously to the previous lemma proof we can easily find lim|r |→∞
‖P2(r)‖ = 0. Hence P2(·) ∈ C0(T,Y ). ��

Now we are prepare for our main result which gives the uniqueAAA solution of
system (1.1).

Theorem 3.3 Let us assumptions (A1)–(A5) hold, the system (1.1) has a unique
AAA solution y : T → Y provided

(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
< 1. (3.4)

Proof Firstly, let us define a nonlinear operator

(Gy)(r) = g(r, y(κ(r))) +
r∫

−∞
S(r,σ(s))P(s, y(s))�s

+
r∫

−∞
S(r,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s.

From the assumptions,Lemmas 2.17, 2.22, 3.1 and3.2,we conclude that the operator
G is from AAA(T, Y ) into AAA(T,Y ) which is Banach space from Lemma 2.21.
To prove the remaining part, suppose y, x ∈ AAA(T,Y ), then

‖(Gy)(r) − (Gx)(r)‖

≤ ‖g(r, y(κ(r))) − g(r, x(κ(r))‖ +
∥∥∥

r∫

−∞
S(r,σ(s))[P(s, y(s)) − P(s, x(s))]�s

∥∥∥

+
∥∥∥

r∫

−∞
S(r,σ(s))

s∫

−∞
k(s,σ(ζ))[h(ζ, y(ζ)) − h(ζ, x(ζ))]�ζ�s

∥∥∥

≤ Lg‖y(κ(r)) − x(κ(r))‖ + K0LP
r∫

−∞
e�ω(r,σ(s))‖y(s) − x(s)‖�s

+ R0cLh

r∫

−∞
e�ω(r,σ(s))

s∫

−∞
e�λ(s,σ(ζ))‖y(ζ) − x(ζ)‖�ζ�s

≤
(
Lg + K0LP (1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
sup
r∈T

‖y(r) − x(r)‖

where μ̄ = supr∈T μ(r).

‖(Gy) − (Gx)‖∞ = M‖y − x‖∞,



Asymptotically Almost Automorphic Solution for Neutral Functional … 123

where M =
(
Lg + K0LP (1+μ̄ω)

ω
+ K0cLh(1+μ̄λ)(1+μ̄ω)

λω

)
. According to condition (3.4),

M < 1 which implies G is a contraction mapping. Therefore using the Banach con-
traction theorem, we get a unique fixed point y(r) inAAA(T,Y ) such that Gy = y
that is

y(r) = g(r, y(κ(r))) +
r∫

−∞
S(r,σ(s))P(s, y(s))�s

+
r∫

−∞
S(r,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s

for all r ∈ T. If we let a ∈ T, then

y(a) = g(a, y(κ(a))) +
a∫

−∞
S(a,σ(s))P(s, y(s))�s

+
a∫

−∞
S(a,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s

using evolution operator property S(r, t)S(t, s) = S(r, s), s ≤ t ≤ r.

S(r, a)y(a) = S(r, a)g(a, y(κ(a))) +
a∫

−∞
S(r,σ(s))P(s, y(s))�s

+
a∫

−∞
S(r,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s

S(r, a)[y(a) − g(a, y(κ(a)))] = y(r) − g(r, y(κ(r))) −
r∫

a

S(r,σ(s))P(s, y(s))�s

−
r∫

a

S(r,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s.

From last equality, we find that system (1.1) has a unique AAA solution, given by
(2.1). ��
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4 Stability Result

Definition 4.1 A solution y is called stable, if for any arbitrary 0 < ε, there exists
0 < δ such that

‖y(r) − y(r)‖ < ε, ∀r ≥ a, r, a ∈ T

whenever ‖y(a) − y(a)‖ < δ, where y is the solution of System (1.1) with initial
condition y(a) ∈ Y .

Theorem 4.2 If the conditions of Theorem 3.3 satisfies, system (1.1) has a unique
stable AAA mild solution.

Proof By Theorem 3.3, we get that problem (1.1) has a unique AAA mild solution
whose integral form is given by,

y(r) = S(r, a)[y(a) − g(a, y(κ(a)))] + g(r, y(κ(r))) +
t∫

a

S(r, σ(s))P(s, y(s))�s

+
t∫

a

S(r, σ(s))

s∫

−∞
k(s, σ(ζ))h(ζ, y(ζ))�ζ�s,

for ∀r > a ∈ T. Now, let us suppose that y(r) is AAA solution of the system (1.1)
and y(r) is another solution of the system (1.1).

‖y(r) − y(r)‖
≤ ∥∥S(r, a)[y(a) − y(a)]∥∥ + ∥∥S(r, a)[g(a, y(κ(a))) − g(a, y(κ(a))]∥∥

+
∥∥∥

r∫

a

S(r,σ(s))[P(s, y(s)) − P(s, y(s))]�s
∥∥∥ + ∥∥g(r, y(κ(r))) − g(r, y(κ(r))

∥∥

+
∥∥∥

r∫

a

S(r,σ(s))

s∫

−∞
k(s,σ(ζ))[h(ζ, y(ζ)) − h(ζ, y(ζ))]�ζ�s

∥∥∥

≤ R0(1 + Lg)e�ω(r, a)‖y(a) − y(a)‖ + Lg‖y(κ(r)) − y(κ(r))‖

+
(
K0LP + K0cLh(1 + μ̄λ)

λ

) r∫

a

e�ω(r,σ(s)) sup
s∈T

‖y(s) − y(s)‖�s

≤ R0(1 + Lg)‖y(a) − y(a)‖+(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
sup
r∈T

‖y(r) − y(r)‖
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‖y − y‖∞ − M‖y − y‖∞ ≤ R0(1 + Lg)‖y(a) − y(a)‖

‖y − y‖∞ ≤ R0(1 + Lg)‖y(a) − y(a)‖
1 − M

where R0(1+Lg)

1−M > 0, choose a δ > 0 such that δ < ε(1−M)

R0(1+Lg)
, then

‖y − y‖ < ε.

From Definition 4.1, the system (1.1) is stable. ��

5 Example

Here, we give an example on different different time scale which shows the fruitful-
ness of results obtained in previous sections.

Consider the PDE on general periodic time scales T,

∂

�1r
U (r, y)

= ∂2

�2x2
U (r, y) + ∂

�1r

[ 1

250
sin

( 1

1 + sin r + sin
√
2r

)
sinU (r, y) + 1

250
e−|r | cosU (r, y)

]

+ 1

250
cos

( 1

1 + sin r + cos
√
2r

)
cosU (r, y) + 1

250

1

1 + r2
sinU (r, y)

+
r∫

−∞
e− 1

4
(r,σ(s))

[
cos

√
2s sinU (s, y) + 1

1 + s2 + s4
cosU (s, y)

]
�s, y ∈ [0,π]T

(5.1)

U (r, 0) = U (r,π) = 0, r ∈ T,

Let ϑ(r) = U (r, ·), we consider the operator A by

Aϑ = ∂2

�2y2
ϑ, ϑ ∈ D(A) = {H1

0[0,π]T ∩ H
2
0[0,π]T}.

As the similar argument of Sect. 3.1 in [19] and in [20], any one can simply find that
the evolution system {S(r, s) : r ≥ s} satisfies ||S(r, s)|| ≤ e� 1

2
(r, s), r ≥ s, with

R0 = 1 and ω = 1
2 . On based of above things, system (5.1) can be converted in form

as (1.1) and satisfied all assumptions with Lg, Lh, LP = 1
125 , c = 1, λ = 1

4 . Now,
it remains to check one condition for different different time scales.
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Case1: If T = R, then μ̄ = 0, hence

(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
= 0.104 < 1.

Case2: If T = Z, then μ̄ = 1, hence

(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
= 0.176 < 1.

Case3: If T = 2Z, then μ̄ = 2, hence

(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
= 0.264 < 1.

In all of cases, we find that all conditions of Theorems 3.3 and 4.2 satisfy, sowe derive
that problem (5.1) has a unique stableAAA solution.
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An Integral Relation Associated
with a General Class of Polynomials
and the Aleph Function

Monika Jain and Sapna Tyagi

Abstract A new finite integral involving two general class of polynomials with the
Aleph function has been obtained in the present paper. This integral is supposed to
be one of the most universal integral evaluated until now and act as a key component
from which we can obtain as its different special cases, integrals relating a large
number of simpler special functions and polynomials. Some useful unique cases of
the main outcome have also been discussed in the paper.

Keywords The general class of polynomials · Aleph-function
2000 Mathematics Subject Classifications 26A33 · 33C60

1 Introduction

The Aleph-function is a new generalization of the well-known H-function [1] and
the I-function [2, 3].

The Aleph-function is defined and represented as follows [4, 5].

ℵ[z] = ℵM,N
Pi,Qi,τi;r[z] = ℵM,N

Pi,Qi,τi;r
[
z

∣∣∣(aj,Aj)1,N, ..., [τi(aj,Aj)]N+1,Pi
(bj,Bj)1,M, ..., [τi(bj,Bj)]M+1,Qi

]

= 1

2πω

∫

L

�(ξ)z−ξdξ (1.1)

for all z �= 0, where ω = √−1 and
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�(ξ) =
∏M

j=1 �(bj + Bjξ)
∏N

j=1 �(1 − aj − Ajξ)
∑r

i=1 τi
∏Pi

j=N+1 �(aji + Ajiξ)
∏Qi

j=M+1 �(1 − bji − Bjiξ)
(1.2)

The path of integration L = Liϒ∞, ϒ ∈ R extends from Υ − i∞ to Υ +
i∞. The poles of �(bj + Bjξ), j = 1,M. which do not coincide to the poles of
�(1 − aj − Ajξ), j = 1,N are taken as simple poles. The parameters pi, qi are non-
negative integers 0 ≤ N ≤ Pi, 1 ≤ M ≤ Qi, τi > 0 for i = 1, r. The parameters
Aj,Bj,Aji,Bji > 0 and aj, bj, aji, bji ∈ C. The product in (1.2) is interpreted as unity.
The existence conditions for the described integral (1.1) are given beneath:

θ� > 0, |arg(z)| <
π

2
θ�, � = 1, r; (1.3)

θ� > 0, |arg(z)| <
π

2
θ� and Re{ζ�} + 1 < 0, (1.4)

where

θ� =
N∑
j=1

Aj +
M∑
j=1

Bj − τ�

⎛
⎝

P�∑
j=N+1

Aj� +
Q�∑

j=M+1

Bj�

⎞
⎠ (1.5)

ζ� =
M∑
j=1

bj −
N∑
j=1

aj + τ�

⎛
⎝

Q�∑
j=M+1

bj� −
P�∑

j=N+1

aj�

⎞
⎠ + 1

2
(P� − Q�), � = 1, r, (1.6)

Note 1 The simplification of the sum in the denominator of (1.2) in terms of a
polynomial in ξ, the factor of this polynomial can be uttered by a fraction of Euler’s
Gamma function leading to H-function, see [6], p. 325.

Note 2 It might be seen that there is no recorded name given to (1.1), compared to
[5]. The Mellin transform of this function is coefficient of z−ζ in the integrand of
(1.1).

Note 3 Taking τi = 1, i = 1, …, r, in (1.1), the ℵ-function lessens to the notable
I-function [3].

Note 4 Putting r = 1 and τ1 = τ2 = . . . = τ3 = 1, then ℵ-function reduces to the
known H-function [7].

Following definition of general class of polynomials is required which was intro-
duced by Srivastava [8, Eq. (1)].

Smn [x] =
[n/m]∑
k=0

(−n)mk

k! An,kx
k, n = 0, 1, 2, . . . (1.7)

Here the coefficients An,k(n, k ≥ 0) are subjective real or complex constants,
whereas M1 is an arbitrarily chosen positive integer.
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On suitably specializing the coefficients An,k occurring in (1.7), the general class
polynomials Smn [x] can be reduced to the known traditional orthogonal polynomi-
als and the generalized hypergeometric polynomials as its particular cases. These
incorporate, among others, the Hermite polynomials, the Jacobi polynomials, the
Laguerre polynomials, the Bessel polynomials, the Gould-Hopper polynomials and
a couple of others.

2 Main Result

b∫

a

(x − a)u−1(b − x)v−1(x − c)−u−v

.ℵM,N
Pi,Qi,τi;r

[
z

(
x − a

x − c

)s(b − x

x − c

)t ∣∣∣(aj, Aj)1,N, ..., [τi(aj,Aj)]N+1,Pi
(bj, Bj)1,M, ..., [τi(bj,Bj)]M+1,Qi

]

.Sm1
n1

[
z1

(
x − a

x − c

)λ(b − x

x − c

)μ
]
Sm2
n2

[
z2

(
x − a

x − c

)λ′(
b − x

x − c

)μ′]
dx

=
[n1/m1]∑
k1=0

[n2/m2]∑
k2=0

(−n1)m1k1(−n2)m2k2

k1!k2! An1,k1 An2,k2z
k1
1 z

k2
2

.(b − a)u+v+(λ+μ)k1+(λ′+μ′)k2−1(b − c)−u−λk1−λ′k2(a − c)−v−μk1−μ′k2

.ℵM,N + 2
Pi+2,Qi+1,τi;r

[
z

(
b − a

b − c

)s(b − a

a − c

)t ∣∣∣(1− u−λk1 − λ′k2,s),(1− v−μk1 −μ′k2, t)
(bj, Bj)1,M, ..., [τi(bj, Bj)]M+1,Qi

(
aj, αj

)
1,N, τ j

(
aj, αj

)
N+1,Pi ;r(

1 − u − v − λk1 − μk1 − λ′k2 − μ′k2, s + t
)
]
, (2.1)

where s > 0, t > 0, Re (u + s bj/βj) > 0, Re (v + t bj/βj) > 0,
j= 1,…,M, λ, λ′,μ andμ′ are positive integers. An1,k1 and An2,k2 (n1, k1, n2, k2

≥ 0) are arbitrary constants, real or complex.

Proof To establish (2.1), expressing the ℵ-function by (1.2) and general class of
polynomials by (1.7), then the order of summations and integration are interchanged
(which is justified due to the absolute convergence of the integral in the process),
we calculate the integral with the help of a result ([7], p. 287 (3.119)), and get the
desired outcome.
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3 Special Cases

(A) Taking S2n
[
y
] = yn/2Hn

[
1

2
√
y

]
in the result obtained in (2.1) to the case of

Hermite polynomials ([9], Eq. (5.5.4), p. 106 and [3], p. 158)

in which case m1 = 2, An1,k1 = (−1)k1 and also letting m2 = 2, An2,k2 = (−1)k2 ,
we have

b∫
a

(x − a)u−1(b − x)v−1(x − c)−u−v

.ℵM,N
Pi,Qi,τi;r

[
z
(
x− a
x− c

)s( b− x
x− c

)t ∣∣∣(aj, Aj)1,N, ..., [τi(aj, Aj)]N+1,Pi
(bj, Bj)1,M, ..., [τi(bj, Bj)]M+1,Qi

]

.

[
z1

(
x − a

x − c

)λ(b − x

x − c

)μ
]n1/2

Hn1

⎡
⎣ 1

2
√
z1

(
x− a
x− c

)λ( b− x
x− c

)μ

⎤
⎦

.

[
z2

(
x − a

x − c

)λ′(
b − x

x − c

)μ′]n2/2

Hn2

⎡
⎣ 1

2
√
z2

(
x− a
x− c

)λ′( b− x
x− c

)μ′

⎤
⎦dx

=
[n1/m1]∑
k1=0

n2/m2∑
k2=0

(−n1)2k1(−n2)2k2
k1!k2! (−1)k1(−1)k2zk11 z

k2
2

.(b − a)u+v+(λ+μ)k1+(λ′+μ′)k2−1(b − c)−u−λk1−λ′k2(a − c)−v−μk1−μ′k2

.ℵM,N + 2
Pi + 2,Qi+1,τi;r

[
z

(
b − a

b − c

)s(b − a

a − c

)s ∣∣∣(1− u− λk1 −λ′k2, s),(1− v− μk1 − μ′k2, t)
(bj, Bj)1,M, ..., [τi(bj, Bj)]M+1,Qi

(
aj, αj

)
1,N, τ j

(
aj, αj

)
N+1,Pi ;r(

1 − u − v − λk1 − μk1 − λ′k2 − μ′k2, s + t
)
]
, (3.1)

applicable under the conditions as available from (2.1).

(B) For the Jacobi polynomials ([9], Eq. (4.3.2), p. 68 and [3], p. 158), our result
(2.1) yields the following result by setting

S1n[x] = P(α′,β′)
n (1 − 2x) in which case

m1 = 1, An1,k1 =
(
n1 + k1

n1

)(
α′ + β′ + n1 + 1

)
k1

(α′ + 1)k1

and also taking
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m2 = 1, An2,k2 =
(
n2 + k2

n2

)(
α′′ + β′′ + n2 + 1

)
k2

(α′′ + 1)k2
,

we obtain

b∫

a

(x − a)u−1(b − x)v−1(x − c)−u−v

.ℵM,N
Pi,Qi,τi;r

[
z

(
x − a

x − c

)s(b − x

x − c

)t ∣∣∣(aj, Aj)1,N, ..., [τi(aj, Aj)]N+1,Pi
(bj, Bj)1,M, ..., [τi(bj, Bj)]M+1,Qi

]

.P(α′,β′)
n1

[
1 − 2z1

(
x − a

x − c

)λ(b − x

x − c

)μ
]

.P(α′′,β′′)
n2

[
1 − 2z2

(
x − a

x − c

)λ′(
b − x

x − c

)μ′]
dx

=
[n1]∑
k1=0

[n2]∑
k2=0

(
n1 + α′

n1 − k1

)(
n2 + α′′

n2 − k2

)
(−z1)

k1(−z2)
k2

.

(
α′ + β′ + n1 + k1

k1

)(
α′′ + β′′ + n2 + k2

k2

)

.(b − a)u+v+(λ+μ)k1+(λ′+μ′)k2−1(b − c)−u−λk1−λ′k2(a − c)−v−μk1−μ′k2

.ℵM, N+2
Pi+2, Qi+1, τi;r

[
z

(
b − a

b − c

)s(b − a

a − c

)t ∣∣∣(1− u−λk1 − λ′k2, s),(1− v−μk1 −μ′k2, t)
(bj, Bj)1,M, ..., [τi(bj, Bj)]M+1,Qi

(
aj, αj

)
1,N, τ j

(
aj, αj

)
N+1,Pi ;r(

1 − u − v − λk1 − μk1 − λ′k2 − μ′k2, s + t
)
]
, (3.2)

valid under the conditions as obtainable from (2.1).

(C) For the Laguerre polynomials ([9], Eq. (5.1.6), p. 10 and [3], p. 158), we have
the following interesting consequence of our result (2.1), by setting

S1n[x] → L(α′)
n (x) in which case

m1 = 1, An1,k1 =
(
n1 + α′

n1

)
1

(α′ + 1)k1

and also taking
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m2 = 1, An2,k2 =
(
n2 + α′′

n2

)
1

(α′′ + 1)k2
,

we get

b∫

a

(x − a)u−1(b − x)v−1(x − c)−u−v

.ℵM,N
Pi,Qi,τi;r

[
z

(
x − a

x − c

)s(b − x

x − c

)t ∣∣∣(aj,Aj)1,N, ..., [τi(aj,Aj)]N+1,Pi
(bj,Bj)1,M, ..., [τi(bj,Bj)]M+1,Qi

]

.L(α′)
n1

[
z1

(
x − a

x − c

)λ(b − x

x − c

)μ
]

.L(α′′)
n2

[
z2

(
x − a

x − c

)λ′(
b − x

x − c

)μ′]
dx

=
[n1]∑
k1=0

[n2]∑
k2=0

(−n1)k1(−n2)k2
k1!k2!

(
n1 + α′

n1

)
1

(α′ + 1)k1

(
n2 + α′′

n2

)
1

(α′′ + 1)K2
zk11 z

k2
2

.(b − a)u+v+(λ+μ)k1+(λ′+μ′)k2−1(b − c)−u−λk1−λ′k2(a − c)−v−μk1−μ′k2

.ℵM,N + 2
Pi + 2,Qi+1,τi;r

[
z
(
b− a
b− c

)s( b− a
a− c

)t∣∣∣∣
(
1 − u − λk1 − λ′k2, s

)
,
(
1 − v − μk1 − μ′k2, t

)
(bj,Bj)1,M, . . . , [τi(bj,Bj)]M + 1,Qi(

aj, αj
)
1,N, τ j

(
aj, αj

)
N+1,Pi ;r(

1 − u − v − λk1 − μk1 − λ′k2 − μ′k2, s + t
)
]
,

(3.3)

suitable under the conditions as required sufficiently for (2.1).

(D) Letting n2 → 0 in (2.1), we have

b∫

a

(x − a)u−1(b − x)v−1(x − c)−u−v

.ℵM,N
Pi,Qi,τi;r

[
z

(
x − a

x − c

)s(b − x

x − c

)t ∣∣∣(aj,Aj)1,N,...,[τi(aj,Aj)]N+1,Pi
(bj,Bj)1,M,...,[τi(bj,Bj)]M+1,Qi

]

.Sm1
n1

[
z1

(
x − a

x − c

)λ(b − x

x − c

)μ
]
dx

=
[n1/m1]∑
k1=0

(−n1)m1k1

k1! An1,k1z
k1
1 .(b − a)u+v+(λ+μ)k1−1(b − c)−u−λk1(a − c)−v−μk1
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.ℵM,N + 2
Pi + 2,Qi+1,τi;r

[
z
(
b− a
b− c

)s( b− a
a− c

)t∣∣∣∣
(
1 − u − λk1 − λ′k2, s

)
,
(
1 − v − μk1 − μ′k2, t

)
(bj, Bj)1,M, . . . , [τi(bj, Bj)]M + 1,Qi(

aj, αj
)
1,N, τ j

(
aj, αj

)
N+1,Pi ;r(

1 − u − v − λk1 − μk1 − λ′k2 − μ′k2, s + t
)
]
,

(3.4)

valid under the conditions as essential for (2.1).

(E) Taking τi → 1 in (2.1), the I-function given by Saxena [2, 3] is obtained from
Aleph function and the main integral (2.1) converts in the following form:

b∫
a

(x − a)u−1(b − x)v−1(x − c)−u−v

.IM,N
Pi,Qi;r

[
z
(
x−a
x−c

)s( b−x
x−c

)t ∣∣∣(aj,Aj)1,N,(aj,Aj)N+1,Pi
(bj,Bj)1,M,(bj,Bj)M+1,Qi

]

.Sm1
n1

[
z1

(
x − a

x − c

)λ(b − x

x − c

)μ
]
Sm2
n2

[
z2

(
x − a

x − c

)λ′(
b − x

x − c

)μ′]
dx

=
[n1/m1]∑
k1=0

[n2/m2]∑
k2=0

(−n1)m1k2(−n2)m2k2

k1!k2! An1,k1An2,k2z
k1
1 z

k2
2

.(b − a)u+v+(λ+μ)k1+(λ′+μ′)k2−1(b − c)−u−λk1−λ′k2(a − c)−v−μk1−μ′k2

.IM,N+2
Pi + 2,Qi + 1;r

[
z

(
b − a

b − c

)s(b − a

a − c

)t ∣∣∣(1− u− λk1 −λ′k2, s),(1− v− μK1 − μ′K2, t)
(bj,Bj)1,M, (bj,Bj)]M+1,Qi

(
aj, αj

)
1,N,

(
aj, αj

)
N+1,Pi ;r(

1 − u − v − λk1 − μk1 − λ′k2 − μ′k2, s + t
)
]
, (3.5)

valid under the conditions as required sufficiently for (2.1).

(F) If we take τi → 1 and r = 1 in (2.1), the Aleph function reduces to Fox’s
H-function [1] and the main integral takes the following form:

b∫

a

(x − a)u−1(b − x)v−1(x − c)−u−v .HM,N
P,Q

[
z

(
x − a

x − c

)s(b − x

x − c

)t ∣∣∣(aj,Aj)

(bj,Bj)

]

.Sm1
n1

[
z1

(
x − a

x − c

)λ(b − x

x − c

)μ
]
Sm2
n2

[
z2

(
x − a

x − c

)λ′(
b − x

x − c

)μ′]
dx
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=
[n1/m1]∑
k1=0

[n2/m2]∑
k2=0

(−n1)m1k2(−n2)m2k2

k1!k2! An1,k1An2,k2z
k1
1 z

k2
2

.(b − a)u+v+(λ+μ)k1+(λ′+μ′)k2−1(b − c)−u−λk1−λ′k2(a − c)−v−μk1−μ′k2

.HM,N+2
P+2,Q+1,

[
z

(
b − a

b − c

)s(b − a

a − c

)t ∣∣∣(1− u−λk1 − λ′k2, s), (1− v− μk1 −μ′k2, t)(a1, α1), (ap, αp)
(b1,B1), (bq,Bq)(1− u− v−λk1 − μK1 − λ′k2 − μ′k2, s+t)

]
,

(3.6)

valid under the conditions as required sufficiently for (2.1).
The significance of outcomes lies in its various generalizations. In perspective of

the generality of the function and polynomials of very broad nature involved in the
results, our results encompass several particular cases of interest scattered hitherto
in the literature.
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On the New Fractional Operator
and Application to Nonlinear Bloch
System

J. F. Gómez-Aguilar, Behzad Ghanbari and Ebenezer Bonyah

Abstract In this chapter, we analyze the nonlinear Bloch system with a new frac-
tional operator without singular kernel proposed by Michele Caputo and Mauro
Fabrizio. The commensurate and non-commensurate order nonlinear Bloch system
is considered. Special solutions using a numerical scheme based in Lagrange inter-
polations were obtained. We studied the uniqueness and existence of the solutions
employing the fixed point theorem. Novel chaotic attractors with total order less than
3 are obtained.

Keywords Fractional calculus · Bloch system · Exponential-decay law ·
Lagrange interpolation

1 Introduction

The nonlinearBloch system is a systemconsisting of three nonlinearODEswhich can
be used tomodel time-dependent nuclearmagnetization. These equations are efficient
tool to describe the Nuclear Magnetic Resonance (NMR). The dynamic balance
between externally applied magnetic fields and also internal sample relaxation times
[1] is explained by theBloch system.Taking advantage of fractional-order differential
equations, we model this relaxation as a multiexponential process.
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Fractional order systems are suitable for describing the memory properties of
several materials, because it has a stronger memory function. It is well known that,
fractional-order derivatives have made great progress in mathematical modeling of
the dynamics of complex systems, multi-scale phenomena and viscoelastic mate-
rials [2–11]. The fractional derivative with power-law singular kernel imposes an
artifical singularity to mathematical models and the memory effects cannot describe
accurately. Due to this inconvenience, a new fractional derivative considering the
exponential function as non-singular kernel was proposed by Caputo and Fabrizio
[12]. This new operator allows to describe more efficiently the memory effect and do
not impose artificial singularities as in the old Liouville-Caputo derivative. Several
problems in chemical reactions, luminescence, heat transfer, geophysics, physical
optics, radioactivity, thermoelectricity, vibrations and electromagnetism are naturally
governed by the exponential decay law. These natural phenomena can be studied con-
sidered the exponential kernel suggested by Caputo and Fabrizio. Furthermore, this
new operator has supplementary properties, it can portray substance heterogeneities
and configurations with different scales, which noticeably cannot be managed with
the other representations [13–15]. Losada and Nieto in [16] studied the further
properties.

Atangana and Baleanu generalized the exponential function and proposed the
Mittag-Leffler law as kernel of differentiation [17] arising the Atangana-Baleanu
fractional derivative. The fractional-order derivativeswith non-singular kernel allows
to describe two different waiting times distribution, which is an ideal waiting time
distribution as such is observed in nuclear magnetization. The crossover behavior
of both operators is due to their capacity of not obeying the classical index-law
imposed in fractional calculus. This apparent limitation allows to permits describe
more appropriate real world problems [18–21]. In [22], several examples of non-
commutative and non-associative problems were presented. The authors justify why
the fractional derivatives with non-singular kernel are needed to describe real-world
problems. The authors conclude that the commutativity or index-law and semi-group
principle are irrelevant in fractional calculus, ending the controversy generated for
the use of these fractional-order derivatives.

In recent years, the generalized nonlinear Bloch equation with fractional-order
derivatives has attracted great interest of many researchers and scholars in litera-
ture [23–30]. A predictor-corrector approach to solve the multi-term time-fractional
Bloch equations has been developed in [31]. Also, for some other variants of the
equation including Bloch equations with Riemann-Liouville fractional derivative
[32–35] or the delay-dependent fractional Bloch equations [36–38].

In this chapter, we apply the new fractional operatorwith exponential-decay law to
the nonlinear Bloch model. We studied the uniqueness and existence of the solutions
employing the fixed point theorem. The manuscript is organized as follows. The
paper is structured as follows. In Sect. 2, we recall the fractional operators of type
Liouville-Caputo sense. In Sect. 3, we formulate the fractional order nonlinear Bloch
model, and then the existence and uniqueness of the coupled solutions is proved. We
consider numerical simulations in Sect. 4. Finally, we summarize and conclude in
Sect. 5.
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2 Fractional Operators

Based in the exponential-decay law, the Caputo-Fabrizio fractional operator without
singular kernel in Liouville-Caputo sense (CFC) is given by [12]

CFC
0 Dγ

t { f (t)} = M(γ )

n − γ

t∫

0

dn

dtn
f (θ) exp

[
− γ

n − γ
(t − θ)

]
dθ, n − 1 < γ ≤ n,

(1)
where M(γ ) is a normalization function such that M(0) = M(1) = 1.

The Caputo-Fabrizio fractional integral is defined below [16]

CF
0 I γ

t f (t) = 2(1 − γ )

M(γ )(2 − γ )
f (t) + 2γ

M(γ )(2 − γ )

t∫

0

f (s)ds. t ≥ 0.

where,

M(γ ) = 2

2 − γ
, 0 < γ < 1. (2)

Losada andNieto [16] analyzedmore properties of this newly presented fractional
operator.

3 Bloch System with Non-singular Kernel

The nonlinear Bloch system [36] in Caputo-Fabrizio-Caputo sense is given by

CFC
0 Dγ1

t x(t) = ζ y(t) + �z(t)(x(t) sin(ϕ) − y(t) cos(ϕ)) − 1

�2
x(t),

CFC
0 Dγ2

t y(t) = −ζ x(t) − z(t) + �z(t)(y(t) sin(ϕ) + x(t) cos(ϕ)) − 1

�2
y(t), (3)

CFC
0 Dγ3

t z(t) = y(t) − � sin(ϕ)(x(t)2 + y(t)2) − 1

�1
(z(t) − 1),

with initial conditions

x(t) = x(0), y(t) = y(0), z(t) = z(0). (4)

System (3) can be made more realistic as the nuclear magnetization as a function
of time should not follow the same fractional order dynamics. For this reason, we
introducing three different orders of the fractional-differential operators γi ∈ (0, 1]
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for i = 1, 2, 3. The system (3) is called commensurate when γ1 = γ2 = γ3 = γ , oth-
erwise is called non-commensurate (for this case, the total order of the system is then
changed from 3 to the sum of each particular order).

Existence of the coupled solutions.
We investigate the numerical results predicted by the fractional model given by the
system (3). Firstly start to investigate the existence and uniqueness of the solutions.
By using the fixed-point theorem, we define the existence of the solution. First,
transform system (3) into an integral equation as follows

x(t) − x(0) =CF
0 I γ1

t

[
ζ y(t) + �z(t)(x(t) sin(ϕ) − y(t) cos(ϕ)) − 1

�2
x(t)

]
,

y(t) − y(0) =CF
0 I γ2

t

[
− ζ x(t) − z(t) + �z(t)(y(t) sin(ϕ) + x(t) cos(ϕ)) − 1

�2
y(t)

]
,

z(t) − z(0) =CF
0 I γ3

t

[
y(t) − � sin(ϕ)(x(t)2 + y(t)2) − 1

�1
(z(t) − 1)

]
. (5)

On using the definition (2), we get

x(t) = x0 + 2(1 − γ1)

M(γ1)(2 − γ1)

{
ζ y(t) + �z(t)(x(t) sin(ϕ) − y(t) cos(ϕ)) − 1

�2
x(t)

}

+ 2γ1
M(γ1)(2 − γ1)

t∫

0

[
ζ y(s) + �z(s)(x(s) sin(ϕ) − y(s) cos(ϕ)) − 1

�2
x(s)

]
ds,

(6)

y(t) = y0 + 2(1 − γ2)

M(γ2)(2 − γ2)

{
− ζ x(t) − z(t) + �z(t)(y(t) sin(ϕ) + x(t) cos(ϕ)) − 1

�2
y(t)

}

+ 2γ2
M(γ2)(2 − γ2)

t∫

0

[
− ζ x(s) − z(s) + �z(s)(y(s) sin(ϕ) + x(s) cos(ϕ)) − 1

�2
y(s)

]
ds,

(7)

z(t) = z0 + 2(1 − γ3)

M(γ3)(2 − γ3)

{
y(t) − � sin(ϕ)(x(t)2 + y(t)2) − 1

�1
(z(t) − 1)

}

+ 2γ3
M(γ3)(2 − γ3)

t∫

0

[
y(s) − � sin(ϕ)(x(s)2 + y(s)2) − 1

�1
(z(s) − 1)

]
ds.

(8)
Now, we consider the following kernels

G1(t, x(t)) = ζ y(t) + �z(t)(x(t) sin(ϕ) − y(t) cos(ϕ)) − 1

�2
x(t),
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G2(t, y(t)) = −ζ x(t) − z(t) + �z(t)(y(t) sin(ϕ) + x(t) cos(ϕ)) − 1

�2
y(t), (9)

G3(t, z(t)) = y(t) − � sin(ϕ)(x(t)2 + y(t)2) − 1

�1
(z(t) − 1).

Now, we prove that the kernels G1, G2 and G3 satisfy the Lipschitz condition.
To achieve we first prove this condition for each kernel proposed. We start with the
kernel 1. Let x and X be two functions, using the Cauchy’s inequality, then we assess
the following

||G1(t, x(t)) − G1(t, X (t))|| ≤
∣∣∣
∣∣∣ζ y(t) + �z(t)(x(t) sin(ϕ) − y(t) cos(ϕ)) − 1

�2
x(t)

∣∣∣
∣∣∣.

(10)

Similarly for the second and third cases, we have

||G2(t, y(t)) − G2(t,Y (t))|| ≤
∣∣∣
∣∣∣ − ζ x(t) − z(t) + �z(t)(y(t) sin(ϕ)

+ x(t) cos(ϕ)) − 1

�2
y(t)

∣∣∣
∣∣∣,

||G3(t, z(t)) − G3(t, Z(t))|| ≤
∣∣∣
∣∣∣y(t) − � sin(ϕ)(x(t)2 + y(t)2) − 1

�1
(z(t) − 1)

∣∣∣
∣∣∣,

(11)
consider the following recursive formula, we have

x(n)(t) = 2(1 − γ1)

M(γ1)(2 − γ1)
G1(t, x(n−1)) + 2γ1

M(γ1)(2 − γ1)

t∫

0

G1(s, x(n−1))ds,

y(n)(t) = 2(1 − γ2)

(M(γ2)(2 − γ2)
G2(t, y(n−1)) + 2γ2

M(γ2)(2 − γ2)

t∫

0

G2(s, y(n−1))ds,

z(n) = 2(1 − γ3)

M(γ3)(2 − γ3)
G3(t, z(n−1)) + 2γ3

M(γ3)(2 − γ3)

t∫

0

G3(s, z(n−1))ds. (12)

Applying the norm and the triangular inequality, we get
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||a(n)(t)|| = ||x(n)(t) − X(n−1)(t)||
≤ 2(1 − γ1)

M(γ1)(2 − γ1)
||G1(t, x(n−1)(t)) − G1(t, X(n−2)(t))||

+ 2γ1
M(γ1)(2 − γ1)

∣∣∣
∣∣∣

t∫

0

[
G1(s, x(n−1)(s)) − G1(s, X(n−2)(s))

]∣∣∣
∣∣∣ds,

||b(n)(t)|| = ||y(n)(t) − Y(n−1)(t)||
≤ 2(1 − γ2)

M(γ2)(2 − γ2)
||G2(t, y(n−1)(t)) − G2(t,Y(n−2)(t))||

+ 2γ2
M(γ2)(2 − γ2)

∣∣∣
∣∣∣

t∫

0

[
G2(s, y(n−1)(s)) − G2(s,Y(n−2)(s))

]∣∣∣
∣∣∣ds,

||c(n)(t)|| = ||z(n)(t) − Z(n−1)(t)||
≤ 2(1 − γ3)

M(γ3)(2 − γ3)
||G3(t, z(n−1)(t)) − G3(t, Z(n−2)(t))||

+ 2γ3
M(γ3)(2 − γ3)

∣∣∣
∣∣∣

t∫

0

[
G3(s, z(n−1)(s)) − G3(s, Z(n−2)(s))

]∣∣∣
∣∣∣ds,

(13)
where,

x(n)(t) =
∞∑

m=0

am(t); y(n)(t) =
∞∑

m=0

bm(t); z(n)(t) =
∞∑

m=0

cm(t). (14)

Since the kernels satisfies the Lipschitz condition, we have

||a(n)(t)|| = ||x(n)(t) − X(n−1)(t)|| ≤ 2(1 − γ1)

M(γ1)(2 − γ1)
�1||x(n−1)(t) − X(n−2)(t)||

+ 2γ1
M(γ1)(2 − γ1)

�2

t∫

0

||x(n−1)(s) − X(n−2)(s)||ds,

||b(n)(t)|| = ||y(n)(t) − Y(n−1)(t)|| ≤ 2(1 − γ2)

M(γ2)(2 − γ2)
�3||y(n−1)(t) − Y(n−2)(t)||

+ 2γ2
M(γ2)(2 − γ2)

�4

t∫

0

||y(n−1)(s) − Y(n−2)(s)||ds,
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||c(n)(t)|| = ||z(n)(t) − Z(n−1)(t)|| ≤ 2(1 − γ3)

M(γ3)(2 − γ3)
�5||z(n−1)(t) − Z(n−2)(t)||

+ 2γ3
M(γ3)(2 − γ3)

�6

t∫

0

||z(n−1)(s) − Z(n−2)(s)||ds.

(15)
Considering system (13) bounded, we have proven that the kernels satisfy Lips-

chitz condition, therefore following the results obtained in (13) using the recursive
technique, we get the following relation

||a(n)(t)|| ≤ ||x(0)|| +
{{ 2(1 − γ1)

M(γ1)(2 − γ1)
�1

}n +
{ 2γ1
M(γ1)(2 − γ1)

�2t
}n}

,

||b(n)(t)|| ≤ ||y(0)|| +
{{ 2(1 − γ2)

M(γ2)(2 − γ2)
�3

}n +
{ 2γ2
M(γ2)(2 − γ2)

�4t
}n}

,

||c(n)(t)|| ≤ ||z(0)|| +
{{ 2(1 − γ3)

M(γ3)(2 − γ3)
�5

}n +
{ 2γ3
M(γ3)(2 − γ3)

�6t
}n}

. (16)

Therefore, Eq. (16) exists and is continuous. Nonetheless, to show that the above
functions are a system of solutions of Eq. (3), we assume

x(t) = x(n)(t) − 	1(n)(t); y(t) = y(n)(t) − 	2(n)(t); z(t) = z(n)(t) − 	3(n)(t),
(17)

where 	1(n), 	2(n) and 	3(n) are reminder terms of series solution. Thus

x(t) − X(n)(t) = 2(1 − γ1)

M(γ1)(2 − γ1)
G1(t, x − 	1(n)(t))

+ 2γ1
M(γ1)(2 − γ1)

t∫

0

G1(s, x − 	1(n)(s))ds,

y(t) − Y(n)(t) = 2(1 − γ2)

M(γ2)(2 − γ2)
G2(t, y − 	2(n)(t))

+ 2γ2
M(γ2)(2 − γ2)

t∫

0

G2(s, y − 	2(n)(s))ds,

z(t) − Z(n)(t) = 2(1 − γ3)

M(γ3)(2 − γ3)
G3(t, z − 	3(n)(t))

+ 2γ3
M(γ3)(2 − γ3)

t∫

0

G3(s, z − 	3(n)(s))ds.
(18)
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Applying the norm on both sides and using the Lipschitz condition, we get

∣∣∣
∣∣∣x(t) − 2(1 − γ1)

M(γ1)(2 − γ1)
G1(t, x(t)) − x(0) − 2γ1

M(γ1)(2 − γ1)

t∫

0

G1(s, x(s))ds
∣∣∣
∣∣∣

≤ ||	1(n)(t))|| +
{ 2(1 − γ1)

M(γ1)(2 − γ1)
�1 + 2γ1

M(γ1)(2 − γ1)
�2t

}
||	1(n)(t)||,

∣∣∣
∣∣∣y(t) − 2(1 − γ2)

M(γ2)(2 − γ2)
G2(t, y(t)) − y(0) − 2γ2

M(γ2)(2 − γ2)

t∫

0

G2(s, y(s))ds
∣∣∣
∣∣∣

≤ ||	2(n)(t))|| +
{ 2(1 − γ2)

M(γ2)(2 − γ2)
�3 + 2γ2

M(γ2)(2 − γ2)
�4t

}
||	2(n)(t)||,

∣∣∣
∣∣∣z(t) − 2(1 − γ3)

M(γ3)(2 − γ3)
G3(t, z(t)) − z(0) − 2γ3

M(γ3)(2 − γ3)

t∫

0

G3(s, z(s))ds
∣∣∣
∣∣∣

≤ ||	3(n)(t))|| +
{ 2(1 − γ3)

M(γ3)(2 − γ3)
�5 + 2γ3

M(γ3)(2 − γ3)
�6t

}
||	3(n)(t)||. (19)

On taking the limit n → ∞ of Eq. (19), we get

x(t) = 2(1 − γ1)

M(γ1)(2 − γ1)
G1(t, x(t)) + x(0) + 2γ1

M(γ1)(2 − γ1)

t∫

0

G1(s, x(s))ds,

y(t) = 2(1 − γ2)

M(γ2)(2 − γ2)
G2(t, y(t)) + y(0) + 2γ2

M(γ2)(2 − γ2)

t∫

0

G2(s, y(s))ds,

z(t) = 2(1 − γ3)

M(γ3)(2 − γ3)
G3(t, z(t)) + z(0) + 2γ3

M(γ3)(2 − γ3)

t∫

0

G3(s, z(s))ds.

(20)
Uniqueness of the solutions.

We assume that we can find another solutions for Eq. (3); say x(t), y(t) and z(t);
then
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x(t) − X (t) = 2(1 − γ1)

M(γ1)(2 − γ1)

[
G1(t, x(t)) − G1(t, X (t))

]

+ 2γ1
M(γ1)(2 − γ1)

t∫

0

[
G1(s, x(s)) − G1(s, X (s))

]
ds,

y(t) − Y (t) = 2(1 − γ2)

M(γ2)(2 − γ2)

[
G2(t, y(t)) − G2(t,Y (t))

]

+ 2γ2
M(γ2)(2 − γ2)

t∫

0

[
G2(s, y(s)) − G2(s,Y (s))

]
ds,

z(t) − Z(t) = 2(1 − γ3)

M(γ3)(2 − γ3)

[
G3(t, z(t)) − G3(t, Z(t))

]

+ 2γ3
M(γ3)(2 − γ3)

t∫

0

[
G3(s, z(s)) − G3(s, Z(s))

]
ds.

(21)

Apply the norm both sides of Eq. (21), we have

||x(t) − X (t)|| ≤ 2(1 − γ1)

M(γ1)(2 − γ1)

[∣∣∣
∣∣∣G1(t, x(t)) − G1(t, X (t))

∣∣∣
∣∣∣
]

+ 2γ1
M(γ1)(2 − γ1)

t∫

0

[∣∣∣
∣∣∣G1(s, x(s)) − G1(s, X (s))

∣∣∣
∣∣∣
]
ds,

||y(t) − Y (t)|| ≤ 2(1 − γ2)

M(γ2)(2 − γ2)

[∣∣∣
∣∣∣G2(t, y(t)) − G2(t,Y (t))

∣∣∣
∣∣∣
]

+ 2γ2
M(γ2)(2 − γ2)

t∫

0

[∣∣∣
∣∣∣G2(s, y(s)) − G2(s,Y (s))

∣∣∣
∣∣∣
]
ds,

||z(t) − Z(t)|| ≤ 2(1 − γ3)

M(γ3)(2 − γ3)

[∣∣∣
∣∣∣G3(t, z(t)) − G3(t, Z(t))

∣∣∣
∣∣∣
]

+ 2γ3
M(γ3)(2 − γ3)

t∫

0

[∣∣∣
∣∣∣G3(s, z(s)) − G3(s, Z(s))

∣∣∣
∣∣∣
]
ds,

(22)

considering the Lipschitz condition, having the fact in mind that the solutions are
bounded, we get

||x(t) − X (t)|| ≤ 2(1 − γ1)

M(γ1)(2 − γ1)
�1ξ1 +

{ 2γ1
M(γ1)(2 − γ1)

�2ξ2t
}n

,
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||y(t) − Y (t)|| ≤ 2(1 − γ2)

M(γ2)(2 − γ2)
�3ξ3 +

{ 2γ2
M(γ2)(2 − γ2)

�4ξ4t
}n

,

||z(t) − Z(t)|| ≤ 2(1 − γ3)

M(γ3)(2 − γ3)
�5ξ5 +

{ 2γ3
M(γ3)(2 − γ3)

�6ξ6t
}n

, (23)

this is true for any n.

The system given by Eq. (3) has a unique solution if the below condition holds.

(
1 − 2(1 − γ1)

M(γ1)(2 − γ1)
�1ξ1 − 2γ1

M(γ1)(2 − γ1)
�2ξ2t

)
≥ 0. (24)

If the condition (24) holds, then

||x(t) − X (t)||
(
1 − 2(1 − γ1)

M(γ1)(2 − γ1)
�1ξ1 − 2γ1

M(γ1)(2 − γ1)
�2ξ2t

)
≤ 0, (25)

implies that ||x(t) − X (t)|| = 0. Then we get, x(t) = X (t).

Employing the same way, we have

x(t) = X (t); y(t) = Y (t); z(t) = Z(t). (26)

Therefore, we verified the uniqueness of coupled-solutions.

Now we propose a numerical solution of the nonlinear Bloch system consider-
ing the fractional derivative of Caputo-Fabrizio in Liouville-Caputo sense using the
numerical scheme proposed by Atangana and Toufik in [39].

First we consider the following fractional differential equation with fading mem-
ory

CFC
0 Dα

t y(t) = f (t, y(t)), (27)

using the fundamental theorem of fractional calculus we obtain the solution of the
above equation [39]

yn+1 = yn +
(
1 − α

M(α)
+ 3αh

2M(α)

)
f (tn, yn) −

(
1 − α

M(α)
+ αh

2M(α)

)
f (tn−1, yn−1)

(28)
Again, we apply the numerical scheme (28) to have a numerical solution to Eq.

(3) in Caputo-Fabrizio-Caputo sense
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xn+1(t) = xn +
(
1 − α

M(α)
+ 3αh

2M(α)

)
f1(tn, xn, yn, zn)

−
(
1 − α

M(α)
+ αh

2M(α)

)
f1(tn−1, xn−1, yn−1, zn−1),

yn+1 = yn +
(
1 − α

M(α)
+ 3αh

2M(α)

)
f2(tn, xn, yn, zn)

−
(
1 − α

M(α)
+ αh

2M(α)

)
f2(tn−1, xn−1, yn−1, zn−1),

(29)

zn+1 = zn +
(
1 − α

M(α)
+ 3αh

2M(α)

)
f3(tn, xn, yn, zn)

−
(
1 − α

M(α)
+ αh

2M(α)

)
f3(tn−1, xn−1, yn−1, zn−1),

where,

f1(t, x(t), y(t), z(t)) := ζ y(t) + �z(t)(x(t) sin(ϕ) − y(t) cos(ϕ)) − 1

�2
x(t),

f2(t, x(t), y(t), z(t)) := −ζ x(t) − z(t) + �z(t)(y(t) sin(ϕ) + x(t) cos(ϕ)) − 1

�2
y(t),

(30)

f3(t, x(t), y(t), z(t)) := y(t) − � sin(ϕ)(x(t)2 + y(t)2) − 1

�1
(z(t) − 1).

In the next section, we consider Eq. (29) for obtain several numerical solutions
considering different values of the fractional order γ arbitrarily chosen.

4 Numerical Simulations

Numerical solutions of the system (3) have beendepicted inFig. 1a–f andFig. 2a–f for
the commensurate and non-commensurate order system, respectively. The param-
eter values used in the simulations are ζ = 1.26, � = 10, ϕ = 0.7764, �1 = 0.5,
�2 = 0.25 and the initial conditions are x(t) = 0.1, y(t) = 0.1 and z(t) = 0.1. The
step size used in evaluating the approximate solution was h = 0.0001.
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Fig. 1 Numerical simulation for the commensurate nonlinear Bloch system with non-singular
kernel. In a–d projections of chaos for γ = 0.95. In e–f chaotic phase trajectory x(t) − y(t), for
γ = 0.92 and γ = 0.87, respectively

Numerical solutions of the system (3) have been depicted in Fig. 3a–f andFig. 4a–f
for the commensurate and non-commensurate order system, respectively. The param-
eter values used in the simulations are ζ = −1.26, � = 35, ϕ = 0.173, �1 = 5,
�2 = 2.5 and the initial conditions are x(t) = 0.1, y(t) = 0.1 and z(t) = 0.1. The
step size used in evaluating the approximate solution was h = 0.0001.
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Fig. 2 Numerical simulation for the non-commensurate nonlinear Bloch system with non-singular
kernel. In a–d projections of chaos for γ1 = 1, γ2 = 0.95 and γ3 = 1. In e–f chaotic phase trajectory
x(t) − y(t), for γ1 = 0.94, γ2 = 1 and γ3 = 1 and γ1 = 1, γ2 = 1 and γ3 = 0.92, respectively
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Fig. 3 Numerical simulation for the commensurate nonlinear Bloch systemwith with non-singular
kernel. In a–d projections of chaos for γ = 0.95. In e–f chaotic phase trajectory x(t) − y(t), for
γ = 0.92 and γ = 0.87, respectively
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Fig. 4 Numerical simulation for the non-commensurate nonlinear Bloch system with with non-
singular kernel. In a–d projections of chaos for γ1 = 1, γ2 = 0.95 and γ3 = 1. In e–f chaotic
phase trajectory x(t) − y(t), for γ1 = 0.94, γ2 = 1 and γ3 = 1 and γ1 = 1, γ2 = 1 and γ3 = 0.92,
respectively
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5 Conclusions

In this chapter, we used the new definition of fractional operator with an exponential
kernel proposed by Caputo and Fabrizio. This new operator can describe material
heterogeneities and structures with different scales, which cannot be handling with
the classical theories. To further apply this operator, we have modified the nonlinear
Bloch equationwith feedback.We prove the existence and uniqueness of the coupled-
solutions. The numerical results for nonlinear Bloch with non-singular kernel shows
that with decreases the order of time-fractional operator (γ → 0), several irregular
attractors are formed and the model exhibit transient chaos. The characteristics of
the alternative model, in contrast with the classical model, memory properties, the
nuclear magnetization or other independent quantities are considered.
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1 Introduction and Preliminaries

Fractional calculus, which has a long history, is an important branch of mathematical
analysis (calculus) where differentiations and integrations can be of arbitrary non-
integer order. The operators of Riemann-Liouville fractional integrals and derivatives
are defined, for α ∈ C (�(λ) > 0) and x > 0 (see, for details, [8, 18])

(
I λ
0+ f

)
(x) = 1

� (λ)

x∫

0

f (t)

(x − t)1−λ
dt , (1.1)

(
I λ
− f

)
(x) = 1

� (λ)

∞∫

x

f (t)

(t − x)1−λ
dt , (1.2)

(
Dλ

0+ f
)
(x) =

(
d

dx

)[�(λ)]+1 (
I 1−λ+[�(λ)]
0+ f

)
(x)

=
(

d

dx

)[�(λ)]+1 1

� (1 − λ + � [λ])

x∫

0

f (t)

(x − t)λ−[�(λ)]
(1.3)

and

(
Dλ

− f
)
(x) =

(
− d

dx

)[�(λ)]+1 (
I 1−λ+[�(λ)]
− f

)
(x)

=
(

− d

dx

)[�(λ)+1] 1

� (1 − λ + [� (λ)])

∞∫

x

f (t)

(t − x)λ−[�(λ)]
dt (1.4)

respectively, where [� (λ)] is the integral part of � (λ). The following lemma is
needed in sequel [18, (2.44)],

Lemma 1.1 Let λ ∈ C (� (λ) > 0) and δ ∈ C then

(a) If � (δ) > 0 then
(
I λ
0+t

δ−1
)
(x) = � (δ)

� (λ + δ)
xλ+δ−1. (1.5)

(b) If � (δ) > � (λ) > 0 then

(
I λ
−t

−δ
)
(x) = � (δ − λ)

� (δ)
xλ−δ. (1.6)
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In this paper, we aim to introduce a new generalized multiindex Bessel function and
to study its compositions with the classical Riemann-Liouville fractional integration
and differentiation operators. Further, we derive certain integral formulas involving

the newly defined generalized multiindex Bessel function J (α j)m ,γ,c

(β j)m ,κ,b
[z]. We prove

that such integrals are expressed in terms of the Fox-Wright function p�q(z).

2 Fractional Calculus Approach of J (α j)m,γ,c

(β j)m,κ,b
[z]

In this section, we introduce a generalized multiindex Bessel function J (α j)m ,γ,c

(β j)m ,κ,b
[z]

as follows:

For α j ,β j , γ, b, c ∈ C ( j = 1, 2, . . . ,m) be such that
m∑

j=1
� (

α j
)

> max 0;

{� (κ) − 1} ;κ > 0,� (
β j

)
> 0 and �(γ) > 0, then

J (α j)m ,γ,c

(β j)m ,κ,b
[z] =

∞∑

n=0

cn (γ)κn
m∏

j=1
�

(
α j n + β j + b+1

2

)
zn

n! (m ∈ N) . (2.1)

Here and in the following, (λ)ν denotes the Pochhammer symbol defined (for λ, ν ∈
C), in terms of the Gamma function � (see [19, Section1.1]), by

(λ)ν := �(λ + ν)

�(λ)
=

{
1 (ν = 0; λ ∈ C \ {0})
λ(λ + 1) · · · (λ + n − 1) (ν = n ∈ N; λ ∈ C).

(2.2)

2.1 Fractional Integration

We first recall the definition of the Fox-Wright function p�q(z) (p, q ∈ N0) (see,
for details, [6, 22]):

p�q

[
(α1, A1), . . . , (αp, Ap);
(β1, B1), . . . , (βq , Bq); z

]
=

∞∑

n=0

�(α1 + A1n) · · · �(αp + Apn)

�(β1 + B1n) · · · �(βq + Bqn)

zn

n!
(2.3)

⎛

⎝A j ∈ R
+ ( j = 1, . . . , p); Bj ∈ R

+ ( j = 1, . . . , q); 1 +
q∑

j=1

Bj −
p∑

j=1

A j � 0

⎞

⎠ ,

where the equality in the convergence condition holds true for
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|z| < ∇ :=
⎛

⎝
p∏

j=1

A
−A j

j

⎞

⎠ .

⎛

⎝
q∏

j=1

B
Bj

j

⎞

⎠ .

Now we present the Riemann-Liouville fractional integration of the generalized

multiindex Bessel function J (α j)m ,γ,c

(β j)m ,κ,b
[z] in the following theorems.

Theorem 1 Letλ, δ ∈ C be such that� (λ) > 0,� (δ) > 0 and the conditions given
in (2.1) is satisfied, then for x > 0, the following integral formula holds true

(
Iλ
0+

{
tδ−1J (α j )m ,γ,c

(β j )m ,κ,b
(t)

})
(x) = xλ+δ−1

� (γ)
2�m+1

[
(γ, k) , (δ, 1)(

β j + b+1
2 ,α j

)m
j=1 , (λ + δ, 1)

|cx
]

.

(2.4)

Proof Let us denote the left-hand side of (2.4) by I1. Using the definition (2.1), we
have

I1 =
(
I λ
0+

{
tδ−1J (α j)m ,γ,c

(β j)m ,κ,b
(t)

})
(x)

=

⎛

⎜⎜⎜
⎝
I λ
0+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tδ−1
∞∑

n=0

cn (γ)κn
m∏

j=1
�

(
α j n + β j + b+1

2

)
tn

n!

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟⎟
⎠

(x) . (2.5)

Interchanging the integration and the summation in (2.5) and using the definition of
Pochhammer symbol (2.2), we get

I1 =
∞∑

n=0

cn� (γ + κn)

� (γ)
m∏

j=1
�

(
α j n + β j + b+1

2

)
n!

(
I λ
0+t

δ+n−1
)
(x) .

Applying the relation (1.5) in Lemma 1.1, we get

I1 =
∞∑

n=0

cn� (γ + κn)

� (γ)
m∏

j=1
�

(
α j n + β j + b+1

2

)
n!

� (δ + n)

� (λ + δ + n)
xλ+δ+n−1.

In view of the definition of the Fox-Wright function (2.3), we arrived at the desired
result. ��
Theorem 2 Let λ, δ ∈ C such that � (δ) > � (λ) > 0 and the conditions given in
(2.1) is satisfied, then for x > 0, the following integral formula holds true
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(
I λ
−

{
t−δJ (α j)m ,γ,c

(β j)m ,κ,b

(
1

t

)})
(x) = xλ−δ

� (γ)
2�m+1

[
(γ, k) , (δ − λ, 1)(

β j + b+1
2 ,α j

)m
j=1 , (δ, 1)

∣∣
∣
c

x

]
.

(2.6)

Proof Denoting the left-hand side of (2.5) by I2. Using (2.1), we have

I2 =
(
I λ
−

{
t−δJ (α j)m ,γ,c

(β j)m ,κ,b

(
1

t

)})
(x)

=

⎛

⎜⎜⎜
⎝
I λ
−

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t−δ
∞∑

n=0

cn (γ)κn
m∏

j=1
�

(
α j n + β j + b+1

2

)
t−n

n!

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟⎟
⎠

(x) . (2.7)

Interchanging the integration and the summation in (2.7) and using the definition of
Pochhammer symbol (2.2), we get

I2 =
∞∑

n=0

cn� (γ + κn)

� (γ)
m∏

j=1
�

(
α j n + β j + b+1

2

)
n!

(
I λ
−t

−δ−n
)
(x) .

Applying the relation (1.6) in Lemma 1.1, we get

I1 =
∞∑

n=0

cn� (γ + κn)

� (γ)
m∏

j=1
�

(
α j n + β j + b+1

2

)
n!

� (δ + n − λ)

� (δ + n)
xλ−δ−n .

In view of the definition of the Fox-Wright function (2.3), we arrived at the desired
result. ��

2.2 Fractional Differentiation

In this subsection, we establish the fractional differentiation of generalized multiin-
dex Bessel function given in (2.1).

Theorem 3 Let λ, δ ∈ C such that � (λ) > 0,� (δ) > 0 and the conditions given
in (2.1) is satified, then for x > 0, the following fractional differentiation formula
holds true

(
Dλ
0+

{
tδ−1J (α j )m ,γ,c

(β j )m ,κ,b
(t)

})
(x) = xδ−λ−1

� (γ)
2�m+1

[
(γ, k) , (δ, 1)(

β j + b+1
2 ,α j

)m
i=1 , (δ − λ, 1)

|cx
]

.

(2.8)
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Proof Let I3 denote the left-hand side of (2.8). Using the definition (2.1), we have

I3 =
(
Dλ

0+

{
tδ−1J (α j)m ,γ,c

(β j)m ,κ,b
(t)

})
(x)

=
(

d

dx

)n

⎛

⎜
⎜⎜
⎝
I n−λ
0+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tδ−1
∞∑

r=0

cr (γ)κr
m∏

j=1
�

(
α j r + β j + b+1

2

)
tr

r !

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟
⎟⎟
⎠

(x) ,

=
(

d

dx

)n ∞∑

r=0

cr (γ)κr
m∏

j=1
�

(
α j r + β j + b+1

2

)
r !

(
I n−λ
0+ tδ+r−1

)
(x) .

Using the relation (1.5) and the definition of the Pochhammer symbol (2.2), we get

I3 =
(

d

dx

)n ∞∑

r=0

cr� (γ + κr)

� (γ)
m∏

j=1
�

(
α j r + β j + b+1

2

)
r !

� (δ + r)

� (n − λ + δ + r)
xn−λ+δ+r−1.

By interchanging the differentiation and the summation, we get

I3 =
∞∑

r=0

cr� (γ + κr)

� (γ)
m∏

j=1
�

(
α j r + β j + b+1

2

)
r !

� (δ + r)

� (n − λ + δ + r)

(
d

dx

)n

xn−λ+δ+r−1

= 1

� (γ)

∞∑

r=0

cr� (γ + κr)
m∏

j=1
�

(
α j r + β j + b+1

2

)
r !

� (δ + r) � (n − λ + δ + r)

� (n − λ + δ + r) � (δ − λ + r)
xδ−λ+δ+r−1.

In view of the definition of the Fox-Wright function (2.3), we arrived at the desired
result. ��
Theorem 4 Let λ, δ ∈ C such that� (λ) > 0,� (δ) > [� (λ)] + 1 − � (λ) and the
conditions given in (2.1) is satisfied, then the fractional differentiation Dλ− of gener-
alized multiindex Bessel function is given by

(
Dλ−

{
t−δJ

(
α j

)
m ,γ,c

(
β j

)
m ,κ,b

(
1

t

)})
(x) = x1−λ−δ

� (γ)
2�m+1

[
(γ, k) , (λ + δ, 1)(

β j + b+1
2 , α j

)m

j=1
, (δ, 1)

∣
∣
∣
c

x

]

.

(2.9)

Proof Let I4 denote the left-hand side of (2.9). Applying the definition (2.1), we
have
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I4 =
(
Dλ

−

{
t−δJ (α j)m ,γ,c

(β j)m ,κ,b

(
1

t

)})
(x)

=
(

− d

dx

)n

⎛

⎜⎜
⎜
⎝
I n−λ
−

⎛

⎜⎜
⎜
⎝
t−δ

∞∑

r=0

cr (γ)κr
m∏

j=1
�

(
α j r + β j + b+1

2

)
t−r

r !

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟
⎟
⎠

(x) ,

=
(

− d

dx

)n ∞∑

r=0

cr (γ)κr
m∏

j=1
�

(
α j r + β j + b+1

2

)
r !

(
I n−λ
− t−δ−r

)
(x) .

Using the relation (1.6) and the definition of the Pochhammer symbol (2.2), we get

I4 =
(

− d

dx

)n ∞∑

r=0

cr� (γ + κr)

� (γ)
m∏

j=1
�

(
α j r + β j + b+1

2

)
r !

� (δ + r − n + λ)

� (δ + r)
xn−λ−δ−r ,

By interchanging the derivatives and the summation, we get

I4 =
∞∑

r=0

cr� (γ + κr)

� (γ)
m∏

j=1
�

(
α j r + β j + b+1

2

)
r !

� (δ + r − n + λ)

� (δ + r)

(
− d

dx

)n

xn−λ−δ−r

= 1

� (γ)
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r=0

cr� (γ + κr)
m∏

j=1
�

(
α j r + β j + b+1

2

)
r !

� (δ + r − n + λ)

� (δ + r)

(−1)n � (n − λ − δ − r + 1)

� (−λ − δ − r + 1)
x1−δ−λ−r

= x1−δ−λ

� (γ)

∞∑

r=0

cr � (γ + κr)
m∏

j=1
�

(
α j r + β j + b+1

2

)
r !

� (λ + δ + r)

� (δ + r)
.

In view of the definition of the Fox-Wright function (2.3), we arrived at the desired
result. ��

3 Certain Integrals of the J (α j)m,γ,c

(β j)m,κ,b
[z]

Recentlymany researchers are developing a large number of integral formulas involv-
ing a variety of special functions [1, 2, 4, 5, 7, 10–15, 17]. In this section, four integral

formulas involving generalized multi-index Bessel function J (α j)m ,γ,c

(β j)m ,κ,b
[z] are estab-

lished, which are expressed in terms of the Fox-Wright function. For the present
investigation, we need the following result of Oberhettinger [16]
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∞∫

0

xμ−1
(
x + a +

√
x2 + 2ax

)−λ

dx = 2λa−λ
(a
2

)μ � (2μ) � (λ − μ)

� (1 + λ + μ)
, (3.1)

provided 0 < �(μ) < �(λ) and the following integral formula due to Lavoie [9]

1∫

0

xα−1 (1 − x)2β−1
(
1 − x

3

)2α−1 (
1 − x

4

)β−1
dx =

(
2

3

)2α
� (α) � (β)

� (α + β)
, (3.2)

with � (α) > 0,� (β) > 0.

Theorem 5 Let α j ,β j , γ, , b, c ∈ C ( j = 1, 2, . . . ,m) be such that
m∑

j=1
� (

α j
)

>

max {0; � (κ) − 1}withκ > 0,� (β) > −1,�(γ) > 0, 0 < � (μ) < � (λ + n) and
x > 0 , then

∞∫

0

xμ−1
(
x + a +

√
x2 + 2ax

)−λ

J (α j)m ,γ,c

(β j)m ,κ,b

(
y

x + a + √
x2 + 2ax

)
dx

=21−μa−λ+μ� (2μ)

� (γ)
3�m+2

[
(γ, k) , (λ + 1, 1) , (λ − μ, 1)(

β j + b+1
2 ,α j

)m
j=1 , (λ, 1) , (1 + λ + μ, 1)

∣∣∣
∣
−cy

a

]
.

(3.3)

Proof Let us denote the right-hand side of (3.3) by I5 and using the definition (2.1),
we have

I1 =
∞∫

0

xμ−1
(
x + a +

√
x2 + 2ax

)−λ

J (α j)m,γ,c

(β j)m,κ,b

(
y

x + a + √
x2 + 2ax

)
dx

=
∞∫

0

xμ−1
(
x + a +

√
x2 + 2ax

)−λ

×
∞∑

n=0

(−c)n (γ)κn

n!
m∏

j=1
�

(
α j n + β j + b+1

2

)

(
y

x + a + √
x2 + 2ax

)n

.

Interchanging the integration and summation under the suitable convergence condi-
tion gives

I1 =
∞∑

n=0

(−c)n (γ)κn y
n

n!
m∏

j=1
�

(
α j n + β j + b+1

2

)

∞∫

0

xμ−1
(
x + a +

√
x2 + 2ax

)−(λ+n)

dx,

(3.4)
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Applying (3.1) in (3.4), we get

I1 =
∞∑

n=0

(−c)n (γ)κn y
n

n!
m∏

j=1
�

(
α j n + β j + b+1

2

)2 (λ + n) a−(λ+n)
(a
2

)μ � (2μ) � (λ + n − μ)

� (1 + λ + μ + n)
,

provided� (λ + n) > � (μ) > 0. Now using the definition of Pochhammer symbol,
we get

I1 = 21−μa−λ+μ� (2μ)

� (γ)
∞∑

n=0

� (γ + κn)
m∏

j=1
�

(
α j n + β j + b+1

2

)
� (λ + n + 1) � (λ − μ + n)

� (λ + n) � (1 + λ + μ + n)

(− cy
a

)n

n! .

In view of the definition of Fox-Wright function (2.3), we arrived the desired result.
��

Theorem 6 Let α j ,β j , γ, b, c ∈ C ( j = 1, 2, . . . ,m) be such that
m∑

j=1
� (

α j
)

>

max {0; � (κ) − 1}withκ > 0,� (β) > −1,�(γ) > 0,0 < � (μ + n) < � (λ + n)

and x > 0 , then

∞∫

0

xμ−1
(
x + a +

√
x2 + 2ax

)−λ

J (α j)m ,γ,c

(β j)m ,κ,b

(
xy

x + a + √
x2 + 2ax

)
dx

= 21−μa−λ+μ� (2μ)

� (γ)
3�m+2

[
(γ, k) , (λ + 1, 1) , (2μ, 2)(

β j + b+1
2 ,α j

)m
j=1 , (λ, 1) , (1 + λ + μ, 2)

∣∣∣∣
−cy

a

]
.

(3.5)

Proof Let us denote the right-hand side of (3.5) by I6 and using the definition (2.1),
we have

I6 =
∞∫

0

xμ−1
(
x + a +

√
x2 + 2ax

)−λ

J (α j)m,γ,c

(β j)m,κ,b

(
xy
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x2 + 2ax

)
dx

=
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(
x + a +

√
x2 + 2ax

)−λ

×
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n=0

(−c)n (γ)κn

n!
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j=1
�

(
α j n + β j + b+1

2

)

(
xy

x + a + √
x2 + 2ax

)n

.
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Interchanging the integration and summation under the given condition, yields

I6 =
∞∑

n=0

(−c)n (γ)κn y
n

n!
m∏

j=1
�

(
α j n + β j + b+1

2

)

∞∫

0

xμ+n−1
(
x + a +

√
x2 + 2ax

)−(λ+n)

dx .

(3.6)
Applying (3.1) on (3.6), we get

I6 =
∞∑

n=0

(−c)n (γ)κn y
n

n!
m∏

j=1
�

(
α j n + β j + b+1

2

)2 (λ + n) a−(λ+n)
(a
2

)μ+n � (2μ + 2n) � (λ − μ)

� (1 + λ + μ + 2n)
,

provided � (λ + n) > � (μ + n) > 0.
In view of definition of Pochhammer symbol (2.2), we get

I6 = 21−μa−λ+μ� (λ − μ)

� (γ)

∞∑

n=0

� (γ + κn)
m∏

j=1
�

(
α j n + β j + b+1

2

)
� (λ + n + 1) � (2μ + 2n)

� (λ + n) � (1 + λ + μ + 2n)

(− cy
2

)n

n! .

Using the definition of Fox-Wright function (2.3), we arrived the desired result. ��
Theorem 7 For ξ,σ ∈ C with � (ξ + σ) > 0,� (ξ + n) > 0 and then for x > 0,

1∫

0

xξ+σ−1 (1 − x)2ξ−1
(
1 − x

3

)2(ξ+σ)−1 (
1 − x

4

)ξ−1 J (α j )m ,γ,c

(β j )m ,κ,b

(
y

(
1 − x

4

)
(1 − x)2

)
dx

= � (ξ + σ)

� (γ)

(
2

3

)2(ξ+σ)

2�m+1

[
(γ, k) , (ξ, 1)(

β j + b+1
2 , α j

)m
j=1 , (2ξ + σ, 1)

|cy
]

.

Proof Denoting the left-hand side of theorem by I7 and using (2.1) ,we get

I7 =
1∫

0

xξ+σ−1 (1 − x)2ξ−1
(
1 − x

3

)2(ξ+σ)−1 (
1 − x

4

)ξ−1

×J (α j)m,γ,c

(β j)m,κ,b

(
y

(
1 − x

4

)
(1 − x)2

)
dx,

=
1∫

0

xξ+σ−1 (1 − x)2ξ−1
(
1 − x

3

)2(ξ+σ)−1 (
1 − x

4

)ξ−1

×
∞∑

n=0

cn (γ)κn
m∏

j=1
�

(
α j n + β j + b+1

2

)
yn

(
1 − x

4

)n
(1 − x)2n

n! dx .

Interchanging the integration and summation gives,
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I7 =
∞∑

n=0

cn (γ)κn y
n

n!
m∏

j=1
�

(
α j n + β j + b+1

2

)

×
1∫
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xξ+σ−1 (1 − x)2(ξ+n)−1
(
1 − x

3

)2(ξ+σ)−1 (
1 − x

4

)ξ+n−1
dx .

Now using (3.2) and the definition of Pochhammer symbol,

I7 =
∞∑

n=0

cn� (κ + γn) yn

n!� (γ)
m∏

j=1
�

(
α j n + β j + b+1

2

)

(
2

3

)2(ξ+σ)
� (ξ + σ) � (ξ + n)

� (2ξ + σ + n)
.

Using the definition of Fox-Wright function (2.3), we obtained the required result. ��
Theorem 8 For ξ,σ ∈ C with � (ξ + σ) > 0,� (ξ + n) > 0 then for x > 0

1∫

0

xξ−1 (1 − x)2(ξ+σ)−1
(
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3

)2ξ−1 (
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4
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2

3
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4cy

9
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.

Proof Taking left-hand side of theorem by I8 and using ( 2.1), we get

I8 =
1∫

0

xξ−1 (1 − x)2(ξ+σ)−1
(
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3

)2ξ−1 (
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(
yx
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3

)2
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1∫

0
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3

)2ξ−1 (
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×
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2

)
xn yn

(
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3
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Interchanging the integration and summation gives,
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I8 =
∞∑

n=0

cn (γ)κn y
n

n!
m∏

j=1
�

(
α j n + β j + b+1

2

)

×
1∫

0

xξ+n−1 (1 − x)2(ξ+σ)−1
(
1 − x

3

)2(ξ+n)−1 (
1 − x

4

)ξ+σ−1
dx .

Now using (3.2) and the definition of Pochhammer symbol (2.2),

I8 =
∞∑

n=0

cn� (κ + γn) yn

n!� (γ)
m∏

j=1
�

(
α j n + β j + b+1

2

)

(
2

3

)2ξ
� (ξ + n) � (ξ + σ)

� (2ξ + σ + n)
.

Using the definition of Fox-Wright function (2.3), we obtained the desired result. ��

4 Concluding Remark and Discussion

The fractional calculus and the integral formulae of the newly defined generalized
multiindex Bessel function are investigated here. Various special cases of the derived
results in the paper can be evaluate by taking suitable values of parameters involved.
For example, if we set c = −1 and b = 1 in (2.1), we immediately obtain the result
due to Choi and Agarwal [3]:

J
(α j)m ,γ,−1

(β j)m ,κ,1
[z] =

∞∑

n=0

(γ)κn
m∏

j=1
�

(
α j n + β j + 1

)
(−z)n

n! (m ∈ N) . (4.1)

For various other special caseswe refer [3, 20, 21] andwe left results for the interested
readers.
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Fractional Variational Iteration Method
for Time Fractional Fourth-Order
Diffusion-Wave Equation

Amit Prakash and Manoj Kumar

Abstract In the present article, Fractional variational iteration method (FVIM) is
used to solve numerically time-fractional diffusion wave equation of order four. By
using FVIM we obtain a sequence converging rapidly to the exact solution of the
fourth order fractional diffusion wave equation. Two test problem are presented to
prove the merit of the proposed technique. Plotted graph shows that the numerical
solution acquired by employed technique is similar to the exact solution.

Keywords Mittag-Leffler function · Fractional variational iteration method ·
Diffusion wave equation of order four · Fractional derivative in the sense of Caputo
2010 Mathematics Subject Classification 44A99 · 35Q99

1 Introduction

In few last years, popular progress has been presumed in the area of newly branch of
calculus named fractional calculus. In fractional calculus, numerous fractional dif-
ferential equations are used to mold a sort of projects as in field of ion-acoustic wave,
bio-informatics, nanotechnology, heat conduction, electromagnetic waves, diffusion
equations, chemical engineering, mechanical engineering and almost every part of
science and technology. Due to its eerie range and praxis in numerous fields, a great
consideration is taken in the numerical approach as analytic solution does not exist
always. Many researchers have taken interest in the use of modeling and control-
ling in numerous dynamical systems with the help of fractional partial differential
equations and it is also key thing to find the solution technique of these type of
models.
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Caputo fractional derivatives are defined only for differentiable functions and in
this paper, we considered u as a differentiable function. Also, we have used Caputo
fractional derivative because it has an advantage that with these derivatives, initial
conditions for fractional differential equations undertake the similar form as for the
integer order differential equations.

It is also of same importance to strut critical points which produce casual diver-
gence, branching and convergence of the numerical solutions of the given model.
In order to find the exact and numerical solution of the fractional order ordinary
and partial differential equations, numerous approaches have been employed in past
time.

In (1997)He [1–4] established anovelmethod, called,Variational iterationmethod
(VIM) to find numerical and exact solution of models generated by linear and non-
linear fractional differential equations. After this Odibat and Momani [5] and Yulita
Molliq et al. [6] employed VIM to find the numerical solution of nonlinear frac-
tional Zakharov–Kuznetsov equations. Lu [7] and Sakar et al. [8, 9] employed FVIM
and AVIM to solve numerically Fornberg–Whitham equation. Prakash et al. applied
FVIM [10–14] and HPTM [15] to find numerically solution of various nonlinear
partial differential equation of fractional order and many others by different tech-
nique [16–21]. By using the FVIM technique, numerical as well as exact solutions
can be obtained as a convergent sequence and series rapidly. We can get extremely
correct numerical results and exact solution in the form of a convergent sequence for
fractional differential equations with the help of proposed technique.

There is an epochal role of time-fractional diffusion-wave equations in the field
of mathematical physics. Agarwal [22] obtained the time-fractional diffusion wave
equation of order four with the help of standard diffusion wave equation by changing
the time dependent derivative using fractional order derivative α, 0 < α < 1 or
1 < α < 2. It can be concluded that as α changes between 0 and 2, the procedure gets
changed starting from low dispersal to standard wave process. From the past many
authors likeMainardi [23] andEl-Sayed [24] have studied thediffusionwave equation
of fractional order and its characters. These type of equations have prominent uses
in the area of mathematical physics. Fractional diffusion wave equation has been
used to define diffusion in resources with fractal geometry by Nigmatullin [25].
Fractional diffusion equation has been employed to describe phenomena of relaxation
in complex viscoelastic materials by Ginoa et al. [26]. In many models, we have to
use a space dependent fourth order derivative term. For instance, when we make a
model in beams of wave propagation during the construction of grooves on a flat
surface as grain involve fourth-order space derivative terms in its modelling. In this
article we have taken the time-fractional fourth order diffusion wave equation with
the given conditions as

Dα
t u(x, t) = β

∂4u(x, t)

∂x4
, u(0, t) = u(L , t) = ∂2u(0, t)

∂x2
= ∂2u(L , t)

∂x2
= c, t ≥ 0,

u(x, 0) = g(x), ut (x, 0) = 0, 0 < x < L
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Recently fractional diffusion wave equation of order four has been solved by
Adomian decomposition method by Dehghan et al. [27]. But fractional model of
fourth order diffusion wave equation has not been solved by FVIM. The core motive
of the present article is to apply fractional Variational iteration method to solve time-
fractional fourth order diffusionwave equation for different values of fractional order
α.

2 Preliminaries

Definition 2.1 A real valued function g(p), p > 0 is inCα, α ∈ R if there ism > α,
where m is a real number such that g(p) = pmg1(p) where g1 ∈ C[0,∞]. Clearly
Cα ⊂ Cβ if β ≤ α [28–31].

Definition 2.2 A function g(p), p > 0 is in Cm
α ,m ∈ N ∪{0} if g(m) ∈ Cα [28–31].

Definition 2.3 Fractional integral in the sense of Riemann-Liouville of orderμ > 0,
[28–31] of a g ∈ Cα, α ≥ −1 is as:

Iμg(p) = 1

Γ (μ)

p∫

0

g(τ )

(p − τ)1−μ
dτ = 1

Γ (μ + 1)

p∫

0

g(τ )(dτ)μ,

I 0g(p) = g(p).

Definition 2.4 Fractional derivative in the sense of Caputo of g, g ∈ Cm
−1,m ∈

N ∪ {0} [28–31],

Dμ
p g(p) =

{[
I m−μg(m)(p)

]
, m − 1 < μ < m,m ∈ N,

dm

dpm g(p), μ = m.

a. I α
p g(x, p) = 1

Γ (α)

p∫
0
(p − s)α−1g(x, s)ds, α, p > 0.

b. Dα
pu(x, p) = I m−α

p
∂mu(x,p)

∂pm g(p),m − 1 < α < m.

c. Iμ pγ = Γ (γ+1)
Γ (μ+γ+1) p

μ+γ .

Definition 2.5 The Mittag-Leffler function denoted by Eβ(z) with β > 0, in the
form of a series valid in domain of complex plane [22–25] is given as Eβ(z) =∑∞

n=0
zn

Γ (βn+1) , β > 0, z ∈ C.
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3 Description of Fractional Variational Iteration Method
(FVIM)

To apply the proposed technique on the time-fractional diffusion wave equation of
order four, we take the general equation as

Dα
t v(r, s, t) = β

∂4v(r, s, t)

∂r4
+ γ

∂4v(r, s, t)

∂s4
; r, s ∈ R, 0 < α ≤ 1, t ≥ 0. (1)

Using FVIM, we construct a correction functional [3] for this as

vn+1(r, s, t) = vn(r, s, t) +
t∫

0

λ

(
∂αvn(r, s, τ )

∂τα
− β

∂4ṽn(r, s, τ )

∂r4
− γ

∂4ṽn(r, s, τ )

∂s4

)
(dτ)α. (2)

Now by the variational theory λ must satisfy ∂αλ
∂τα = 0 and 1 + λ|τ=t = 0. From

these equations, we obtain λ = −1 and by using λ = −1 in (2), we get the result as

vn+1(r, s, t) = vn(r, s, t) −
t∫

0

(
∂αvn(r, s, τ )

∂τα
− β

∂4vn(r, s, τ )

∂r4
− γ

∂4vn(r, s, τ )

∂s4

)
(dτ)α. (3)

Now, we can construct a sequence of approximations vn, n ≥ 0 by evaluating λ, a
general Lagrange’s multiplier, that can be find out with the help of variational theory.
The function ṽn is a restricted variation that imply δṽn = 0. Thus we first find λ with
the help of integration and then construct succeeding iterations vn+1(x, t), n ≥ 0 and
then exact solution can be find out as v(r, s, t) = lim

n→∞ vn(r, s, t).

4 Test Examples

In present segment, we employed suggested technique on two test problems.

Example 4.1 Consider the first test problems as [23, 28]

Dα
t u(x, t) = −∂4u(x, t)

∂x4
, t > 0, u(x, 0) = e−x , 0 < α ≤ 1 (4)

Comparing Eq. (4) with Eq. (1), by FVIM, we get Lagrangian multiplier λ = −1.
So, we can assume

u0(x, t) = u(x, 0) = e−x ,

Then by using Fractional variational iteration method (FVIM), we get
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u1(x, t) = e−x
(
1 − tα

Γ (1+α)

)
,

u2(x, t) = e−x
(
1 − tα

Γ (1+α)
+ t2α

Γ (1+2α)

)
,

u3(x, t) = e−x
(
1 − tα

Γ (1+α)
+ t2α

Γ (1+2α)
− t3α

Γ (1+3α)

)
,

...

un(x, t) = e−x
[
1 − tα

Γ (α+1) + t2α

Γ (2α+1) − t3α

Γ (3α+1) · · · + (−1)n tnα

Γ (nα+1)

]
.

Then we obtain solution as

u(x, t) = lim
n→∞ un(x, t) = e−x Eα(−t),

which is the exact solution of Eq. (4), where Eα(t) is Mittag-Leffler function.

Example 4.2 We consider the second test problems as [23, 28]

Dα
t u(x, y, t) = −2

(
∂4u(x, y, t)

∂x4
+ ∂4u(x, y, t)

∂y4

)
, u(x, y, 0)

= cos x cos y,
∂(x, y, 0)

∂t
= 0, 1 < α ≤ 2. (5)

Comparing Eq. (5) with Eq. (1), by FVIM, we get Lagrangian multiplier λ = −1.
So, we can assume

u0(x, y, t) = u(x, y, 0) = cos x cos y.

Then by using Fractional variational iteration method (FVIM), we get

u1(x, y, t) = cos x cos y
(
1 − 4tα

Γ (1+α)

)
,

u2(x, y, t) = cos x cos y
(
1 − 4tα

Γ (1+α)
+ 42t2α

Γ (1+2α)

)
,

...

un(x, y, t) = cos x cos y
(
1 − 4tα

Γ (1+α)
+ 42t2α

Γ (1+2α)
− · · · + (−1)n4n tnα

Γ (1+nα)

)
,

Then, we obtain solution as

u(x, y, t) = lim
n→∞ un(x, y, t) = cos x cos yEα(−4tα),

which is the exact solution of Eq. (5), where Eα(t) is Mittag-Leffler function.
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5 Numerical Results and Discussions

Figure 1 depicts comparison between exact solution and approximate solution when
α = 1 at t = 1. Figure 2 demonstrate the comparison between exact solution and
approximate solution when α = 1 acquired with the help of proposed technique
FVIM. Figure 2a represent exact solution and Fig. 2b represent the numerical solu-
tion. It can be observed from Fig. 2 that the solution attained by FVIM is same
as exact solution. It can be observed that only the tenth order term of FVIM was
employed for finding the numerical solution. Table 1 shows that the absolute error

Fig. 1 Comparison between approximate solution and exact solution for α = 1 at t = 1 for
Example 4.1

Fig. 2 Comparison of approximate solution and exact solution for α = 1 for Example 4.1
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Table 1 Absolute error |u(x, t) − u10(x, t)| for Example 4.1

x t α = 1 α = 0.9 x t α = 1 α = 0.9

0.1 0.2 5.6 × 10−16 2.56 × 10−2 0.1 0.6 7.0 × 10−11 1.47 × 10−2

0.3 0.2 4.4 × 10−16 2.09 × 10−2 0.3 0.6 6.4 × 10−11 1.21 × 10−2

0.5 0.2 3.3 × 10−16 1.71 × 10−2 0.5 0.6 5.2 × 10−11 9.91 × 10−3

0.7 0.2 2.8 × 10−16 1.40 × 10−2 0.7 0.6 4.3 × 10−11 8.81 × 10−3

0.9 0.2 2.2 × 10−16 1.15 × 10−2 0.9 0.6 3.5 × 10−11 6.64 × 10−3

0.1 0.4 9.2 × 10−13 2.24 × 10−2 0.1 0.8 1.8 × 10−9 6.87 × 10−3

0.3 0.4 7.5 × 10−13 1.83 × 10−2 0.3 0.8 1.5 × 10−9 5.56 × 10−3

0.5 0.4 6.1 × 10−13 1.50 × 10−2 0.5 0.8 1.2 × 10−9 4.60 × 10−3

0.7 0.4 5.1 × 10−13 1.23 × 10−2 0.7 0.8 1.1 × 10−9 3.77 × 10−3

0.9 0.4 4.1 × 10−13 1.00 × 10−2 0.9 0.8 8.2 × 10−10 3.08 × 10−3

between the approximate solution and exact solution is very small for α = 0.9 and
α = 1. Figure 3 depicts comparison between numerical solution and exact solution
for α = 2 at y = 0.5, t = 1. Figure 3 demonstrate the comparison between the exact
and the numerical solution for α = 2 acquired with the help of proposed technique
FVIM. Figure 4a represent the exact solution and Fig. 4b represent the approximate
solution. It can be observed from Fig. 4 that the solution attained by FVIM is same
as the exact solution. It can be observed that only the tenth order term of FVIM was
employed for finding the numerical solution. Table 2 shows that the absolute error
between the approximate and the exact solution is very small for α = 1.7, 1.8 and
α = 1.9.

Fig. 3 Comparison between
approximate solution and
exact solution for α = 2 at
y = 0.5, t = 1 for Example
4.2
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Fig. 4 Comparison between approximate solution and exact solution for α = 2 for Example 4.2

Table 2 Absolute error |u(x, t) − u10(x, t)| for Example 4.2

x t α = 1.7 α = 1.8 α = 1.9

0 0 0 0 0

0 1 5.76 × 10−11 2.19 × 10−12 7.92 × 10−14

0 2 2.33 × 10−5 1.92 × 10−6 1.48 × 10−7

1 0 0 0 0

1 1 3.11 × 10−11 1.18 × 10−12 4.27 × 10−14

1 2 1.261 × 10−5 1.04 × 10−6 8.01 × 10−8

2 0 0 0 0

2 1 2.39 × 10−11 9.13 × 10−13 3.29 × 10−14

2 2 9.71 × 10−6 8 × 10−7 6.16 × 10−8

3 0 0 0 0

3 1 5.70 × 10−11 2.17 × 10−12 7.83 × 10−14

3 2 2.31 × 10−5 1.9 × 10−6 1.46 × 10−7

6 Conclusion

In present article, Fractional Variational iteration method (FVIM) is employed to
solve numerically time-fractional diffusion wave equation of fourth order. It can
be clearly seen that fractional variation iteration method (FVIM) is an efficient and
powerful numerical tool to find the numerical analytic solution. The advantage of this
methodover othermethods is that it can beuseddirectlywithout the use of polynomial
used in adomian method, linearization, perturbation or restrictive assumptions. So
we can conclude that FVIM is easier and more suitable than any other numerical
methods.
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Analytical Approach to Fractional
Navier–Stokes Equations by Iterative
Laplace Transform Method

Rajendra K. Bairwa and Jagdev Singh

Abstract In this paper, we have presented iterative Laplace transform scheme to
examine fractional Navier–Stokes equations in cylindrical coordinates with initial
conditions. The arbitrary ordered derivatives are described in terms of Caputo. By
utilizingonly the initial conditions, the analytical expressions are derived in the closed
form. The results achieved with the aid of the proposed technique are graphically
presented.

Keywords Laplace transform · Navier–Stokes equations · Iterative method ·
Caputo fractional derivative

1 Introduction

The fractional calculus has become a strong mechanism for finding the solutions of
many problems pertaining to control engineering, physics, signal processing, math-
ematical biology, viscoelasticity, electromagnetism, and mathematical physics and
other areas of sciences as well as technology. Several methods can be found in the
literature to derive the solution of fractional order differential equation such as ADM
[12], HAM [14], HPM [5], Homotopy perturbation transform method (HPTM) [9,
10, 19] and fractional Laplace Adomian decomposition method (FLADM) [7], LPM
[20], LHAM [21] and so on. The above mentioned techniques provide immediate
and easily seen symbolic terms of numerical approximate solutions as well as of
analytical solutions to both linear and nonlinear fractional differential equations.

In 2006, Daftardar-Gejji and Jafari introduced the iterative technique for examin-
ing numerically to non-linear functional equations [4, 6, 7]. Since then the iterative
approach is being used to find the solution of several non-linear differential equations
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of arbitrary order [1] and viewing fractional BVP [3]. Recently, Jafari et al. has made
elegant use of Laplace transform in this iterative method and it became a popular
method known as iterative Laplace transformmethod (ILTM) [8] to examine a system
of partial differential equations of fractional order, Fokker–Plank equation [18] as
well. In recent, time-fractional Schrödinger equations [15], fractional heat and wave-
like equation [16] and fractional Telegraph equations [17] are solved successfully by
the use of ILTM.

In the present study, we consider the time-fractional Navier–Stokes equation hav-
ing initial condition in cylindrical coordinate and are expressed in operator form
as

Dα
t u(r, t) = P + v

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
, u(r, o) = f (r), 0 < α ≤ 1 (1.1)

where Dα
t u(r, t) indicates the Caputo fractional derivative of order α , P = − ∂p

ρ∂z , u
indicates the velocity, ρ is the pressure, v is the kinematics viscosity, t is the time
and α is a parameter representing the order of the time–fractional derivatives. In
particular for α = 1, the fractional Navier–Stokes Eq. (1.1) reduces to the standard
Navier–Stokes equation.

The main object of this paper, we shall extend the application of Iterative Laplace
transform algorithm to derive the solution of the time-fractional Navier–Stokes equa-
tions.

2 Some Basic Definitions

In this portion, we list certain basic definitions of fractional calculus along with
elegant properties of Laplace transform.

Definition 1 The Caputo derivative of arbitrary order [2] of function u(r, t) is pre-
sented as

Dα
t u(r, t) = 1

�(m − α)

t∫
0

(t − η)m−α−1u(m)(r, η)dη, m − 1 < α ≤ m,m ∈ N ,

= Jm−α
t Dmu(r, t). (2.1)

Here Dm ≡ dm

dtm and Jα
t indicates the Riemann-Liouville integral operator of

fractional order α > 0, presented as [11]

Jα
t u(r, t) = 1

�(α)

t∫
0

(t − η)α−1u(r, η)dη, η > 0, (m − 1 < α ≤ m),m ∈ N .

(2.2)
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Definition 2 The Laplace transform of f (t) , t > 0 is expressed as [11, 13]

L[ f (t)] = F(t) =
∞∫
0

e−st f (t)dt. (2.3)

Definition 3 The Laplace transform of Dα
t u(r, t) is presented in following manner

[11, 13]

L[Dα
t u (r, t)] = L[u(r, t)] −

m−1∑
k=o

uk(r, 0) sα−k−1, m − 1 < α ≤ m,m ∈ N , (2.4)

3 Basic Idea of ILTM

To explain the basic idea of iterative Laplace transform approach [8], we take the
subsequent fractional non-linear partial differential equation having the prescribed
initial conditions can be expressed in the form of an operator as

Dα
t u(r, t) + R u(r, t) + N u(r, t) = g(r, t), m − 1 < α ≤ m, m ∈ N , (3.1)

u(k)(r, 0) = hk(r), k = 0, 1, 2, . . . ,m − 1, (3.2)

where Dα
t u(r, t) is the Caputo derivative of arbitrary order α, m − 1 < α ≤ m,

presented by Eq. (2.1), R is a linear operator and may contain rest of fractional
derivatives of order less than α, N indicates a non-linear operator which may contain
other derivatives of fractional order less than α and g(r, t) is a known analytic
function.

Applying the Laplace transform on Eq. (3.1), we have

L [Dα
t u(r, t)] + L [R u (r, t) + Nu(r, t)] = L[g(r, t)]. (3.3)

Making use of the differentiation property of the Laplace transform, we find

L [u(r, t)] = 1

sα

m−1∑
k=0

sα−1−kuk(r, 0) + 1

sα
L [g(r, t)] − 1

sα
L [R u(r, t) + N u(r, t)].

(3.4)

On taking inverse Laplace transform on Eq. (3.4), we have
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u(r, t) = L−1

[
1

sα

(
m−1∑
k=0

sα−1−kuk(r, 0) + L[g(r, t)]
)]

− L−1

[
1

sα
L[Ru(r, t) + Nu(r, t)]

]
. (3.5)

Now, applying the iterative method,

u(r, t) =
∞∑
i=0

ui (r, t). (3.6)

As R is a linear operator, so we have

R

( ∞∑
i=0

ui (r, t)

)
=

∞∑
i=0

R[ui (r, t)], (3.7)

whereas the non-linear operator N is splitted as

N

( ∞∑
i=0

ui (r, t)

)
= N [u0(r, t)]

+
∞∑
i=1

{
N

(
i∑

k=0

uk(r, t)

)
− N

(
i−1∑
k=0

uk(r, t)

)}
. (3.8)

Putting the results given by Eqs. from (3.6) to (3.8) in the Eq. (3.5), we obtain

∞∑
i=0

ui (r, t) = L−1

[
1

sα

(
m−1∑
k=0

sα−1−kuk(r, 0) + L [g(r, t)]
)]

− L−1

[
1

sα
L

[ ∞∑
i=0

R[ui (r, t)] + N [u0(r, t)]

+
∞∑
i=1

{
N

(
i∑

k=0

uk(r, t)

)
− N

(
i−1∑
k=0

uk(r, t)

)}]]
. (3.9)

We have defined the recurrence formulae as

u0(r, t) = L−1

[
1

sα

(
m−1∑
k=0

sα−1−kuk(r, 0) + L (g(r, t))

)]
(3.10)

u1(r, t) = −L−1

[
1

sα
L [R (u0(r, t)) + N (u0(r, t))]

]
, (3.11)
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um+1(r, t) = − L−1

[
1

sα
L

[
R (um(r, t)) −

{
N

(
m∑

k=0

uk(r, t)

)

− N

(
m−1∑
k=0

uk(r, t)

)}]]
,m ≥ 1 (3.12)

Therefore the m-term approximate solution of Eqs. (3.1) and (3.2) in series form
is given by

u(r, t) ∼= u0(r, t) + u1(r, t) + u2(r, t)+, . . . ,+um(r, t), m = 1, 2, . . . . (3.13)

4 Solutions of the Time-Fractional Navier–Stokes
Equations

In this part, we have made an attempt to solve the time-fractional Navier–Stokes
equations by the application of iterative Laplace transform scheme.

Example 1 Consider the subsequent Navier–Stokes equation involving time–frac-
tional derivative written by

Dα
t u = P + ∂2u

∂r2
+ 1

r

∂u

∂r
, 0 < α ≤ 1, (4.1)

Surrounding the initial condition

u(r, t) = 1 − r2 (4.2)

Taking the Laplace transform of the Eq. (4.1), and making use of the result given
by (4.2), we get,

L [u(r, t)] = 1

s

(
1 − r2

) + P

sα+1
+ 1

sα
L

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
. (4.4)

Applying inverse Laplace transform to the Eq. (4.4), we arrive at the subsequent
result

u(r, t) = (1 − r2) + P
tα

�(α + 1)
+ L−1

[
1

sα
L

(
∂2u

∂r2
+ 1

r

∂u

∂r

)]
. (4.5)

Now, making use of the iterative method, substituting the results of the Eqs. from
(3.6) to (3.8) in the Eq. (4.5) and making use of the results given by the Eqs. (3.10)
to (3.12), we determine the components of the ILTM solution as follows
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u0(r, t) = (1 − r2) + P
tα

�(α + 1)
, (4.6)

u1(r, t) = L−1

[
1

sα
L

[
∂2u0
∂r2

+ 1

r

∂u0
∂r

]]

= − 4tα

�(α + 1)
, (4.7)

un+1(r, t) = L−1

[
1

sα
L

(
∂2un
∂r2

+ 1

r

∂un
∂r

)]
= 0. ∀ n ≥ 1. (4.8)

The other components may be obtained accordingly.
Thus, the closed form solution in the series form is can be obtained as

u(r, t) = u0(r, t) + u1(r, t) + u2(r, t) + u3(r, t)+, . . . ,

= (
1 − r2

) + (P − 4)
tα

�(α + 1)
. (4.9)

Special Cases

(i) The result in (4.9) was derived by Momani and Odibat [12] with the aid of the
different scheme that is ADM.

(ii) The result in (4.9) deduced by Ragab et al. [14] by the application of HAM.
(iii) A result in (4.9) has an analogy with the result of Ganji et al. [5] has been

obtained by using HPM.
(iv) For α = 1 , the result in (4.9) reduces to the following simple form

u(r, t) = (
1 − r2

) + (P − 4)t. (4.10)

This result was obtained earlier by Kumar et al. [10] by using the method of
HPTM.

Example 2 Next, consider the subsequent Navier–Stokes equation concerning to
time–fractional derivative given by

Dα
t u = ∂2u

∂r2
+ 1

r

∂u

∂r
, 0 < α ≤ 1, (4.11)

with the initial condition

u(r, 0) = r , (4.12)

Taking the Laplace transform of the Eq. (4.11), and making use of the result given
by (4.12), we have,
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L [u(r, t)] = r

s
+ 1

sα
L

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
. (4.14)

Applying inverse Laplace transform to the Eq. (4.14), we get

u(r, t) = r + L−1

[
1

sα
L

(
∂2u

∂r2
+ 1

r

∂u

∂r

)]
. (4.15)

Now, making use of the iterative method, substituting the results of the Eqs. from
(3.6) to (3.8) in the Eq. (4.15) and making use of the results given by the Eqs. (3.10)
to (3.12), we determine the components of the ILTM solution as follows

u0(r, t) = r , (4.16)

u1(r, t) = L−1

[
1

sα
L

(
∂2u0
∂r2

+ 1

r

∂u0
∂r

)]

= 1

r

tα

�(α + 1)
, (4.17)

u2(r, t) = L−1

[
1

sα
L

(
∂2u1
∂r2

+ 1

r

∂u1
∂r

)]

= 1

r3
t2α

�(2α + 1)
, (4.18)

u3(r, t) = L−1

[
1

sα
L

(
∂2u2
∂r2

+ 1

r

∂u2
∂r

)]

= 9

r5
t3α

�(3α + 1)
, (4.19)

and

un(r, t) = L−1

[
1

sα
L

(
∂2un−1

∂r2
+ 1

r

∂un−1

∂r

)]

= 12 × 32 · · · (2n − 1)2

r2n−1

tnα

�(nα + 1)
, (4.20)

and so on. The other components may be obtained accordingly.
Thus, the closed form solution in the series form is can be obtained as

u(r, t) = u0(r, t) + u1(r, t) + u2(r, t) + u3(r, t)+, . . . ,

= r +
∞∑
n=1

12 × 32 · · · (2n − 1)2

r2n−1

tnα

�(nα + 1)
. (4.21)
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Special Cases

(i) The result in (4.21)was obtained byRagab et al. [14] using the differentmethod
known as HAM.

(ii) The result in (4.21) was given by Ganji et al. [5] using the different technique
known as HPM technique.

(iii) The result in (4.21) deduced by Momani and Odibat [12] by the application of
ADM.

(iv) For α = 1 , the result in (4.21) reduces to the following simple form

u(r, t) = r +
∞∑
n=1

12 × 32 · · · (2n − 1)2

r2n−1

tn

n! . (4.22)

This result was obtained earlier by Kumar et al. [10] by using the method of
HTPM.

5 Numerical Results and Discussions

In this part, we present some numerical results for Navier–Stokes equation con-
cerning to time–fractional derivative. Figures 1 and 2 present the ILTM solution of
Navier–Stokes equation concerning to time–fractional derivative for α = 1 and 2
respectively. Figure 3 presents the ILTM solution of Navier–Stokes equation con-
cerning to time–fractional derivative with respect to r for distinct values of α.

Fig. 1 The surface of
solution u(r, t), when
α = 1 , P = 1 for Eq. (4.9)
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Fig. 2 The surface of solution u(r, t), when α = 0.5 , P = 1 for Eq. (4.9)

Fig. 3 The nature of the solution u(r, t) w.r.t. r, when P = 1 for diverse values of α for Eq. (4.9)
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Biological Model of Dengue Spread
with Non-Markovian Properties

Sonal Jain and Abdon Atangana

Abstract A fatal and infectious called Dengue found in the tropical zone of the
world is a mosquito-borne and caused by four viruses namely Den 1-Den 4. The
transmission is achieved from one person to another via a bite of female adult Aedes
mosquitoes. The dynamic of spread does not really follow the Markovian process
therefore does have memory effect, thus can well be described by using nonlo-
cal differential operators with non-singular and non-local kernel as these operators
have a crossover from exponential decay law to power law as waiting time distri-
bution. In this chapter, we reverted the classical model to fractional model by using
the concept of recently established fractional differential operators known as the
Caputo-Fabrizio derivative. To include into mathematical system the memory and
the crossover effects. The new model was subjected to analysis of existence and
uniqueness of the system solution to insure the well poseness of the modified sys-
tem. Due to the complexity of the new system, a newly introduced numerical scheme
was used to solve the system and some numerical simulations where performed to
see the effect of the Mittag-Leffler law that brings the crossover effect.

Keywords Caputo-Fabrizio derivative · Dengue model · Fractional differential
equations · Existence and uniqueness · Fixed point theorem

1 Introduction

Dengue disease is a common arboviral disease in tropical regions of the world. It is
transferral to humans by the bite of Aedes mosquitoes. There are four types of virus
which is denoted by one, two, three, and four. The bites of the Aedes mosquitoes
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is the reason of the viruses that transferral to humans. If a person infected once in
the life by these one of the four serotypes of viruses will never get infected by that
serotype again but loses immunity to other three stereotypes of the viruses [8]. There
are lots of Bio-mathematical models have been proposed to recognize the transferral
dynamics of these type of infectious diseases. In recent years, modeling has become a
valuable tool in the analysis of dengue disease transferral dynamics and to determine
the factors that influence the spread of disease to support control measures. Many
researchers have proposed [5–8, 13, 14, 16, 18] epidemic model [10] to study the
transferral dynamics of dengue disease.

There is no specific medicine to cure dengue disease. Awareness programs can
be helpful in reducing the prevalence of the disease. Different Bio-mathematical
models have been proposed to study the impact of awareness in controlling dengue
and these type diseases. Prevention of mosquitoes bites is one of the ways to prevent
dengue disease. The mosquitoes bite humans during day and night when lights are
on. So, to get rid of mosquitoes bite, people can use mosquito repellents and nets.
If infected hosts feel they have symptoms of the disease and approach the doctor
in time for the supportive treatment, they can recover fast. This type of awareness
can help controlling the disease. Another way of controlling dengue is destroying
larval breeding sites of mosquitoes and killing them. Spray of insecticides may be
applied to control larvae or adult mosquitoes which can transmit dengue viruses. This
type of biological model have two properties as we observed Markovian and Non-
Markovian. In dengue spread model does not really follow the Markovian process
therefore does have memory effect, thus can well be described using the concept
of nonlocal differential operators with non local and non singular kernel as these
operators have a crossover from exponential decay law to power law as waiting time
distribution.

Fc is applied in various directions ofBio-mathematics, physics, signal-processing,
fluid-mechanics, visco-elasticity, finance, electro-chemistry and inmanymore. In the
branch of fc, we study fractional integral and fractional derivative as an important
aspects. Recently, many researcher and scientists have studied various type of issues
in this special branch [1–3, 9]. The Caputo-Fabrizo derivative brought new weapons
into applied mathematics to model complex real-world problems more accurately.
Caputo-Fabrizio derivative is give the result of non-Markovian process. In the RL
derivative the kernal inside it is gives the result for power law but Caputo-Fabrizio
shows the result for exponential decay.

The main objective of this chapter is to discuss fractional Caputo-Fabrizio deriva-
tive for the mathematical system to finding the crossover effects and memory effect
Also by using fixed point theorem we are finding the details of the uniqueness and
exactness and of the solution. The development of this article is as follows. In Sect. 2,
we discuss the Caputo-Fabrizio and AB derivative. In Sect. 3, the mathematical por-
tion of fractional dengue spread model and also by applying CF derivative we find
the approximate solution. In Sect. 4, by using fixed point theorem, we proved the
uniqueness and existence of system of solutions in Sect. 6, Numerical Solution are
discuss and in the last Sect. 7 we presented concluding remarks.
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2 Preliminaries

Some definitions and properties of the fractional derivative are presented here.

Definition 2.1 Let f be a function not necessarily differentiable, and κ be a real
number such that 0 < κ ≤ 1, then the Riemann-Liouville derivative with κ order
with power law is given as [15]

RL Dκ
t [ f (t)] = 1

�(1 − κ)

d

dt

t∫

0

(t − y)−κ f (y)dy. (2.1)

Definition 2.2 Let f ∈ H 1(a, b), b > a, κ ∈ [0, 1] then the new Caputo derivative
of fractional order is given by:

Dκ
t ( f (t)) = M(κ)

(1 − κ)

t∫

a

f
′
(x) exp

[
−κ

t − x

1 − κ

]
dx . (2.2)

where M(κ) is a normalization function such that M(0) = M(1) = 1 [4]. But, if the
function does not belong to H1(a, b) then, the derivative can be reformulated as

Dκ
t (f (t)) = M(κ)

(1 − κ)

t∫

a

( f (t) − f (x)) exp

[
−κ

t − x

1 − κ

]
dx . (2.3)

Remark 2.1 The authors remarked that, if σ = 1−κ
κ

∈ [0,∞), κ = 1
1+κ

∈ [0, 1],
then Eq. (2.1) assumes the form

Dκ
t ( f (t)) = N (σ )

(σ )

t∫

a

f
′
(x) exp

[
− t − x

σ

]
dx, N (0) = N (∞) = 1 (2.4)

In Addition,

lim
σ→0

1

σ
exp

[
− t − x

σ

]
= δ(x − t) (2.5)

Now after the introduction of a new derivative, the associate anti-derivative becomes
important, the associated integral of the new Caputo derivative with fractional order
was proposed by Losada and Nieto [11].

Definition 2.3 [11] Let 0 < κ < 1. The fractional integral of order κ of a function
f is defined by
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I tκ( f (t)) = 2(1 − κ)

(2 − κ)M(κ)
f (t) + 2κ

(2 − κ)M(κ)

t∫

0

f (s)ds, t ≥ 0. (2.6)

Remark 2.2 Note that, according to abovedefinition, the fractional integral ofCaputo
type of function of order 0 < κ < 1 is an average between function f and its integral
of order one. This therefore imposes

2(1 − κ)

(2 − κ)M(κ)
f (t) + 2κ

(2 − κ)M(κ)
= 1 (2.7)

The above expression yields an explicit formula for

M(κ) = 2

2 − κ
, 0 ≤ κ ≤ 1 (2.8)

Because of the above, Losada and Nieto proposed that the new Caputo derivative of
order 0 < κ < 1 can be reformulated as

Dκ
t ( f (t)) = 1

1 − κ

t∫

a

f
′
(x) exp

[
−κ

t − x

1 − κ

]
dx . (2.9)

3 Model Description

In the given model, total host human population, Nh . We divided this human pop-
ulation into four parts: Rh(recovered), Ih(infectious), Eh(exposed), Sh(susceptible)
and total vector (mosquito) population, also we divide Nv into three parts: Iv (infec-
tious), Ev (exposed), Sv (susceptible). We assume that the fraction u1 of susceptible
hosts use mosquito repellents to avoid mosquitoes bite. So, the fraction (1 − u1) of
susceptible hosts interact with infectious mosquitoes. The fraction u2 of infectious
hosts seek for the timely supportive treatment and recover fast by the rate rh(r > 1).
The fraction r1u2 (r1 is the proportionality constant) of infectious hosts use mosquito
repellents to avoid mosquitoes bite. u3 is a control variable that represents the erad-
ication effort of insecticide spraying. That follows that morality rate of mosquito
population increases at a rate r2u3 (r2 is the proportionality constant) and also it is
assume that recruitment rate of this is reduced by a factor of 1 − u3.

In this section, we describes the geometry of dengue disease together with control
measures. The system of differential equations which shows the present SEIR-SEI
vector host model is given in [13].
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dSh
dt

= μh Nh − (1 − u1)
bβh

Nh
Sh Iν − μh Sh

dEh

dt
= (1 − u1)

bβh

Nh
Sh Iν − (νh + μh)Eh

d Ih
dt

= νh Eh − [ru2γ h + (1 − u2)γ h + μh]Ih
d Rh

dt
= [ru2γh + (1 − u2)γh]Ih − μh Rh

dSv

dt
= (1 − u3)πν − (1 − r1u2)

bβhν

Nh
Sν Ih − (r2u3 + μhν)Sν

dEν

dt
= (1 − r1u2)

bβhν

Nh
Sν Ih − (r2u3 + νν + μhν)Eν

d Iν
dt

= ννEν − (r2u3 + μν)Iν

(3.1)

The parameters of the model are given in the following table.

Symbols Description
μh Death rate of host population
νh Host’s incubation rate
γh Recovery rate of host population
βh Transmission probability from vector to host
πν Vector population recruitment rate
μν Vector population death rate
νν Vector’s incubation rate
βν Host to vector the transmission probability
b Rate (biting) of vector

Total host population, Nh = Rh + Ih + Eh + Sh , total vector population, Nν =
Iν + Eν + Sν .

dNh

dt
= 0 and

dNν

dt
= (1 − u3)πν − (r2u3 + μν)Nν .

So, Nh remains constant and Nν approaches the equilibrium (1 − u3)πν(r2u3 +
μνν) as t → ∞. Introducing the proportions

sν = Sν

(1 − u3)πν/(r2u3 + μν)
, sh = Sh

Nh
, eh = Eh

Nh
, ih = Ih

Nh
, rh = Rh

Nh
,

eν = Eν

(1 − u3)πνν/(r2u3 + μνν)
, iν = Iν

(1 − u3)πν/(r2u3 + μνν)

Since sν = 1 − eν − iν and rh = 1 − sh − eh − ih the system of Eq. (3.1) is the
equivalent written by five dimensional non-linear system of ODEs:
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dsh
dt

= μh(1 − sh) − αshiν

deh
dt

= αshiν − βeh

dih
dt

= νheh − γ ih

deν

dt
= δsν ih − (ε + νν)eν

diν
dt

= ννeν − εiν

(3.2)

Here,

α = bβhπν(1 − u1)(1 − u3)

Nh(r2u3 + μν)
, β = νh + μh, γ = ru2γh + (1 − u2)γh + μh,

δ = (1 − r1u2)bβν, ε = r2u3 + μν.

Due to Markovian process, this system is exponentially stable with no memory.
Thus, to include the memory effect into this bio-mathematical model, we intro-
duced Caputo-Fabrizio arbitrarily ordered derivative to moderate this system by non
Markovian process as given by

CF
0 Dκ

t sh = μh(1 − sh) − αshiν
CF
0 Dκ

t eh = αshiν − βeh
CF
0 Dκ

t ih = νheh − γ ih
CF
0 Dκ

t eν = δsν ih − (ε + νν)eν

CF
0 Dκ

t iν = ννeν − εiν

(3.3)

These come with the initial conditions

iν(0) = δ5, eν(0) = δ4, ih(0) = δ3, eh(0) = δ2, sh(0) = δ1. (3.4)

4 Uniqueness and Existence of a System of Solutions
of Dengue Models with Non-Markovian Properties

In this section investigate numerical result of fractionalmodel based onCFderivative.
We discuss the uniqueness and existence of the solutions by fixed point theorem.
For this we apply the fractional integral operator due to Nieto and Losada [11] on
Eq. (3.3), to examine the existence of the system of solutions. We obtain
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sh(t) − sh(0) = CF
0 I κ

t {μh(1 − sh) − αshiν}
eh(t) − eh(0) = CF

0 I κ
t {αshiν − βeh}

ih(t) − ih(0) = CF
0 I κ

t {νheh − γ ih}
eν(t) − eν(0) = CF

0 I κ
t {δsν ih − (ε + νν)eν}

iν(t) − iν(0) = CF
0 I κ

t {ννeν − εiν}

(4.1)

By using the equation discussed by Nieto and Losada [11], we have

iν(t) − iν(0) = 2κ

(2 − κ)M(κ)

t∫

0

{νν(y)eν(y) − εiν(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{νν(t)eν(t) − εiν(t)}

eν(t) − eν(0) = 2κ

(2 − κ)M(κ)

t∫

0

{δsν(y)ih(y) − (ε + νν(y))eν(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{δsν(t)ih(t) − (ε + νν(t))eν(t)}

ih(t) − ih(0) = + 2κ

(2 − κ)M(κ)

t∫

0

{νh(y)eh(y) − γ ih(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{νh(t)eh(t) − γ ih(t)}

eh(t) − eh(0) = 2κ

(2 − κ)M(κ)

t∫

0

{αsh(y)iν(y) − βeh(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{αsh(t)iν(t) − βeh(t)}

sh(t) − sh(0) = 2κ

(2 − κ)M(κ)

t∫

0

{μh(1 − sh(y)) − αsh(y)iν(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{μh(1 − sh(t)) − αsh(t)iν(t)}

(4.2)

So we can write for clarity

Z1(t, sh) = μh(1 − sh(t)) − αsh(t)iν(t),

Z2(t, eh) = μh(1 − sh(y)) − αsh(y)iν(y)

Z3(t, ih) = νh(t)eh(t) − γ ih(t)
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Z4(t, eν) = δsν(t)ih(t) − (ε + νν(t))eν(t)

Z5(t, iν) = νν(t)eν(t) − εiν(t) (4.3)

Theorem 4.1 If the following inequality holds then The kernels Z1, Z2, Z3, Z4 and
Z5 satisfy the Lipschitz condition and contraction.

0 < a1 + βb1 ≤ 1.

Proof Starting with the kernel Z1. Let two function is sh1 and sh2 then we get the
following:

‖Z1(t, sh) − Z1(t, sh1)‖ = ‖ − μh
{
sh(t) − sh1(t)

} − α
{
sh(t) − sh1(t)

}
iν(t)‖.

(4.4)
Now using the triangular inequality (4.4), we have

‖Z1(t, sh) − Z1(t, sh1)‖ ≤ ‖α {
sh(t) − sh1(t)

}
iν(t)‖ + ‖μh

{
sh(t) − sh1(t)

} ‖
≤ ‖sh(t) − sh1(t)‖ {a1 + b1‖iν(t)‖}
≤ {a1 + b1β} ‖sh(t) − sh1(t)‖ ≤ γ1‖sh(t) − sh1(t)‖

(4.5)
Taking γ1 = a1 + βb1 here the β = iν(t) are bounded functions, then we have

‖Z5(t, iν) − Z1(t, iν1)‖ = γ5‖iν(t) − iν1(t)‖ (4.6)

Hence, the Lipschitz condition is satisfied for Z1, and if additionally 0 < (a1 +
βb1 ≤ 1), this condition is satisfy then it gives us a contraction for Z1.
Similarly all the cases II, II, III and IV satisfy the Lipschitz condition as follows:

‖Z4(t, eν) − Z1(t, eν1)‖ = γ4‖eν(t) − eν1(t)‖,
‖Z3(t, ih) − Z1(t, ih1)‖ = γ3‖ih(t) − ih1(t)‖,
‖Z2(t, eh) − Z1(t, eh1)‖ = γ2‖eh(t) − eh1(t)‖,
‖Z1(t, sh) − Z1(t, sh1)‖ = γ1‖sh(t) − sh1(t)‖.

(4.7)

when we consider the kernels, the Eq. (4.2) becomes

iν(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z5(y, iν)) dy + iν(0) + 2(1 − κ)

(2 − κ)M(κ)
Z5(t, iν)

eν(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z4(y, eν)) dy + eν(0) + 2(1 − κ)

(2 − κ)M(κ)
Z4(t, eν),
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ih(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z3(y, ih)) dy + ih(0) + 2(1 − κ)

(2 − κ)M(κ)
Z3(t, ih),

eh(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z2(y, eh)) dy + eh(0) + 2(1 − κ)

(2 − κ)M(κ)
Z2(t, eh),

sh(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z1(y, sh)) dy + sh(0) + 2(1 − κ)

(2 − κ)M(κ)
Z1(t, sh). (4.8)

Now, presenting the following recursive formula:

iνn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z5(y, iνn−1)

)
dy + 2(1 − κ)

(2 − κ)M(κ)
Z5(t, iνn−1)

eνn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z4(y, eνn−1)

)
dy,+ 2(1 − κ)

(2 − κ)M(κ)
Z4(t, eνn−1)

ihn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z3(y, ihn−1)

)
dy + 2(1 − κ)

(2 − κ)M(κ)
Z3(t, ihn−1),

ehn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z2(y, ehn−1)

)
dy + 2(1 − κ)

(2 − κ)M(κ)
Z2(t, ehn−1),

shn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z1(y, shn−1)

)
dy + 2(1 − κ)

(2 − κ)M(κ)
Z1(t, shn−1),

(4.9)

and the initial conditions are gives as below:

iν0(t) = iν(0), eν0(t) = eν(0), ih0(t) = ih(0), eh0(t) = eh(0), sh0(t) = sh(0).
(4.10)

Now, difference between the successive terms are presented as follow:

ςn(t) = iνn (t) − iνn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z5(y, iνn−1) − Z5(y, iνn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z5(t, iνn−1) − Z5(t, iνn−2)

)

χn(t) = eνn (t) − eνn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z4(y, eνn−1) − Z4(y, eνn−2)

)
dy
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+ 2(1 − κ)

(2 − κ)M(κ)

(
Z4(t, eνn−1) − Z4(t, eνn−2)

)
,

ξn(t) = ihn (t) − ihn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z3(y, ihn−1) − Z3(y, ihn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z3(t, ihn−1) − Z3(t, ihn−2)

)
,

ψn(t) = ehn (t) − ehn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z2(y, ehn−1) − Z2(y, ehn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z2(t, ehn−1) − Z2(t, ehn−2)

)

φn(t) = shn (t) − shn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z1(y, shn−1) − Z1(y, shn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z1(t, shn−1) − Z1(t, shn−2)

)
(4.11)

Noticing that

shn (t) =
n∑

i=0

φi (t),

ehn (t) =
n∑

i=0

ψi (t),

ihn (t) =
n∑

i=0

ξi (t),

eνn (t) =
n∑

i=0

χi (t),

iνn (t) =
n∑

i=0

ςn(t).

(4.12)

Step by step we get

‖φn(t)‖ = ‖shn (t) − shn−1(t)‖

=
∥∥∥∥∥∥

2κ

(2 − κ)M(κ)

t∫

0

(
Z1(y, shn−1) − Z1(y, shn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z1(t, shn−1) − Z1(t, shn−2)

)∥∥∥∥ (4.13)
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Employing the triangular inequality, Eq. (4.13) reduces to

‖shn (t) − shn−1(t)‖ ≤ 2κ

(2 − κ)M(κ)

∥∥∥∥∥∥
t∫

0

(
Z1(y, shn−1) − Z1(y, shn−2)

)
dy

∥∥∥∥∥∥
+ 2(1 − κ)

(2 − κ)M(κ)

∥∥(
Z1(t, shn−1) − Z1(t, shn−2)

)∥∥ .

(4.14)

The Lipschitz condition is satisfy with the kernel, we have

‖shn (t) − shn−1(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ1

t∫

0

∥∥shn−1 − shn−2dy
∥∥

+ 2(1 − κ)

(2 − κ)M(κ)
γ1

∥∥shn−1 − shn−2

∥∥ ,

(4.15)

then we get

‖φn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ1

t∫

0

‖φn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ1 ‖φn−1(t)‖ .

(4.16)
Similarly, the following results are obtained by us:

‖ςn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ5

t∫

0

‖ςn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ5 ‖ςn−1(t)‖ ,

‖χn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ4

t∫

0

‖χn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ4 ‖χn−1(t)‖ ,

‖ξn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ3

t∫

0

‖ξn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ3 ‖ξn−1(t)‖ ,

‖ψn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ2

t∫

0

‖ψn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ2 ‖ψn−1(t)‖ .

(4.17)
Now we are presenting the subsequent theorem by consideration of the above
results, 	

Theorem 4.2 The fractional dengue Models (3.3) with Non-Markovian Properties
has a system of solutions under the conditions that we can find t0 such that



200 S. Jain and A. Atangana

2κ

(2 − κ)M(κ)
γ1t0 + 2(1 − κ)

(2 − κ)M(κ)
γ1 ≤ 1

Proof Here first we considered that the functions iν(t), eν(t), ih(t), eh(t), sh(t) are
bounded and Also, we prove that Lipschitz condition is satisfy with the kernels and
hence on consideration of the results of Eqs. (4.16) and (4.17) and by employing the
recursive method, we derive the relation as follows:

‖φn(t)‖ ≤ ‖sh(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ1

)
+

(
2κ

(2 − κ)M(κ)
γ1t

)]n

,

‖ψn(t)‖ ≤ ‖eh(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ2

)
+

(
2κ

(2 − κ)M(κ)
γ2t

)]n

,

‖ξn(t)‖ ≤ ‖ih(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ3

)
+

(
2κ

(2 − κ)M(κ)
γ3t

)]n

,

‖χn(t)‖ ≤ ‖eν(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ4

)
+

(
2κ

(2 − κ)M(κ)
γ4t

)]n

,

‖ςn(t)‖ ≤ ‖iν(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ5

)
+

(
2κ

(2 − κ)M(κ)
γ5t

)]n

.

(4.18)

Therefore, the system of functions (4.12) is smooth and exists. However, to show
that the above functions are the system of solutions of the given system of Eq. (3.3),
we assume that

iν(t) − iν(0) = iν(t) − Fνn (t)

eν(t) − eν(0) = eνn (t) − Eνn (t),

ih(t) − ih(0) = ihn (t) − Dhn (t),

eh(t) − eh(0) = ehn (t) − Chn (t),

sh(t) − sh(0) = shn (t) − Bhn (t).

(4.19)

So, we have

∥∥Bhn (t)
∥∥ =

∥∥∥∥ 2(1 − κ)

(2 − κ)M(κ)

(
Z(t, sh) − Z(t, shn−1)

)

+ 2κ

(2 − κ)M(κ)

t∫

0

(
Z(y, sh) − Z(y, shn−1)

)
dy

∥∥∥∥∥∥
≤ 2(1 − κ)

(2 − κ)M(κ)

∥∥(
Z(t, sh) − Z(t, shn−1)

)∥∥

+ 2κ

(2 − κ)M(κ)

t∫

0

∥∥(
Z(y, sh) − Z(y, shn−1)

)∥∥ dy

≤ 2(1 − κ)

(2 − κ)M(κ)
γ1

∥∥sh − shn−1

∥∥
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+ 2κ

(2 − κ)M(κ)

t∫

0

γ1
∥∥sh − shn−1

∥∥ t. (4.20)

On using this process recursively, it yields

∥∥Bhn (t)
∥∥ ≤

(
2(1 − κ)

(2 − κ)M(κ)
+ 2κ

(2 − κ)M(κ)
t

)n+1

γ n+1
1 α. (4.21)

On taking the limit on Eq. (4.21) as n → ∞, we get

∥∥Bhn (t)
∥∥ → 0.

Similarly, we get∥∥Fνn (t) → 0
∥∥, ∥∥Eνn (t) → 0

∥∥, ∥∥Dhn (t) → 0
∥∥ , and

∥∥Chn (t)
∥∥ → 0.

Hence existence is verified. 	

Now, On proving the uniqueness of a system of solutions of Eq. (3.3)
Let there exist another system of solutions of (3.3) sh1(t), eh1(t), ih1(t), eν1(t) and
iν1(t) then

sh(t) − sh1(t) = 2(1 − κ)

(2 − κ)M(κ)

(
Z1(t, sh) − Z1(t, sh1)

)

+ 2κ

(2 − κ)M(κ)

t∫

0

(
Z1(y, sh) − Z1(y, sh1)

)
dy.

(4.22)

On Eq. (4.22), if we applying norm then we get,

∥∥sh(t) − sh1(t)
∥∥ ≤ 2(1 − κ)

(2 − κ)M(κ)

∥∥(
Z1(t, sh) − Z1(t, sh1)

)∥∥

+ 2κ

(2 − κ)M(κ)

t∫

0

∥∥(
Z1(y, sh) − Z1(y, sh1)

)∥∥ dy.
(4.23)

From employing the Lipschitz conditions of the kernel, we have

∥∥sh(t) − sh1(t)
∥∥ ≤ 2(1 − κ)

(2 − κ)M(κ)
γ1

∥∥sh − sh1
∥∥ + 2κ

(2 − κ)M(κ)
γ1t

∥∥(
sh − sh1

)∥∥ .

(4.24)
It gives

∥∥sh(t) − sh1(t)
∥∥

(
1 − 2(1 − κ)

(2 − κ)M(κ)
γ1 − 2κ

(2 − κ)M(κ)
γ1t

)
≤ 0. (4.25)
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Theorem 4.3 The systemofEq. (3.3)has aunique systemof solutions if the following
condition holds:

∥∥sh(t) − sh1(t)
∥∥

(
1 − 2(1 − κ)

(2 − κ)M(κ)
γ1 − 2κ

(2 − κ)M(κ)
γ1t

)
≥ 0. (4.26)

Proof If the condition holds (4.26), then

∥∥sh(t) − sh1(t)
∥∥

(
1 − 2(1 − κ)

(2 − κ)M(κ)
γ1 − 2κ

(2 − κ)M(κ)
γ1t

)
≤ 0, (4.27)

then we have ∥∥sh(t) − sh1(t)
∥∥ = 0.

Then we get
sh(t) = sh1(t) (4.28)

Similarly, we have
iν(t) = iν1(t),

eν(t) = eν1(t),

ih(t) = ih1(t),

eh1(t) = eh1(t).

(4.29)

Therefore, this verified the uniqueness of the system of solutions of Eq. (3.3). 	


5 Numerical Solution

In this section, we construct a numerical scheme for fractional model based on the
CF derivative. On applying this scheme we first consider the following non-linear
fractional ODE: {

CF
0 Dκ

t u(t) = f (t, u(t))

u(0) = u0
(5.1)

On applying the fundamental theorem of fc The above eq can be converted to a
fractional integral equation:

u(t) − u(0) = 2(1 − κ)

(2 − κ)M(κ)
f (t, u(t)) + 2κ

(2 − κ)M(κ)

t∫

0

f (τ, u(τ ))dτ, (5.2)

At a given point tn+1, n = 0, 1, 2, . . . we reformulated the above equation as
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u(tn+1) − u(t0) = 2(1 − κ)

(2 − κ)M(κ)
[ f (tn+1) − f (tn)] + 2κ

(2 − κ)M(κ)

tn+1∫

tn

f (τ, u(τ ))dτ

(5.3)

The second step is approximation of our numerical scheme of the function
f (t, u(t)). Thus we approximate f (t, u(t)) by using the well-known Lagrange inter-
polation polynomial to obtain following result for the interval [tn, tn+1],

P(τ )(≈ f (τ, u(τ ))) =
{

(τ − tn−1)

(tn − tn−1)

}
f (tn, un) +

{
(τ − tn)

(tn−1 − tn)

}
f (tn−1, un−1)

(5.4)

P(τ )(≈ f (τ, u(τ ))) =
{

(τ − tn−1)

(tn − tn−1)

}
fn +

{
(τ − tn)

(tn−1 − tn)

}
fn−1 (5.5)

The above approximation can included in Eq. (5.3) to produce

u(tn+1) − u(t0) = 2(1 − κ)

(2 − κ)M(κ)
[ f (tn+1) − f (tn)]

+ 2κ

(2 − κ)M(κ)

tn+1∫

tn

[{
(τ − tn−1)

(tn − tn−1)

}
fn +

{
(τ − tn)

(tn−1 − tn)

}
fn−1

]
dτ

(5.6)
thus, after some simplifications and integrating, the following equation is obtained:

un+1 − un = 2(1 − κ)

(2 − κ)M(κ)
[ fn+1 − fn] + 2κ

(2 − κ)M(κ)
h

[
3

2
fn − 1

2
fn−1

]
(5.7)

Now forfinding the numerical solution of fractionalmodel basedon theCFderivative.
For the Eq. (3.3) we get the solution

shn+1 − shn = 2(1 − κ)

(2 − κ)M(κ)

[
μh(1 − shn+1 ) − αshn+1 iνn+1 − μh(1 − shn ) + αshn iνn

]

+ 2κh

(2 − κ)M(κ)

[
3

2
[μh(1 − shn ) − αshn iνn ] − 1

2
[μh(1 − shn−1 ) − αshn−1 iνn−1 ]

]

ehn+1 − ehn = 2(1 − κ)

(2 − κ)M(κ)

[
αshn+1 iνn+1 − βehn+1 − αshn iνn + βehn

]

+ 2κh

(2 − κ)M(κ)

[
3

2

[
αshn iνn − βehn

] − 1

2

[
αshn−1 iνn−1 − βehn−1

]]

ihn+1 − ihn = 2(1 − κ)

(2 − κ)M(κ)

[
νhn+1ehn+1 − γ ihn+1 − νhn ehn + γ ihn

]

+ 2κh

(2 − κ)M(κ)

[
3

2

[
νhn ehn − γ ihn

] − 1

2
[νhn−1ehn−1 − γ ihn−1

]

eνn+1 − eνn = 2(1 − κ)

(2 − κ)M(κ)

[
δsνn+1 ihn+1 − (ε + ννn+1 )eνn+1 − δsνn ihn + (ε + ννn )eνn

]
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+ 2κh

(2 − κ)M(κ)

[
3

2

[
δsνn ihn − (ε + ννn )eνn

] − 1

2

[
δsνn−1 ihn−1 − (ε + ννn−1 )eνn−1

]]

iνn+1 − iνn = 2(1 − κ)

(2 − κ)M(κ)

[
ννn+1eνn+1 − εiνn+1 − ννn eνn + εiνn

]

+ 2κh

(2 − κ)M(κ)

[
3

2

[
ννn eνn − εiνn

] − 1

2

[
ννn−1eνn−1 − εiνn−1

]]
(5.8)

6 Numerical Simulation

In this part, By using the proposed numerical scheme of themodel for different values
of fractional order we present the numerical simulation. The numerical simulations
are shown in Figs. 1, 2, 3, 4 and 5. Figure 1 is considered κ to be 1, Fig. 2 is considered
κ to be 0.75, Fig. 3 is considered κ to be 0.55, in Fig. 4 is considered κ to be 0.35
and finally Fig. 5 is considered κ to be 0.15.

To achieve our numerical simulation the following initial conditions and param-
eters were used [17].

Nh = 5,071,126, πν = 2,500,000, νh = 0.1667, μh = 0.0045, μν = 0.02941,
γh = 0.328833, bβh = 0.75, bβν = 0.375, νν = 0.1428.

Fig. 1 For κ = 1
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Fig. 2 For κ = 0.75

Fig. 3 For κ = 0.55
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Fig. 4 For κ = 0.35

Fig. 5 For κ = 0.15
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7 Conclusion

Although the dynamics spread of Dengue fever has in the attention of many
researchers in the same field of applied mathematics in biology, it is worth not-
ing that, still there is no attention has been given to modeling the spread with a
differential operator having non-Markovian properties but the associated evolution
equation having Markovian properties. If we consider the recent development in
fractional differentiation and integration, a derivative with non-local kernel and non-
singular was suggested by Caputo and Fabrizio and posses several properties that one
observed in many problems occurring in biological modeling. We these properties,
we devoted our paper to the discussion and analysis underpinning the dynamical
spread of Dengue in given population. We provided a motivation to underpin why
this operator is used for this model, then, we presented a detailed analysis of unique-
ness and existence and the exact solution using the fixed-point theorem in Banach
space. With the aim of improving the accuracy of numerical scheme, a new method
was suggested by Toufit and Atangana [19] and was found to be highly accurate and
very easier to implement. We used this numerical scheme to solve the new model
with fading memory induces by the exponential kernel and presented numerical
simulation.
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Approximate Solution of Higher Order
Two Point Boundary Value Problems
Using Uniform Haar Wavelet Collocation
Method

Akmal Raza and Arshad Khan

Abstract An efficient collocation method is proposed for the numerical solution
of second and fourth order two-point boundary value problems (B.V.P.) based on
uniform Haar wavelet. We have converted higher order differential equations into a
system of differential equations of lower order and then solve it by uniform Haar
wavelet, which reduces the time and complexity of the system. The technique intro-
duced here is easy to apply. The performance of the present method yield more accu-
rate results on increasing the resolution level. To demonstrate the robustness and
accuracy of the Haar wavelet collocation method, five problems have been solved
and compared with the existing methods present in the literature [1–6].

Keywords Haar wavelet · Collocation points

2000 Mathematics Subject Classification: 65M99 · 65N35 · 65N55 · 65L10

1 Introduction

Wavelet Analysis is a new development in the field of Mathematics. Wavelets were
introduced in seismology to provide a time localisation to seismic analysis. Wavelet
theory involves representing square integrable functions in terms of simple wavelet
functions at different scale and positions. The fundamental idea of wavelet is trans-
lation and scaling according to the need [7–10]. The best property of wavelet is
compact support, which is boom for the numerical solution of differential equa-
tions. Meanwhile in numerical analysis, wavelet methods have become an important
tool for solution of differential and integral equations that has been discussed in
many research papers with different approaches such as Galerkin method, finite
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element method, finite difference method, filter-bank method, adaptive method etc.
[7, 8, 11–15]. One of the best and easiest wavelet in wavelet theory is Haar wavelet.
Gaussian and Legendre wavelet is also applied in treatment of Numerical solu-
tions of differential equations but lots of numerical difficulties appeared on using
these wavelets. The detection of singularities, local high frequencies, irregular struc-
tures and transient phenomena exhibited by analyzed function is possible on using
wavelets. Use of orthogonal functions to construct the solution of differential equa-
tions was initially established in 1995 by Chen and Hsiao [14]. During the last two
decades different types of functions have been applied to find the approximate solu-
tion of differential equations. But Haar wavelet gives the desirable results for such
types of problems due to its simplicity, orthogonality and compact support.

2 Multiresolution Analysis and Haar Wavelet

Definition: Amultiresolution analysis consists of a sequence {Vj : j ∈ Z} of embed-
ded closed subspace of L2(R) that satisfy the following properties:

1. Increasing: Vj ⊂ Vj+1 : j ∈ Z
2. Density:

⋃
j∈Z Vj = L2(R)

3. Separation:
⋂

j∈Z Vj = {0}
4. Scaling: f (t) ∈ Vj if and only if f (2t) ∈ Vj+1

5. Orthonormal basis: ∃ a scaling function φ ∈ V0 such that {φ0,k(t) = φ(t − k) :
k ∈ Z} is an orthonormal basis for V0.

HaarWavelet: Haar functionwas discovered long before thewavelet was introduced
by Hungarian Mathematician Alfred Haar in 1909. Haar is the simplest orthonormal
wavelet with compact support [16].
The Haar wavelet family for t ∈ [0, 1] is defined as follows:

hu(t) =

⎧
⎪⎨

⎪⎩

1, ξ1(u) ≤ t < ξ2(u)

−1, ξ2(u) ≤ t < ξ3(u)

0, otherwise

(2.1)

where u indicates the wavelet number and

ξ1(u) = k
m , ξ2(u) = k+0.5

m , ξ3(u) = k+1
m

m = 2 j , j = 0, 1, 2..., J, and integer k = 0, 1...,m − 1.

Also J indicates the level of resolution and k represents the translation parameter.
Index u is calculated as u = m + k + 1 which is true for u ≥ 2.
For u = 1 the Haar wavelet is given by

h1(t) =
{
1, 0 ≤ t < 1

0, otherwise
(2.2)
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Because of constant and piecewise nature of Haar wavelet, derivative vanishes. Due
to lack of differentiability authors move towards integration approach instead of
differentiation [14].
The integration of Haar wavelet has been obtained from [13] and given as follows:

I1hu(t) =

⎧
⎪⎨

⎪⎩

t − ξ1(u), ξ1(u) ≤ t < ξ2(u)

ξ3(u) − t, ξ2(u) ≤ t < ξ3(u)

0, otherwise

(2.3)

The double integration of Haar wavelet can be given as follows:

I2hu(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (t − ξ1(u))2, ξ1(u) ≤ t < ξ2(u)
1

4m2 − 1
2 (ξ3(u) − t)2, ξ2(u) ≤ t < ξ3(u)

1
4m2 , ξ3(u) ≤ t < 1

0, otherwise

(2.4)

Proceeding in similar manner the nth integration of Haar wavelet can be written as:

Inhu(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i f t < ξ1(u)
1
n! [t − ξ1(u)]n, ξ1(u) ≤ t < ξ2(u)
1
n! [(t − ξ1(u))n − 2(t − ξ2(u))n], ξ2(u) ≤ t < ξ3(u)
1
n! [(t − ξ1(u))n − 2(t − ξ2(u))n + (t − ξ3(u))n], ξ3(u) ≤ t

(2.5)

Now consider, any square integrable function f (t) ∈ L2[0, 1], can be approximated
by the dialation and translation of Haar wavelet [12, 13]

f (t) =
N∑

u=1

auhu(t) (2.6)

The Haar wavelet coefficients au are calculated as

au =< y(t), hu(t) >=
1∫

0

y(t) · hu(t)dt. (2.7)

The collocation points are given as

X (u) = 2u − 1

m
, u = 1, 2, ...,m. (2.8)
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The matrix of Haar wavelet with respect to the collocation points is given as

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The matrix of integral and double integral of Haar wavelet with respect to the
collocation points are given as:

I1H = 1

16

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 3 5 7 9 11 13 15
1 3 5 7 7 5 3 1
1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, I2H = 1

512

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 9 25 49 81 121 169 225
1 9 25 49 79 103 119 127
1 9 23 31 32 32 32 32
0 0 0 0 1 9 23 31
1 7 8 8 8 8 8 8
0 0 1 7 8 8 8 8
0 0 0 0 1 7 8 8
0 0 0 0 0 0 1 7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3 Methods of Solution

3.1 Method for Solving Second Order Differential Equations

Consider a second order differential equation

y′′ = φ(t, y, y′) (3.1)

with boundary conditions

y(0) = α, y(1) = β. (3.2)

Let us suppose that

y′(t) = z(t) ⇒ y′′(t) = z′(t) (3.3)

y′(t) =
N∑

u=1

auhu(t) (3.4)
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z′(t) =
N∑

u=1

buhu(t). (3.5)

Now integrating Eqs. (3.4) and (3.5) with respect to t from 0 to t we get

y(t) =
N∑

u=1

au I1hu(t) + y(0) (3.6)

and

z(t) =
N∑

u=1

bu I1hu(t) + z(0). (3.7)

Substituting the values from Eqs. (3.3–3.7) in (3.1), we get the following system of
equations

N∑

u=1

buhu(t) = φ(t,
N∑

u=1

au I1hu(t) + y(0),
N∑

u=1

bu I1hu(t) + z(0)) (3.8)

Solving the above system of equation and find out the unknown Haar wavelet coef-
ficient au and bu with the help of Eq. (3.3) and then put in Eq. (3.6) to get the
approximate solution of the differential equation.

3.2 Method for Solving Fourth Order Differential Equations

Consider the fourth order ordinary linear differential equation of the form.

y′′′′ = φ(t, y, y′, y′′, y′′′) (3.9)

with boundary conditions

y(0) = a, y(1) = b, y′′(0) = c, y′′(1) = d.

Let us suppose that

y′′(t) = z(t), (3.10)

y′′′(t) = z′(t), (3.11)

y′′′′(t) = z′′(t). (3.12)

and y′′(t) =
N∑

u=1

auhu(t). (3.13)
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On integrating Eq. (3.13) from 0 to t with respect to t we get

y′(t) =
N∑

u=1

au Pu,1(t) + y′(0) (3.14)

Again integrating Eq. (3.14) from 0 to t , with respect to t we get

y(t) =
N∑

u=1

au Pu,2(t) + t y′(0) + y(0) (3.15)

Also we assume that

z′′ =
N∑

u=1

buhu(t) (3.16)

On integrating Eq. (3.16) from 0 to t we get,

z′(t) =
N∑

u=1

bu Pu,1(t) + z′(0) (3.17)

Again integrating Eq. (3.17) from 0 to t we get

z(t) =
N∑

u=1

bu Pu,2(t) + t z′(0) + z(0) (3.18)

We can find the values of y′(0), y′′(0), y′′′(0) and y′′′′(0) from the boundary con-
ditions. Now put Eqs. (3.10–3.18) in (3.9), we get the following system of equation

N∑

u=1

buhu(t) = φ(t,
N∑

u=1

au Pu,2(t) + t.y′(0) + y(0),
N∑

u=1

au Pu,1(t) + y′(0),

N∑

u=1

bu Pu,2(t) + t.z′(0) + z(0),
N∑

u=1

bu Pu,1(t) + z′(0))

(3.19)

Find the value of the vector au and then put these values in the Eq. (3.15) to get the
Haar approximate solution of the required differential equation.
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4 Numerical Examples

In this section we have tested five problems to demonstrate the accuracy and effec-
tiveness of proposed method.

Problem 1 Consider the second order differential equations [1]

y′′ = 100y, (4.1)

with boundary conditions

y(0) = y(1) = 1. (4.2)

Exact solution of the problem is

y = cos h(10t − 5)

cos h5
(4.3)

Obtained maximum absolute errors for different resolutions are given in Table 1 and
graph for J = 4 is given in Fig. 1.

Problem 2 Consider Dirichlet problem given in [4]:

− y′′ = (
537

10
π)2 sin(

537

10
π t) + (

23

10
π)2 sin(

23

10
π t), (4.4)

with boundary conditions

y(0) = 0, y(1) = 0, t ∈ [0, 1]. (4.5)

Exact solution is

y = (
537

10
π) sin(

537

10
π t) + (

23

10
π) sin(

23

10
π t) . (4.6)

Table 1 Maximum absolute error for Problem 1

Level of resolution J Our method [1]

3 1.6719e−04 1.2800e−03

4 2.2854e−05 3.0700e−04

5 2.9131e−06 –

10 8.4470e−11 –
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Fig. 1 Exact and Haar solution of Problem 1 for J = 4

Table 2 Maximum absolute error for Problem 2

Level of resolution J = 6 7 8 9

Our method 9.5472e−04 1.2490e−04 1.5790e−05 1.9750e−06

[4] 1.2100e−02 1.3260e−02 1.0820e−04 7.3580e−06

Obtained maximum absolute errors for different resolutions are given in Table 2 and
graph for J = 6 is given in Fig. 2.

Problem 3 Consider Dirichlet problem given in [4]:

− y′′ + y = [1 + (
537

10
π)2] sin(537

10
π t) + [1 + (

23

10
π)2] sin(23

10
π t), (4.7)

with boundary conditions

y(0) = 0, y(1) = 0. t ∈ [0, 1] (4.8)

Exact solution is

y = (
537

10
π) sin(

537

10
π t) + (

23

10
π) sin(

23

10
π t) . (4.9)

Obtained maximum absolute errors for different resolutions are given in Table 3 and
graph is given in Fig. 3.
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Fig. 2 Exact and Haar solution of Problem 2

Table 3 Maximum absolute error for Problem 3

Level of resolution J = 6 7 8 9

Our method 9.4584e−04 1.2457e−04 1.5741e−05 1.9690e−06

[4] 1.2100e−2 1.3260e−3 1.0820e−4 7.3590e−6

Fig. 3 Exact and Haar solution of Problem 3 for J = 9
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Problem 4 Let us assume the fourth order B.V.P. given in [3]

y′′′′ + t y = −(t3 + 7t + 8)et , t ∈ [0, 1] (4.10)

with boundary conditions

y(0) = y(1) = 0, (4.11)

y′′(t) = 1 when t = 0, (4.12)

y′′(t) = −4e. when t = 1 (4.13)

Exact solution of the problem is

y(t) = t (1 − t)et . (4.14)

Obtained maximum absolute errors for different resolutions are given in Table 4 and
graph is given in Fig. 4.

Table 4 Maximum absolute errors for Problem 4

Level of resolution J Our method [3]

2 5.2806e−04 4.5900e−04

3 9.4372e−05 1.9000e−4

4 1.6728e−05 5.2300e−05

5 2.9591e−06 –

6 5.2319e−07 –

Fig. 4 Exact and Haar solution of Problem 4 for J = 4
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Problem 5 Let us assume the fourth order B.V.P. given in [3]

y′′′′ − y = −4(2t cos t + 3 sin t), t ∈ [0, 1] (4.15)

with boundary conditions

y(0) = y(1) = 0, y′′(t) = 0, when t = 0, y′′(1) = 4 cos 1 + 2 sin 1.

(4.16)

Exact solution of the problem is

y(t) = (t2 − 1) sin t. (4.17)

Obtained maximum absolute errors for different resolutions are given in Table 5 and
graph is given in Fig. 5.

Table 5 Maximum absolute errors for Problem 5

Level of resolution J Our method [3]

2 5.6800e−04 6.6600e−04

3 9.7369e−05 1.6500e−04

4 1.4350e−05 4.1200e−05

5 1.5638e−06 –

Fig. 5 Exact and Haar solution of Problem 5 for J = 4



220 A. Raza and A. Khan

5 Conclusion

We have converted second order differential equation into system of first order and
fourth order differential equations into system of second order of differential equa-
tion, which is easy to solve to get the approximations of higher order two point
boundary value problems. Haar wavelet collocation method has been applied on sec-
ond and fourth order two point B.V.P.We have compared our results with the existing
method given in [1, 3–6] which shows that our results are better.
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Solving Multi-objective Fractional
Transportation Problem

Vishwas Deep Joshi and Rachana Saini

Abstract In classical fractional transportation programming problem, we want to
optimize the objective function in the form of one or several ratios subject to some
linear constraints. If in multi-objective transportation problem, objective function is
in ration of two linear function under some linear restrictions, then the problem is
called multi-objective linear fractional transportation problem (MOLFTP). In this
paper we propose a new method to solve multi-objective linear fractional transporta-
tion problemwhich is extension of Nomani et al. (Int JManag Sci EngManag (2016)
[9]). Two numerical problems are presented to validate the proposed algorithm.

Keywords Fractional transportation programming · Multi-objective programming

1 Introduction

Transportation-distribution planning problems play an important role in manage-
ment science. In recent scenario a distribution company often faced problems related
multivehicle routing problem. To fulfill the multi respective demand, problem objec-
tive must be in the divided in multi-objective form. This paper studies fractional
transportation problem with several objectives.

The transportation problem is to transfer goods from various origins to several
destinations in aminimumcost. Bit et al. [1] solvemulti-objective solid transportation
problem using fuzzy programming approach and find both efficient and compromise
optimal solution. Li and Lie [7] developed a fuzzy approach to solve the multi-
objective transportation problem and obtain a non-dominated compromise solution
at which the synthetic membership degree of the global evaluation for all objectives
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is maximum. Ivan et al. [3] a method providing the efficient way of construction of
weighted coefficients for linearweighted summethod.Kumar and Pandey [6] applied
fuzzy programming approach to solve multi-objective transportation problem.

Joshi and Gupta [5] proposed method for identification of more-for-less paradox
in the linear fractional transportation problem. Gupta et al. [2] solve a compromise
solution for multi-objective chance constraint capacitated transportation problem.
Ota and Ojha [10] developed weighted sum method for solving multi-objective geo-
metric programming problem (MOGPP) and compared the result with fuzzy pro-
gramming method. Jadhav and Doke [4] developed fuzziness in the objective func-
tion is handled with fuzzy programming techniques in the sense of multi-objective
approach. Cost and profit coefficients are trapezoidal fuzzy numbers and for each set
of crisp part the fuzzy number a single fractional objective is considered.

Nomani et al. [9] developed a different approach for solvingmulti-objective trans-
portation problems and compared solution with weighted sum approach. Maruti [8]
solve each of the transportation problem as single objective and then using Taylor
series approach expand each of the problem about its optimal solution and ignoring
second and higher order error terms each of the objective and converted objectives
into linear one. Then the problem reduces toMOLTPP.Evaluate each of the objectives
at every optimal solution.

A new method is introduced to solve the problem studied in this paper. The paper
is organized as follows. Section 2 outlines the MOLFTP and necessary definitions;
In Sect. 3 the weighted sum method for fractional transportation problem discussed;
Sect. 4 explain the proposedmethod forMOLFTPproblem; Sect. 5 analyzes the com-
putational performance of the algorithm proposed on randomly generated examples;
Conclusions and remarks are discussed in Sect. 6.

2 Problem Description and Definitions

2.1 Mathematical Formulation of Multi-objective Linear
Fractional Transportation Problem

The MOLFTP is formulated as follows:

Min Zk
(
xi j

) =
∑m

i=1

∑n
j=1 c

k
i j xi j∑m

i=1

∑n
j=1 d

k
i j xi j

, k = 1, 2, 3, . . . , K

Subject to:
m∑

i=1

xi j = ai, j = 1, 2, 3, . . . , n

n∑

j=1

xi j = b j , i = 1, 2, 3, . . . ,m
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xi j ≥ 0 i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n (1)

Supply points ai , i = 1, 2, 3, . . . ,m, there are m supply points which goods
transported. Demand points b j , j = 1, 2, 3, . . . , n, there are n demand centers where
goods required. The profit of cki j is transporting one unit from i origin to j destination.
The cost of dk

i j is transporting one unit from i origin to j destination. Suppose variable
xi j denotes number units to be transported from jth origin to jth destination. Problem
must be in balanced form (sum of supply = sum of demand).

2.2 Pareto Optimal Solution

A solution is called Pareto optimal solution if none of the objective functions can
be improved in value without degrading one or more of the other objective values.
Without additional subjective preference information, all Pareto optimal solutions
are considered equally good [3].

3 Weighted Sum Method

Weighted sum method is single-objective optimization problem. It is following as:

Min Z =
K∑

k=1

wk Zk =
K∑

k=1

wk

∑m
i=1

∑n
j=1 c

k
i j xi j∑m

i=1

∑n
j=1 d

k
i j xi j

Subject to:
m∑

i=1

xi j = ai, j = 1, 2, 3, . . . , n

n∑

j=1

xi j = b j , i = 1, 2, 3, . . . ,m

xi j ≥ 0 i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n (2)

where the weights wk, k = 1, 2, 3, . . . , K , corresponding to the objective functions
satisfy the following conditions:

K∑

k=1

wk = 1, wk ≥ 0, k = 1, 2, 3, . . . , K .
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4 Proposed Method

In proposed method we convert the MOLFTP into a non-linear problem where the
objective is to Min ρ ′ = ∑

ρ(1 − wk), where all objectives have common devia-
tional variable ρ andwk theweight for the kth objective function. Themulti-objective
linear fractional transportation problem (1) convert into the single objective problem
as follows:

Min ρ ′ =
∑

ρ(1 − wk)

Subject to

∑m
i=1

∑n
j=1 c

k
i j xi j∑m

i=1

∑n
j=1 d

k
i j xi j

≤ Z∗
k + ρ(1 − wk),∀k = 1, 2, 3, . . . , K

m∑

i=1

xi j = ai, j = 1, 2, 3, . . . , n

n∑

j=1

xi j = b j , i = 1, 2, 3, . . . ,m

0 ≤ wk ≤ 1, k = 1, 2, 3, . . . , K

xi j ≥ 0 i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n (3)

In this method, we have introduced a deviational function ρ(1 − wk) instead of
using a deviational variable.

5 Numerical Examples

Let us consider two examples with two and three objectives respectively. Both exam-
ples solved by proposed method.

Example 1 Let us consider two fractional objectives ration of
(
cki j

)
and

(
dk
i j

)
in

Table 1.

We obtain optimal solution as follows:

X1 = (5, 5, 5, 0, 10, 0, 0, 15, 0, 20, 0, 0), Z1(X1) = 0.60377, Z1(X2) = 1.13913 and
X2 = (0, 0, 0, 15, 0, 20, 5, 0, 15, 5, 0, 0), Z2(X1) = 1.02963, Z2(X2) = 0.64.

Then the proposed model generates result for numerical example 1 as shown in
Table 2.

Example 2 Let us consider three objectives ratio of
(
cki j

)
and

(
dk
i j

)
in Table 3.

We obtain optimal solution as follows:

X1 = (0, 0, 7, 0, 0, 8, 0, 1, 5, 0, 0, 13), Z1(X1) = 1.105802, Z2(X1) = 1.054688,
Z3(X1) = 0.994898;
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Table 1 Objective matrix for numerical Example 1

Destination 1 Destination 2 Destination 3 Destination 4 Supply

Origin 1 10, 14
(
cki j

)

15, 12
(
dki j

)
14, 9
12, 14

8, 11
16, 7

12, 9
8, 17

15

Origin 2 8, 12
10, 6

12, 9
6, 11

14, 6
13, 13

8, 15
12, 10

25

Origin 3 9, 6
13, 9

6, 9
15, 15

15, 12
12, 12

9, 10
10, 16

20

Demand 15 25 5 15 60

Table 2 Solutions for different weights for numerical example 1

Weight assigned to objective function (w1, w2) Z1, Z2

1 w1 = 0.1, w2 = 0.9 0.99909, 0.68392

2 w1 = 0.2, w2 = 0.8 0.90532, 0.71572

3 w1 = 0.3, w2 = 0.7 0.83869, 0.74068

4 w1 = 0.4, w2 = 0.6 0.79704, 0.76885

5 w1 = 0.5, w2 = 0.5 0.76249, 0.79872

6 w1 = 0.6, w2 = 0.4 0.73039, 0.82993

7 w1 = 0.7, w2 = 0.3 0.69926, 0.86279

8 w1 = 0.8, w2 = 0.2 0.66828, 0.89803

9 w1 = 0.9, w2 = 0.1 0.63762, 0.94464

10 Without preference 1.13913, 0.64

Table 3 Objective matrix for numerical Example 2

Destination 1 Destination 2 Destination 3 Destination 4 Supply

Origin 1 5, 6, 8
(
cki j

)

9, 12, 7
(
dki j

)
2, 3, 7
5, 7, 2

3, 9, 5
9, 8, 7

7, 9, 12
2, 15, 6

7

Origin 2 16, 2, 9
8, 6, 9

8, 9, 5
13, 8, 5

9, 2, 3
7, 2, 5

10, 6, 13
3, 5, 9

9

Origin 3 12, 5, 11
9, 8, 2

9, 12, 13
10, 11, 7

14, 8, 8
6, 7, 12

13, 8, 4
6, 7, 8

18

Demand 5 8 7 14 34

X2 = (0, 0, 0, 7, 2, 0, 7, 0, 3, 8, 0, 7); Z1(X2)= 1.504386, Z2(X2)= 0.849315, Z3(X2)
= 1.352113;
X3 = (5, 0, 2, 0, 0, 8, 1, 0, 0, 0, 4, 14), Z1(X3) = 1.212766, Z2(X3) = 0.992537,
Z3(X3) = 0.712598.
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Table 4 Solutions for different weights for numerical example 2

Weights assigned (w1, w2, w3) Z1, Z2, Z3

1 w1 = 0.1, w2 = 0.9, w3 = 0.0 1.383647, 0.880187, 1.021315

2 w1 = 0.2, w2 = 0.8, w3 = 0.0 1.323226, 0.903671, 0.984379

3 w1 = 0.3, w2 = 0.7, w3 = 0.0 1.275302, 0.921958, 0.952431

4 w1 = 0.4, w2 = 0.0, w3 = 0.6 1.191198, 0.991643, 0.769529

5 w1 = 0.5, w2 = 0.0, w3 = 0.5 1.179208, 0.996127, 0.786005

6 w1 = 0.6, w2 = 0.0, w3 = 0.4 1.16653, 1.001136, 0.803691

7 w1 = 0.0, w2 = 0.3, w3 = 0.7 1.262712, 0.959152, 0.759671

8 w1 = 0.0, w2 = 0.2, w3 = 0.8 1.253422, 0.967411, 0.742122

9 w1 = 0.0, w2 = 0.1, w3 = 0.9 1.245205, 0.974778, 0.726539

10 w1 = 0.3, w2 = 0.3, w3 = 0.4 1.221772, 0.965285, 0.812001

11 w1 = 0.3, w2 = 0.4, w3 = 0.3 1.230194, 0.955937, 0.836991

12 w1 = 0.4, w2 = 0.3, w3 = 0.3 1.207223, 0.967639, 0.830922

13 Without preference 1.212766, 0.992537, 0.712598

Then the proposed model generates result for numerical example 2 as shown in
Table 4.

Comparison in Tables 5 and 6, it can be seen that for different weights objective
values do not change consistently for the weighted sum method. Examples shows
that our method gives better results as compare to weighted sum method.

The objective value increases and decreases by proposed method in Figs. 1 and 2.

Table 5 Compare the result obtained by proposed method and weighted sum method for
Example 1

Weights assigned (w1, w2) Z1, Z2

Proposed method Weighted sum method

1 w1 = 0.1, w2 = 0.9 0.99909, 0.68392 1.13913, 0.64

2 w1 = 0.2, w2 = 0.8 0.90532, 0.71572 1.13913, 0.64

3 w1 = 0.3, w2 = 0.7 0.83869, 0.74068 0.827068, 0.745098

4 w1 = 0.4, w2 = 0.6 0.79704, 0.76885 0.827068, 0.745098

5 w1 = 0.5, w2 = 0.5 0.76249, 0.79872 0.73768, 0.822585

6 w1 = 0.6, w2 = 0.4 0.73039, 0.82993 0.645963, 0.92517

7 w1 = 0.7, w2 = 0.3 0.69926, 0.86279 0.641968, 0.93443

8 w1 = 0.8, w2 = 0.2 0.66828, 0.89803 0.603774, 1.02963

9 w1 = 0.9, w2 = 0.1 0.63762, 0.94464 0.603774, 1.02963

10 Without preference 1.13913, 0.64 –
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Table 6 Compare the result obtained by proposed method and weighted sum method for Example
2

Weights assigned
(w1, w2, w3)

Z1, Z2, Z3

Proposed method Weighted sum method

1 w1 = 0.1, w2 = 0.9, w3 =
0.0

1.383647, 0.880187,
1.021315

1.688372, 0.861751,
0.850427

2 w1 = 0.2, w2 = 0.8, w3 =
0.0

1.323226, 0.903671,
0.984379

1.691244, 0.86758,
0.820084

3 w1 = 0.3, w2 = 0.7, w3 =
0.0

1.275302, 0.921958,
0.952431

1.691244, 0.86758,
0.820084

4 w1 = 0.4, w2 = 0.0, w3 =
0.6

1.191198, 0.991643,
0.769529

1.212766, 0.992537,
0.712598

5 w1 = 0.5, w2 = 0.0, w3 =
0.5

1.179208, 0.996127,
0.786005

1.305344, 0.944882,
0.741803

6 w1 = 0.6, w2 = 0.0, w3 =
0.4

1.16653, 1.001136,
0.803691

1.305344, 0.944882,
0.741803

7 w1 = 0.0, w2 = 0.3, w3 =
0.7

1.262712, 0.959152,
0.759671

1.212766, 0.992537,
0.712598

8 w1 = 0.0, w2 = 0.2, w3 =
0.8

1.253422, 0.967411,
0.742122

1.212766, 0.992537,
0.712598

9 w1 = 0.0, w2 = 0.1, w3 =
0.9

1.245205, 0.974778,
0.726539

1.212766, 0.992537,
0.712598

10 w1 = 0.3, w2 = 0.3, w3 =
0.4

1.221772, 0.965285,
0.812001

1.305344, 0.944882,
0.741803

11 w1 = 0.3, w2 = 0.4, w3 =
0.3

1.230194, 0.955937,
0.836991

1.691244, 0.86758,
0.820084

12 w1 = 0.4, w2 = 0.3, w3 =
0.3

1.207223, 0.967639,
0.830922

1.691244, 0.86758,
0.820084

13 Without preference 1.212766, 0.992537,
0.712598

–
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Proposed solu�on
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Fig. 1 Solution with different weights for Example 1
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Proposed solution

series 1 series 2 series 3

Fig. 2 Solution with different weights for Example 2

6 Conclusion

In this paper, we proposed a new technique for solving multi-objective linear frac-
tional transportation problem. The proposed method is able to given Pareto optimal
solutions without preference as well as solutions based on preferences. Than com-
parison weighted sum method and proposed solution. For solving all mathematical
models in Sect. 5, LINGO* 17.0 software was used.
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On the Dark and Bright Solitons
to the Negative-Order Breaking Soliton
Model with (2+1)-Dimensional

Haci Mehmet Baskonus

Abstract This paper deal with the complex the dynamic of cnoidal waves via the
negative-order breaking soliton model with (2+1)-dimensional. This model is arisen
in the (2+1)-dimensional interaction of theRiemannwave propagated between y-axis
andx-axis. The Improvedbernoulli sub-equation functionmethod is used in obtaining
some complex and dark solutions with hyperbolic function structure. We present the
interesting contour surfaces alongwith 2D and 3D graphics of the obtained analytical
solutions in this study, plotted by using several computational programmes such as
Matlap, Mathematica and so on. We finally present a comprehensive conclusion.

Keywords Nonlinear negative-order breaking soliton model · Improved bernoulli
sub-equation function method · Complex hyperbolic solutions

PACS 02.30.Jr · 02.30.Hq · 04.20.Jb · 04.20.Cv · 52.35.Bj

1 Introduction

Today, the works carried on the solutions of mathematical models are of an out-
standing area among scientists because solitons provides more information into the
relevant from nonlinear sciences to engineering applications [1–54]. The first soli-
ton model proposed by Korteweg and de Vries was KdV equation in 1895. After-
wards, Zabusky and Kruskal have presented an important paper on the interaction
of “solitons” in a collisionless plasma in 1965 [26]. More recently, many scientific
and engineering applications including vital real world problems on solitons have
been presented to the literature. Bogoyavlenskii has presented some important mod-
els, which are entirely integrable solitons and N-solitons [27]. He has derived the
connection with the Kadomtsev–Petviashvili equation with the help of the Painlevé
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method. One of the most important properties of integrable models is that these
models produce many soliton solutions. Therefore, many experts have focused on
the investigations of solitons arising in real world problems. Moreover, they have
changed general structures of models for getting more and clear understanding of
the models. This plays a major role in solitary waves theory and soliton theory. In
this sense,Wazwaz has investigated the negative-order breaking soliton equations by
using simplified Hirota’s method [28]. Fei and Cao have observed explicit soliton-
cnoidalwave interaction solutions for the (2+1)-dimensional negative-order breaking
soliton equation (NOBSE) [29] defined as

ut − vx = 0, uy + vxxx − 4uvx − 2uxv = 0. (1.1)

This model was used to symbolize the (2+1)-dimensional interaction of the Rie-
mann wave propagated along the y-axis with a long wave propagated along the
x-axis [28–32]. Fei et al. [29] have derived the explicit soliton-cnoidal wave interac-
tion solutions to the Eq. (1.1) by using an analytic method. The paper is organized as
follows. In Sect. 2, we present the Improved bernoulli sub-equation function method
(IBSEFM) in a comprehensive manner. Section3 is devoted to obtain new complex
travellingwave soliton solutions to theNOBSE. A conclusion and discussion is given
in the last section.

2 General Properties of IBSEFM

The general properties of IBSEFM are given as follows:
Step 1. It can be considered that the following nonlinear model in two variables and
a dependent variable v;

P(u, ux , uy, ut , . . .) = 0. (2.1)

and take the wave transformation;

u(x, y, t) = U (η), η = μ(x + αy − kt). (2.2)

where μ,α, k are constants and can be determined later. By substituting Eq. (2.2),
Eq. (2.1) converts a nonlinear ordinary differential equation (NODE) as following;

N (U,U ′,U ′′,U ′′′, . . .) = 0. (2.3)

Step 2. Considering trial equation of solution in Eq. (2.3), it can be written as fol-
lowing;

U (η) =
∑n

i=0 ai F
i (η)

∑m
j=0 bi F

j (η)
= a0 + a1F(η) + a2F2(η) + · · · + anFn(η)

b0 + b1F(η) + b2F2(η) + · · · + bmFm(η)
. (2.4)
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According to the Bernoulli theory, we can consider the general form of Bernoulli
differential equation for F ′ as following;

F ′ = wF + λFM , w �= 0,λ �= 0, M ∈ R − {0, 1, 2}. (2.5)

where F = F(η) is Bernoulli differential polynomial. Substituting above relations
in Eq. (2.3), it yields us an equation of polynomial �(F) of F as following;

�(F) = ρs F
s + · · · + ρ1F + ρ0 = 0. (2.6)

According to the balance principle, we can determine the relationship between n,
m and M .
Step 3. The coefficients of �(F) all be zero will yield us an algebraic system of
equations;

ρi = 0, i = 0, . . . , s. (2.7)

Solving this system,wewill specify thevalues ofa0, a1, . . . , an andb0, b1, . . . , bn .
Step 4. When we solve nonlinear Bernoulli differential equation Eq. (2.6), we obtain
the following two situations according to b and d,

F(η) =
[−λ

w
+ E

ew(M−1)η

] 1
1−M

, w �= λ. (2.8)

F(η) =
[
(E − 1) + (E + 1)tanh(w(1 − M)

η
2 )

1 − tanh(w(1 − M)
η
2 )

]

, w = λ, E ∈ R. (2.9)

Using a complete discrimination system for polynomial of F, we solve this system
with the help of computer programming and classify the exact solutions to Eq. (2.3).

3 Application of the IBSEFM

In this section, IBSEFM has been successfully considered to the NOBSE to obtain
more and novel complex solutions.

Example Taking the travelling wave transformation as

u(x, y, t) = U (ξ), ξ = kx + wy − ct, v(x, y, t) = V (ξ), ξ = kx + wy − ct,
(3.1)

which k, w, c are real constants and non-zero in Eq. (1.1), we get the following
nonlinear ordinary differential equation;

wU ′ − ck2U ′′′ + 6cUU ′ = 0. (3.2)
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with
V = −c

k
U. (3.3)

Integrating once and getting to the zero of integration constants, Eq. (3.2) can be
rewritten as

wU − ck2U ′′ + 3cU 2 = 0. (3.4)

With the help of balance principle forU ′′ andU 2, relationship between M,m and
n can be obtained as follows;

2M + m = n + 2. (3.5)

Case 1: Choosing M = 3, n = 5 and m = 1, we can find and its derivatives from
Eq. (3.5) as follows:

U = a0 + a1F + a2F2 + a3F3 + a4F4 + a5F5

b0 + b1F
= ϒ

�
, (3.6)

U ′ = ϒ ′� − ϒ� ′

�2
, (3.7)

U ′′ = . . . , (3.8)

where F ′ = pF + dF3, a5 �= 0, b1 �= 0, p �= 0, d �= 0. Substituting Eq. (3.6) with
Eq. (3.8) into Eq. (3.4), a system of algebraic equations including various power of
F can be found. Solving the system by using different computer programming such
as Mathematica, Maple, and Matlap gives the complex structures;

Case-1a: For p �= d the following coefficients;

a0 = −wb0
3c

, a1 = −wb1
3c

, a2 = i
√
2
√

w
√
a4

√
b0√

c
, a3 = i

√
2
√

w
√
a4b1√

b0
√
c

, a5 = b1a4
b0

,

p = i
√
2d

√
w

√
b0√

a4
√
c

, k =
√
a4

2
√
2d

√
b0

,

(3.9)
we have the following new complex travelling wave solution

u1 = −w

3c
+4wa4(i

√
2
√
c
√
a4 + 2e

i
√

w√
2
√
c
√
a4

(
√
2x

√
a4+4d(ct−wy)

√
b0)E

√
b0

√
w)−2

+ 1

c
2w − i

√
cE

√
b0√

w
√
a4

√
2
e

i
√

w√
2
√
c
√
a4

(
√
2x

√
a4+4d(ct−wy)

√
b0)

,

(3.10)

v1 = −2c
√
2d

√
b0√

a4
u1. (3.11)
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Fig. 1 The periodic wave surfaces of Eq. (3.10) forw = 0.9, c = 0.2, a4 = 0.3, b0 = 0.5, d = 0.6,
E = 0.1, y = 3, −4 < x < 4, −4 < t < 4

Fig. 2 The contour graphs of Eq. (3.10) for w = 0.9, c = 0.2, a4 = 0.3, b0 = 0.5, d = 0.6, E =
0.1, y = 3, −120 < x < 120, −120 < t < 120

For better understanding of wave propagation meaning of via Eq. (3.10), and also,
for suitable values of parameters, 2D and 3D figures along with contour graphs may
be observed in Figs. 1, 2, 3 and 4.

Case-1b: When

a0 = −wb0
3c

, a1 = −wb1
3c

, a2 = 4idk
√

w
√
b0√

c
, a3 = 4dki

√
wb1√
c

,

a4 = 8d2k2b0, a5 = 8d2k2b1, p = i
√

w

2k
√
c
,

(3.12)

we have the following new complex bright soliton solution to the Eq. (1.1)
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Fig. 3 The periodic wave surfaces of Eq. (3.10) forw = 0.9, c = 0.2, a4 = 0.3, b0 = 0.5, d = 0.6,
E = 0.1, y = 3, t = 0.85, −4 < x < 4

Fig. 4 The combination of contour graphs of both side of Eq. (3.10) forw = 0.9, c = 0.2, a4 = 0.3,
b0 = 0.5, d = 0.6, E = 0.1, y = 3, −120 < x < 120, −120 < t < 120
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(3.13)
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Fig. 5 The 3D graphs of Eq. (3.13) for w = 0.9, c = 0.2, d = 0.3, k = 0.5, E = 0.1, y = 3,
−6 < x < 6, −6 < t < 6

Fig. 6 The contour graphs of Eq. (3.13) for w = 0.9, c = 0.2, d = 0.3, k = 0.5, E = 0.1, y = 3,
−120 < x < 120, −120 < t < 120

in which f (x, y, t) = kx + wy − ct .With a view to the deeper investigation of com-
plex travelling wave structure of Eq. (3.13) along with suitable values of parameters,
2D and 3D figures along with contour graphs may be seen in Figs. 5, 6, 7 and 8.

Case-1c: Once we consider as

b0 =−3ca0
w

, a1 = −wb1
3c

, a2 = −3ca0a3
wb1

, a4 = 3c2a0a23
2w2b21

,

a5 = −ca23
2wb1

, p = i
√

w

2k
√
c
, d = −i

√
ca3

4k
√

wb1
,

(3.14)

we have the following new complex dark soliton solution to the Eq. (1.1);



236 H. M. Baskonus

Fig. 7 The periodic wave surfaces of Eq. (3.13) for w = 0.9, c = 0.2, d = 0.3, k = 0.5, E = 0.1,
y = 3, t = 0.85, −6 < x < 6

Fig. 8 The combination of contour graphs of both side of Eq. (3.13) forw = 0.9, c = 0.2, d = 0.3,
k = 0.5, E = 0.1, y = 3, −120 < x < 120, −120 < t < 120

u3 = a3
√−1 + tanh(−i f (x, y, t))

c
2wa3

√−1 + tanh(−i f (x, y, t)) + Eb1
√−1 − tanh(−i f (x, y, t))

−
ca23(−1 + tanh(

−i
√

w

k
√
c

(kx + wy − ct)))

2w( ca32w

√−1 + tanh(−i f (x, y, t)) + Eb1
√−1 − tanh(−i f (x, y, t)))2

− w

3c
,

v3 = −c

k
u3,

(3.15)
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Fig. 9 The 3Dgraphs ofEq. (3.15) forw = 0.9, c = 0.2,a3 = 0.3, k = −0.5, b1 = −0.6, E = 0.1,
y = 3, −6 < x < 6, −6 < t < 6

Fig. 10 The contour graphs of Eq. (3.15) for w = 0.9, c = 0.2, a3 = 0.3, k = −0.5, b1 = −0.6,
E = 0.1, y = 3, −120 < x < 120, −120 < t < 120

inwhich f (x, y, t) =
√

w

k
√
c
(kx + wy − ct). For suitable values of parameters, 2D and

3D figures along with contour graphs of Eq. (3.15) may be observed in Figs. 9, 10,
11, 12 and 13.
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Fig. 11 The periodic wave surfaces of Eq. (3.15) for w = 0.9, c = 0.2, a3 = 0.3, k = −0.5, b1 =
−0.6, E = 0.1, y = 3, t = 0.85, −6 < x < 6

Fig. 12 The combination of contour graphs of both side of Eq. (3.15) for w = 0.9, c = 0.2, a3 =
0.3, k = −0.5, b1 = −0.6, E = 0.1, y = 3, −120 < x < 120, −120 < t < 120

4 Conclusion

In this manuscript, the complex dark and bright soliton solutions to the Eq. (1.1)
have been obtained by using IBSEFM. It has been observed that all solutions found
in this paper have been satisfied the Eq. (1.1) considered. With the suitable val-
ues for parameters, based on the physical meanings and properties of model taken,
and also, for better understanding of the physical meanings of the dark and bright
soliton solutions, the three- and two-dimensional graphs and contour simulations
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Fig. 13 Periodic wave surfaces of combination of real and imaginary part of Eq. (3.15) forw = 0.9,
c = 0.2, a3 = 0.3, k = −0.5, b1 = −0.6, E = 0.1, y = 3, −120 < x < 120, −120 < t < 120

have been plotted with the help of several computer programs. The solitons of wave
propagations can be observed from 3D Figs. 1, 5 and 9 along with 2D Figs. 3, 7
and 11. Moreover, high points of the mixed dark and bright soliton solutions, being
Eqs. (3.10), (3.13) and (3.15), can be seen from contour surfaces of Figs. 2, 6 and
10, as an alternative and new perspective to the 3D graph. Combinations of contour
graphs of real and imaginary parts of mixed dark and bright soliton solutions can be
also viewed from Figs. 4, 8 and 12. Furthermore, more reality surfaces of solitons
can be observed from Fig. 13 being combination of 2D graphs of real and imaginary
parts of mixed dark and bright soliton solutions of Eq. (3.15). After all simulations, it
can be understood that complex mixed dark and bright soliton solutions have shown
the expected physical properties. Comparing some paper existing in literature [29],
it can bee viewed that solutions of Eqs. (3.10), (3.13) and (3.15) are entirely new
complex mixed dark and bright soliton solutions to the Eq. (1.1). To the best of our
knowledge, the application of IBSEFM to the negative-order breaking soliton model
with (2+1)-dimensional has been not submitted in advance.
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Ticaret Üniversitesi (2015)

19. Seadawyy, A.R., Sayed, A.: Soliton solutions of cubic-quintic nonlinear Schrödinger and vari-
ant Boussinesq equations by the first integral method. Filomat J. 31, 4199–4208 (2017)

20. Seadawy, A.R., Arshad, M., Seadawy, A.R., Lu, D.: Bright-dark solitary wave solutions of
generalized higher-order nonlinear Schrödinger equation and its applications in optics. J. Elec-
tromagn. Waves Appl. 31, 1711–1721 (2017)

21. Baskonus, H.M., Bulut, H., Atangana, A.: On the complex and hyperbolic structures of lon-
gitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 25(3),
035022, 8 pp. (2016)

22. Cattani, C., Ciancio, A.: On the fractal distribution of primes and prime-indexed primes by the
binary image analysis. Phys. A 460, 222–229 (2016)

23. Arshad, M., Seadawy, A.R., Lu, D.: Exact bright-dark solitary wave solutions of the higher-
order cubic-quintic nonlinear Schrödinger equation and its stability. Optik 138, 40–49 (2017)

24. Baskonus, H.M.: New acoustic wave behaviors to the Davey-Stewartson equation with power-
law nonlinearity arising in fluid dynamics. Nonlinear Dyn. 86(1), 177–183 (2016)

25. Esen, A., Kutluay, S.: New solitary solutions for the generalized RLW equation by He’s exp-
function method. Int. J. Nonlinear Sci. Numer. Simul. 10, 551–556 (2009)

26. Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a collisionless plasma and the recur-
rence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)



On the Dark and Bright Solitons to the Negative-Order … 241

27. Bogoyavlenskii, O.I.: Breaking solitons in (2+1)-dimensional integrable equations. Rus. Math.
Surv. 45(4), 1–86 (1990)

28. Wazwaz, A.M.: Breaking soliton equations and negative-order breaking soliton equations of
typical and higher orders. Pramana 87, 68 (2016). https://doi.org/10.1007/s12043-016-1273-
z

29. Fei, J., Cao, W.: Explicit soliton-cnoidal wave interaction solutions for the (2+1)-dimensional
negative-order breaking soliton equation. Waves Random Complex Media (2018). https://doi.
org/10.1080/17455030.2018.1479548

30. Lou, S.: Higher-dimensional integrable models with a common recursion operator. Commun.
Theor. Phys. 28(41), (1997)

31. Wazwaz, A.M.: Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equa-
tions. Phys. Scr. 81(3), 035005 (2010)

32. Wazwaz,A.M.:Multiple soliton solutions for theBogoyavlenskii’s generalizedbreaking soliton
equations and its extension form. Appl. Math. Comput. 217(8), 4282–4288 (2010)

33. Baskonus, H.M., Bulut, H.: An effective scheme for solving some nonlinear partial differential
equation arising in nonlinear physics. Open Phys. 13(1), 280–289 (2015)

34. Baskonus, H.M., Bulut, H.: On the complex structures of Kundu-Eckhaus equation via
improved Bernoulli sub-equation function method. Waves Random Complex Media 25(4),
720–728 (2015)

35. Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2+1)-dimensional Boiti-
Leon-Pempinelli systems in mathematical physics. Waves Random Complex Media 26(2),
201–208 (2016)

36. Baskonus, H.M.: New complex and hyperbolic function solutions to the generalized double
combined Sinh-Cosh-Gordon equation. AIP Conf. Proc. 1798(020018), 1–9 (2017)

37. Baskonus, H.M., Koç, D.A., Gülsu, M., Bulut, H.: New wave simulations to the (3+1)-
dimensional modifiedKdv-Zakharov-Kuznetsov equation. AIPConf. Proc. 1863(560085), 1–9
(2017)

38. Ünlükal, C., Senel, M., Senel, B.: Risk assessment with failure mode and effect analysis and
gray relational analysis method in plastic enjection prosess. ITM Web Conf. 22(01023), 1–10
(2018). https://doi.org/10.1051/itmconf/20182201023

39. Senel, B., Senel, M., Aydemir, G.: Use and comparison of topsis and electre methods in per-
sonnel selection. ITM Web Conf. 22(01021), 1–10 (2018). https://doi.org/10.1051/itmconf/
20182201021

40. Dusunceli, F.: Solutions for the Drinfeld-Sokolov equation using an IBSEFM method. MSU
J. Sci. 6(1), 505–510 (2018). https://doi.org/10.18586/msufbd.403217

41. Senel, M., Senel, B., Havle, C.: Analysis of APSP key factors by using fuzzy cognitive map
(FCM). Saf. Sci. (2018)

42. Senel, B., Senel, M., Bilir, L.: Role of wind power in the energy policy of Turkey. Energy
Technol. Policy 1(1), 123–130 (2015). https://doi.org/10.1080/23317000.2014.986341

43. Sulaiman, T.A., Yokus, A., Gulluoglu, N., Baskonus, H.M., Bulut, H.: Regarding the numerical
and stability analysis of the Sharma-Tosso-Olver equation. ITM Web Conf. 22(01036), 1–9
(2018)

44. Baskonus, H.M.: On the Roots of an Evolution Equation, ICAA. 2018 Proceeding Book, pp.
45–51 (2018)

45. Dusunceli, F., Celik, E.:Numerical solution for high-order linear complex differential equations
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A Reliable Analytical Algorithm
for Cubic Isothermal Auto-Catalytic
Chemical System
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Abstract In this work we apply an algorithm for the q-homotopy analysis transform
method (q-HATM) to solve the Cubic Isothermal Auto-catalytic Chemical System
(CIACS). This technique is a combination of the Laplace decomposition method
and the homotopy analysis scheme. This method gives the solution in the form of
a rapidly convergent series with h-curves are employed to determine the intervals
of convergent. Averaged residual errors are used to determine the optimal values of
h. We show the behavior of the solutions graphically. The q-HATM solutions are
compared with Numerical results by Mathematica and with finite difference method
and excellent agreement is found.
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1 Introduction

Merkin et al. in [26] investigated the reaction-diffusion traveling waves that occur in
isothermal auto-catalysis chemical system. The researchers proposed that the reac-
tions takeplace in two regions.These regions are separated andparallel. Thequadratic
auto-catalysis represents the reaction in region I and is presented by

A + B → 2B(rate k1ab), (1.1)

with the step of the linear decay

B → C(rate k2b), (1.2)

where a and b are indicating the concentrations of reactant A and auto-catalyst
B, the ki (i = 1, 2) are the rate constants and C is some inert product of reaction.
The reaction in region I I was the quadratic auto-catalytic step (1.1) only. The two
regions were considered to be coupled through a linear diffusive interchange of the
auto-catalytic species B. In this study we assume a similar kind of system as I, but
having cubic auto-catalysis

A + 2B → 3B(rate k3ab
2) (1.3)

together with a linear decay step

B → C(rate k4b). (1.4)

This gives to the system of equations below.
The subsequent nonlinear problem on ς > 0 and τ > 0 for the dimensionless

concentrations (α1,β1) in region I and (α2,β2) in region I I of species A and B is
considered

∂α1

∂τ
= ∂2α1

∂ς2
− α1β

2
1 , (1.5)

∂β1

∂τ
= ∂2β1

∂ς2
+ α1β

2
1 − kβ1 + γ(β2 − β1), (1.6)

∂α2

∂τ
= ∂2α2

∂ς2
− α2β

2
2 , (1.7)

∂β2

∂τ
= ∂2β2

∂ς2
+ α2β

2
2 + γ(β1 − β2), (1.8)
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with the boundary conditions

αi (0, τ ) = αi (L , τ ) = 1, βi (0, τ ) = βi (L , τ ) = 0. (1.9)

The dimensionless constants k and γ indicates the strength of the auto-catalyst
decay and the coupling between the two regions respectively.

The system of Eqs. (1.5)–(1.8) also studied by [30] for space-fractional derivative.
The fractional extension of CIACS is similarly useful and gives very interesting
consequences, in this regards one can refer the work on fractional calculus [5, 18,
34, 37, 40]. Themain idea of thiswork is to apply the q-HATM[19] on theCIACSand
study the effectiveness and accuracy of this method. The q-HATM is a combination
of q-HAM [19] and Laplace transform. Also we modified the work [31, 32] to q-
HATM [19]. The convergence of q-HAM and applications of this method on models
are studied in details [7, 14–17, 27].

The present article is organized as follows. The second section describes the basic
idea of the standard q-HATM. The third section is devoted to the application of q-
HATM to CIACS. The forth section is devoted to the numerical results. In the last
section, we summarize the results in the conclusion.

2 Basic Ideas of the q-HATM

Definition 2.1 If Dr
τ is linear differential operator of order r , then the Laplace trans-

form for the fractional derivative Dr
τ f (τ ) is given as

L(Dr
τ f (τ )) = sr F(s) −

r−1∑

k=0

f (k)(0+)sr−k−1, τ > 0, (2.1)

F(s) =
∫ ∞

0
f (τ )e−sτdτ .

In order to illustrate the basic concepts and the treatment of this method we let
N [α(ς, τ )] = g(ς, τ ), whereN represents the nonlinear partial differential operator
in general. The Linear operator can be divided into two parts. The first part represents
the linear operator of the highest order and indicates by L . The second part represents
the reminder parts of the linear operator and indicates by R. So, it can be illustrated
as

Lα(ς, τ ) + Rα(ς, τ ) + Nα(ς, τ ) = g(ς, τ ), (2.2)
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where Nα(ς, τ ) denotes the nonlinear terms. Now, if we let L = Dr
τ and apply the

Laplace transform to Eq. (2.2) we obtain

L[Dr
τα(ς, τ )] + L[Rα(ς, τ )] + L[Nα(ς, τ )] = L[g(ς, τ )]. (2.3)

Making use of (2.1) we then have

L[α(ς, τ )] − 1

s

r−1∑

i=0

α(i)(ς, 0)s−i−1 + 1

s
L[Rα(ς, τ ) + Nα(ς, τ ) − g(ς, τ )] = 0.

(2.4)

We express a nonlinear operator as

N [φ(ς, τ , q)] = L[φ(ς, τ ; q)] − 1

s

r−1∑

i=0

φ(i)(ς, 0)s−i−1

+ 1

s
L[R(φ(ς, τ ; q)) + Nφ((ς, τ ; q)) − g(ς, τ ))],

(2.5)

In the above expression q ∈ [0, 1/n] is denoting an embedding parameter and
φ(ς, τ ; q) is a real function of ς , τ and q. By modifying the well known concept
of homotopy methods Liao [20–23] constructed the deformation equation of zero
order written as

(1 − nq)L[φ(ς, τ ; q) − α0(ς, τ )] = qhH(ς, τ )N [φ(ς, τ ; q)], (2.6)

Here h �= 0 is an auxiliary parameter, H(ς, τ ) �= 0 is an auxiliary function, α0(ς, τ )

is an initial approximation for α(ς, τ ) and φ(ς, τ ; q) is an unknown function. It is
obvious that, when q = 0 and q = 1/n, we have

φ(ς, τ ; 0) = α0(ς, τ ), φ(ς, τ ; 1) = α(ς, τ ), (2.7)

respectively. Therefore, as q increases from 0 to 1/n, then there is a variation in solu-
tionφ(ς, τ ; q) from the initial approximationα0(ς, τ ) to the solutionα(ς, τ ).Writing
φ(ς, τ ; q) in series form by using Taylor theorem about q we get the following result

φ(ς, τ ; q) = α0(ς, τ ) +
∞∑

m=1

αm(ς, τ )qm, (2.8)
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where

αm(ς, τ ) = 1

m!
∂mφ(ς, τ ; q)

∂qm
|q=0 . (2.9)

If various parameters, operators and the initial approximation are properly selected,
the series (2.8) converges at q = 1

n and we get

α(ς, τ ) = α0(ς, τ ) +
∞∑

m=1

ςm(ς, τ )

(
1

n

)m

. (2.10)

Let us now define the vectors

�αm(ς, τ ) = {α0(ς, τ ),α1(ς, τ ),α2(ς, τ ), . . . ,αm(ς, τ )} . (2.11)

Now we differentiate the Eq. (2.6) m times with respect to q, then set q = 0 and
finally divide them by m!, and we get

L[αm(ς, τ ) − Xmαm−1(ς, τ )] = hH(ς, τ )Rm(�αm−1(ς, τ )). (2.12)

Here

Rm(�αm−1) = 1

(m − 1)!
∂m−1(N [φ(ς, τ ; q)])

∂qm−1
|q=0 (2.13)

and

Xm =
{
0 if m ≤ 1,
n if m > 1.

On finding the inverse of Laplace transform of (2.12) we get a power series solution
α(ς, τ ) = ∑∞

m=0 αm(ς, τ )( 1n )
m of the original Eq. (2.2).

To determine the interval of convergence of the q-HATM solutions, we use the
h-curves. We can obtain the h-curves by plotting the derivative of the q-HATM
solutions with respect to τ against h and then setting τ = 0. Finally, the horizontal
line in the h curve which parallels the ς axis gives the interval of convergence [21].
However, this procedure cannot determine the optimal value of h. Hence, we use the
procedure which has been discussed by [3, 10, 24, 31, 32, 39]. Let

�(h) =
∫

�

(N (αn(ς, τ )))2 d�, (2.14)

which denotes the exact square residual error for Eq. (2.2) integrated over the whole
physical region. As �(h) → 0, the rate of convergence of the q-HATM solution
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increases. To obtain the optimal values of the convergence control parameter h, we
minimize �(h) associated with the nonlinear algebraic equation

d�(h)

dh
= 0. (2.15)

2.1 Convergence Analysis

To establish the convergence of the solution, we first need to give some conditions
needed to prove the convergence of the series (2.10). These have been given by
Odibat [29] and Elbeleze et al. [8] and Huseen and El-Tawil [14] via the following
theorem:

Theorem 2.1.1 Let the solution componentsα0,α1,α2, . . . be expressed as given in
(2.12). The series solution

∑∞
m=0 αm( 1n )

m written in (2.10) converges if ∃ 0 < r < n
s.t. ||αm+1|| ≤ ( rn )||αm || for all m ≥ m0, for some m0 ∈ N.

Moreover, the estimated error is given by

||α −
k∑

m=0

αm(
1

n
)m || ≤ 1

1 − ( rn )
(
r

n
)k+1||α0||. (2.16)

3 q-HATM solution of CIACS

In this portion, we apply the q-HATM on CIACS. We take the initial conditions to
satisfy the boundary conditions, namely

αi (ς, 0) = 1 −
∞∑

n=1

ani cos(0.5(L − 2ς)λ) sin(λL/2), (i = 1, 2), (3.1)

βi (ς, 0) =
∞∑

n=1

bni cos(0.5(L − 2ς)λ) sin(λL/2), (i = 1, 2), (3.2)

where λ = nπ
L . As we know that HAM is based on a particular type of continuous

mapping
αi (ς, τ ) → φi (ς, τ ; q), βi (ς, τ ) → ψi (ς, τ ; q)

such that, as the embedding parameter q increases from 0 to 1/n, φi (ς, τ ; q),
ψi (ς, τ ; q) and i = 1, 2 varies from the initial iteration to the exact solution.
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We now present the nonlinear operators

Ni (φi (ς, τ ; q)) = Li (φi (ς, τ ; q)) − 1

s
αi (ς, 0)

+ 1

s
Li

(
−φi,ςς (ς, τ ; q) + φi (ς, τ ; q)ψ2

i (ς, τ ; q)
)

,

Mi (ψi (ς, τ ; q)) = Li (ψi (ς, τ ; q)) − 1

s
βi (ς, 0)

+ 1

s
Li

(−ψi,ςς (ς, τ ; q) + (−2(i − 1)k + ik)ψi (ς, τ ; q)

+ (−1)iγ(ψ1(ς, τ ; q) − ψ2(ς, τ ; q)) − φi (ς, τ ; q)ψ2
i (ς, τ ; q)

)
.

Now, we develop a set of equations, using the embedding parameter q

(1 − nq)Li (φi (ς, τ ; q) − αi0(ς, τ )) = qhH(ς, τ )Ni (φi (ς, τ ; q)),

(1 − nq)Li (ψi (ς, τ ; q) − βi0(ς, τ )) = qhH(ς, τ )Mi (ψi (ς, τ ; q)),

with the initial conditions

φi (ς, 0; q) = αi0(ς, 0), ψi (ς, 0; q) = βi0(ς, 0), (i = 1, 2)

where h �= 0 and H(ς, τ ) �= 0 are the auxiliary parameter and the auxiliary function,
respectively. We expand φi (ς, τ ; q) and ψi (ς, τ ; q) in series form by employing the
Taylor theorem with respect to q, and get

φi (ς, τ ; q) = αi0(ς, τ ) +
∞∑

m=1

αim(ς, τ )qm, (3.3)

ψi (ς, τ ; q) = βi0(ς, τ ) +
∞∑

m=1

βim(ς, τ )qm, (3.4)

where

αim(ς, τ ) = 1

m!
∂mφi (ς, τ ; q)

∂qm
|q=0,

βim(ς, τ ) = 1

m!
∂mψi (ς, τ ; q)

∂qm
|q=0.

If we let q = 1
n into (3.3)–(3.4), the series become

αi (ς, τ ) = αi0(ς, τ ) +
∞∑

m=1

αim(ς, τ )

(
1

n

)m

,
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βi (ς, τ ) = βi0(ς, τ ) +
∞∑

m=1

βim(ς, τ )

(
1

n

)m

.

Now,weconstruct themth-order deformation equation from (2.12)–(2.13) as follows:

Li (αim(ς, τ ) − Xmαi(m−1)(ς, τ )) = hH(ς, τ )R1((�αi(m−1), �βi(m−1))),

Li (βim(ς, τ ) − Xmβi(m−1)(ς, τ )) = hH(ς, τ )R2((�αi(m−1), �βi(m−1))),

with initial conditions αim(ς, 0) = 0, βim(ς, 0) = 0,m > 1 where

R1((�αi(m−1), �βi(m−1))) = Li
(
αi(m−1)(ς, τ )

) − 1

s
αi (ς, 0)(1 − Xm

n
)

+ 1

s
Li

(−αi(m−1),ςς(ς, t) + αi(m−1)(ς, τ )β2
i(m−1)(ς, τ )

)
,

R2((�αi(m−1), �βi(m−1))) = Li(m−1)
(
βi(m−1)(ς, τ )

) − 1

s
βi (ς, 0)

(
1 − Xm

n

)

+ 1

s
Li

(−βi(m−1),ςς (ς, τ ) + (−2(i − 1)k + ik)βi(m−1)(ς, τ )

+ (−1)iγ(β1(m−1)(ς, τ ) − β2(m−1)(ς, τ ))

− αi(m−1)(ς, τ )β2
i(m−1)(ς, τ ; q)

)
.

If we takeLi =Laplace transform (i = 1, 2) then the right inverse ofLi = inverse
Laplace transform will be L−1

i

αim = Xmαi(m−1) + hL−1
i R1((�αi(m−1), �βi(m−1))), (3.5)

βim =Xmβi(m−1) + hL−1
i R2((�αi(m−1), �βi(m−1))). (3.6)

4 Numerical Results

In this part, we compute the first approximations. We show the behavior of the
solution graphically and investigate the intervals of convergence by the h-curves.
Also, we will compute the average residual error. Finally, we will check the accuracy
of the q-HATM solutions by comparing with another numerical method using the
command NDSolve by Mathematica. We take the initial approximation

αi0(ς, τ ) = αi0(ς, 0), βi0(ς, τ ) = βi0(ς, 0). (4.1)

For m = 1, we obtain the first approximation as following:
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αi1 = hL−1
i

(
Li (αi0(ς, τ )) − 1

s
αi (ς, 0)(1 − Xm

n
) (4.2)

+1

s
Li

(−αi0,ςς(ς, τ ) + αi0(ς, τ )β2
i0(ς, τ )

))
, (4.3)

βi1 = hL−1
i

(
Li (βi0(ς, τ )) − 1

s
βi (ς, 0)(1 − Xm

n
) (4.4)

+ 1

s
Li

(−βi0,ςς(ς, τ ) + (−2(i − 1)k + ik)βi0(ς, τ ) (4.5)

+ (−1)iγ(β10(ς, τ ) − β20(ς, τ )) − αi0(ς, τ )β2
i0(ς, τ ; q)

))
. (4.6)

And by the similar procedure we can evaluate the rest of the approximation.

First we show the q-HATM solutions for CIACS for different values of τ . In
Fig. 1 the q-HATM solutions are displayed against ς for n = 5, k = 0.1, γ = 0.2,
L = 100, an1 = 0.08, an2 = 0.07, bn1 = 0.0054, bn2 = 0.0055 with τ = 0.5, 15, 50.
From this figure we find that the oscillation produced by the reaction in the system of
finite size. And also, we find that, beside the boundaries, the q-HATM solutions are
more significant compared the q-HATM solutions far away from the boundaries. The
amplitude of the oscillation decays with increasing the distance from the boundaries.
These behaviors agree with [4, 6, 9]. It is clear that the symmetric pattern for CIACS
with respect to ς = L/2. The two dominant modes generated from the boundaries
are travelling towards the center. Thus permanent travelling waves solution exists in
systems of finite size with periodic initial conditions and these behaviors agree with
[25]. For more details for the effects of other parameters on the behaviors of CIACS
see [26, 33].

4.1 h-Curves

To observe the intervals of convergence of the q-HATM solutions, we draw the h-
curves of 5 terms of q-HATM solutions in Figs. 2, 3 and 4 for n = 1, 5 and n = 20
respectively. In Fig. 2a, we drawα1τ (ς, 0),α2τ (ς, 0) and in Fig. 2bwe draw β1τ (ς, 0),
β2τ (ς, 0) against h respectively at k = 0.01, γ = 0.4, L = 100, ς = 20, an1 = 0.001,
an2 = 0.002, bn1 = 0.001, bn2 = 0.002. From these figures, we note that the straight
line that parallels the h-axis provides the valid region of the convergence [21].
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Fig. 1 The q-HATM solutions are displayed against ς for n = 5, k = 0.01, γ = 0.4, L = 100,
an1 = 0.08, an2 = 0.07, bn1 = 0.0054, bn2 = 0.0055. Solid line: τ = 0.5, Dash line: τ = 15, and
Dot line: τ = 50
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Fig. 2 The h-curve of the 5-terms of q-HATM solutions at n = 1, k = 0.1, γ = 0.2, L = 100,
ς = 20, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. Solid line = α1τ (ς, 0),β1τ (ς, 0),
Dash line = α2τ (ς, 0),β2τ (ς, 0)

4.2 Average Residual Errors

We notice, however, that h-curve does not give the best value of the parameter h.
So, we evaluate the optimal values of the convergence-control parameters by the
minimum of the averaged residual errors [1–3, 11, 13, 24, 31, 32, 35, 36, 38, 39]

Eαi (h) = 1

NM

N∑

s=0

M∑

j=0

[
N

(
m∑

k=0

αik

(
100s

N
,
30 j

M

))]2

, (4.7)
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Fig. 3 The h-curve of the 5-terms of q-HATM solutions at n = 5, k = 0.1, γ = 0.2, L = 100,
ς = 20, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. Solid line = α1τ (ς, 0),β1τ (ς, 0),
Dash line = α2τ (ς, 0),β2τ (ς, 0)
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Fig. 4 The h-curve of the 5-terms of q-HATM solutions at n = 20, k = 0.1, γ = 0.2, L = 100,
ς = 20, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. Solid line = β1τ (ς, 0),α1τ (ς, 0),
Dash line = α2τ (ς, 0),β2τ (ς, 0)

Eβi (h) = 1

NM

N∑

s=0

M∑

j=0

[
M

(
m∑

k=0

βik

(
100s

N
,
30 j

M

))]2

, (4.8)

corresponding to a nonlinear algebraic equations

dEαi (h)

dh
= 0, (4.9)

dEβi (h)

dh
= 0. (4.10)

We show Eαi (h) and Eβi (h) in Figs. 5, 6, 7 and 8 and in Table1 for different values
of n. Figures3–8 and Table2 show that the Eαi (h) and Eβi (h) for 5 terms q-HATM
solutions. We set into (4.9)–(4.10) N = 100 and M = 30 with k = 0.1, γ = 0.2,
L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002.We use the command
Find Minimum and Minimize of Mathematica and the plotting of residual error
against h to get the optimal values h.
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Fig. 5 The averaged residual errors at the 5-terms of the q-HATM solutions for α1(ς, τ ) with
0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k = 0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001,
bn2 = 0.002. a n = 1, b n = 5, c n = 20
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Fig. 6 The averaged residual errors at the 5-terms of the q-HATM solutions for β1(ς, τ ) with
0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k = 0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001,
bn2 = 0.002. a n = 1, b n = 5, c n = 20
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Fig. 7 The averaged residual errors at the 5-terms of the q-HATM solutions for α2(ς, τ ) with
0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k = 0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001,
bn2 = 0.002. a n = 1, b n = 5, c n = 20
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Fig. 8 The averaged residual errors at the 5-terms of the q-HATM solutions for β2(ς, τ ) with
0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k = 0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001,
bn2 = 0.002. a n = 1, b n = 5, c n = 20
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Table 1 Optimal values of h for q-HATM solutions of αi (ς, τ ) at 0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k =
0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002

n Optimal value of hα1 Minimum of Eα1 (h) Optimal value of hα2 Minimum of Eα2 (h)

1 −0.404028 3.59782 × 10−13 −0.520508 2.3569 × 10−13

5 −2.02603 3.59593 × 10−13 −2.63657 3.02373 × 10−13

20 −8.10413 3.59593 × 10−13 −10.3873 2.55769 × 10−13

Table 2 Optimal values of h for q-HATM solutions of βi (ς, τ ) at 0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k =
0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002

n Optimal value of hβ1 Minimum of Eβ1 (h) Optimal value of hβ2 Minimum of Eβ2 (h)

1 −0.137431 7.02541 × 10−10 −0.223388 3.67024 × 10−10

5 −1.18981 3.67977 × 10−10 −1.38421 1.95288 × 10−10

20 −5.34697 2.76228 × 10−10 −5.50912 1.94929 × 10−10

Fig. 9 The comparison of the 5-terms of the q-HATM solutions with numerical method in Math-
ematica for n = 5, hα1 = −0.30, hβ1 = −0.18, hα2 = −0.30, hβ2 = −0.21, k = 0.1, γ = 0.2,
L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002

4.3 Comparison Analysis

Now, we compare 5-terms of q-HATM solutions obtained with a numerical method
using the commands with Mathematica 9 for solving CIACS numerically. We
draw the 5-terms of HATM solutions in Fig. 9. Figure9 shows the comparison of
q-HATM solutions with numerical method for n = 5, k = 0.1, γ = 0.2, L = 100,
an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. We observed from this figure
that the QHATM solutions have a good agreement with the results by Mathematica.
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We also compare our results also with finite differences method. We descre-
tise with time step: �τ = T

Nτ
and in space with grid spacing �ς = L

Nς
, and let

τ j = j�τ , where 0 ≤ j ≤ Nτ and ςn = n�ς, 0 ≤ n ≤ Nς . We put α j
1,n = α1(ς, τ ),

β
j
1,n = β1(ς, τ ), α

j
2,n = α2(ς, τ ) and α

j
2,n = α2(ς, τ ). Then the finite differences

approximations for (1.5)–(1.8) are given by

α
j+1
1,n = (1 − 2r)α j

1,n + r(α j
1,n+1 + α

j
1,n−1) − �τ (α

j
1,n(β

j
1,n)

2), (4.11)

β
j+1
1,n = (1 − 2r)β j

1,n + r(β j
1,n+1 + β

j
1,n−1)

+ �τ
(
−kβ j

1,n + γ(β
j
2,n − β

j
1,n) − (α

j
1,n(β

j
1,n)

2)
)

,
(4.12)

α
j+1
2,n = (1 − 2r)α j

2,n + r(α j
2,n+1 + α

j
2,n−1) − �τ (α

j
2,n(β

j
2,n)

2), (4.13)

β
j+1
1,n = (1 − 2r)β j

1,n + r(β j
1,n+1 + β

j
1,n−1) − β

j
1,n)

+ γ(β
j
1,n − β

j
2,n) − �τ (α

j
1,n(β

j
1,n)

2),
(4.14)

where r = �τ
(�ς)2

. We mention that here we use the central difference scheme for the
space derivatives of second order and the forward difference scheme for the time
derivative of order one [28]. The initial and boundary conditions become
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Fig. 10 The absolute error between the 6-terms of the q-HATM solutions with numerical solutions
by (4.11)–(4.14) scheme for a α1, b β1, c α2, and d β2 with h = −1.95, k = 0.1, γ = 0.2, L =
1, T = 1, �ς = 1

50 , �τ = 1
9000 , an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. Solid line

(n = 1), Dashed line (n = 5)
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α0
i,n = αi (ς(n)) = αi,n,β

0
i,n = βi (ς(n)) = βi,n, i = 1, 2, n = 0, 1, 2, . . . , Nς ,

α
j
i,0 = 1 = α

j
i,N ,β

j
i,0 = 0 = β

j
i,N , i = 1, 2, j = 1, 2, . . . , Nτ .

Stable solutions with the (4.11)–(4.14) scheme are only obtained if r < 1
2 . See,

e.g., [12, 28] for a proof that this condition gives the stability limit for the (4.11)–
(4.14) scheme. In Fig. 10, the absolute error between the q-HATM solutions and the
numerical solutions by the (4.11)–(4.14) scheme are plotted. Also, in this figure we
show that the effect of the factor 1

n on the accelerate of the convergence. It is clear
when n is increasing, the absolute error is decreasing.

5 Conclusion

In this paper, the q-HATMwas employed to analytically compute approximate solu-
tions of CIACS. By comparing q-HATM solutions with results by Mathimatica, the
averaged residual error the residual error and finite difference method were found an
excellent agreement. Also the effected on the accelerating of the convergence by the
factor 1

n is shown. Mathematica was used for the computations of this article.
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Numerical Study of Effects of Adrenal
Hormones on Lymphocytes

Shikaa Samuel, Vinod Gill, Devendra Kumar and Yudhveer Singh

Abstract Lymphocytes play significant defensive role to keep the body healthy.
However, there is substantial evidence that adrenal hormones such as epinephrine,
norepinephrine, and cortisol generated by psychological stress suppress the activi-
ties of the immune system or alter the activation and mobilization several immune
cells particularly lymphocytes during infections. Glucocorticoid receptors expressed
by the immune cells makes binding those hormones possible. This work formulates
a mathematical model to examine the impact of adrenal hormones on the immune
system with respect to time evolution and spatial distribution cells in response to
hormones concentration. The steady state of the model is studied and found to be
uniformly and asymptotically stable subject to the secretion and decay rates of hor-
mones. The numerical experiments using the free diffusion equations further investi-
gates the dynamic behaviour of the “bound” lymphocytes secretion rate of the adrenal
hormones induced by psychological stress.
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1 Introduction

The adrenal hormones are known to influence the activities of immune system in
human and other animals. People exposed to life threatening issues are prone to
chronic and persistent stress. For instance, a person diagnosed with any terminal
disease such as HIV infection or cancer faces social and emotional challenges. Psy-
chological stress that comes with the diagnosis of such illnesses often requires as
much attention as the infection [1]. Lymphocytes are specialized white blood cells
whose function is to identify and destroy invading antigens [2, 3].

The lymphocytes are vital components of the immune system alongside with
macrophages, antigen receptors and antigen-presenting cells [4, 5]. Psychological
stress is an unpleasant state of emotional and physiological arousal that people expe-
rience in situations that they perceive as dangerous or threatening to their well-being
[6]. Psychological stress gets inside the body through the brain by the influence of the
impulses via the nerve fibres that descend from the brain into the bone marrow and
thymus, spleen and lymph nodes that connect with lymphoid tissues. These fibres
release adrenal hormones such as epinephrine, norepinephrine, and cortisol that bind
on the receptors on lymphocytes thereby changing the functionality immune system
[7]. When psychological stress is excessive, prolonged and chronic, it breaks down
the body’s defense mechanism and leaves the body vulnerable to infections [8].

In light of the above, we propose a deterministic mathematical model to study the
temporal-spatial dynamics of lymphocytes and Adrenal Hormones interaction via
numerical experimentation inspired by [9, 10]. The secretions of adrenal hormones
during chronic and persistent stress cases are separately examined. The rest of the
paper is organized thus. In the second section, the mathematical model is proposed
which is followed by tabular description of each equation. In the same section, the
stability of the diffusion free system is investigated; equilibrium point obtained and
studied. In addition, some estimates of the full diffusion model are also examined in
appropriate Sobolev spaces. In section three, the diffusion free model is solved using
classical Runge-Kutta method while the full diffusion model is solved by explicit
forward in time, central in space (FTCS) method with appropriate stability condition
of the scheme and the corresponding results are presented alongside. The last section
is concluding remarks.

2 Formulation and Analysis of the Model Equations

2.1 Model Formulation

In these model equations, the diffusions of the respective component are modelled
using Laplace operator. The zero flux boundary conditions are imposed on the system
to study the phenomenon in bounded two dimensional domain�. u1(x, t) represents
the density of normal lymphocytes at time t; u2(x, t) : The concentration of adrenal
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Table 1 Biological meaning of the system

Equation Terms description

Eq. (1) D1�u1: diffusion term for normal cells δ: source term for normal cells

βu3: proportion of bound cells that
revert to normal

−α1u1u2: Proportion of normal cells
upon which adrenal hormone bound

−μ1u1: proportion of dead normal cells

Eq. (2) D2�u2: diffusion term for adrenal
hormones

α2u2: natural secretion of adrenal
hormones

−μ2u2: decay term for adrenal
hormones

ε(x, t): secretion of adrenal hormones
by psychological stress

Eq. (3) D3�u3: diffusion term for bound cells

−(β + μ3)u3: sum of proportions of
dead bound cells and those that revert to
normal

α1u1u2: proportions cells bound by
natural and stress induced secretions

hormones at time t; u3(x, t): The density of bound lymphocytes at time t.

∂u1
∂t

= D1�u1 + δ + βu3 − α1u1u2 − μ1u1 (1)

∂u2
∂t

= D2�u2 + α2u2 − μ2u2 + ε(x, t) (2)

∂u3
∂t

= D3�u3 + α1u1u2 − (β + μ3)u3 (3)

u1(., 0) = u01, u2(., 0) = u02, u3(., 0) = u03, inΩ

∂u1
∂n

= ∂u2
∂n

= ∂u3
∂n

= 0 on ∂�

where α1, α2, β, μ1, μ2, μ3 > 0,D1,D2,D3 ≥ 0, ε(x, t) → 0 as t → ∞.

We described system, Eqs. (1)–(3) term by term in Table 1 and parameter values
given in Table 2.

2.2 Model Analysis

Here, the steady state solutions of the ODE system is obtain and the system linearize
around the equilibrium point. The eigenvalues of the associated matrix of the lin-
earized system determines stability as in [14]. In the case of the PDE, we obtained
L2 and L∞ estimates.
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Table 2 Parameter values

Symbol Description Values

α1 Binding rate of adrenal hormones on lymphocytes 0.002/day

α2 Natural secretion rate of adrenal hormones 0.04/day [11]

δ Source term form lymphocytes 3.63E02cells [12]

β Rate bound lymphocytes revert to normal 0.001/day

μ1 Death rate of normal lymphocytes 0.06/day [12]

μ2 The adrenal hormone decay rate 0.1/day [11]

μ3 Death rate of bound lymphocytes 0.06/day

ε(x, t) Secretion of adrenal hormones induced by psychological
stress

D1 Diffusion coefficient of lymphocytes 0.0045 mm2/day [13]

D2 Diffusion coefficient of adrenal hormones 0.0052 mm2/day

D3 Diffusion coefficient of bound lymphocytes 0.0045 mm2/day [13]

Theorem 1 Forμ2 > α2 and
ε∗

μ2−α2
≥ μ1

α1
, the system,Eqs. (1)–(3) admits a spatially

homogeneous steady state ℘
(
u∗
1, u

∗
2, u

∗
3

)
.

Proof Assume that diffusion of the component decrease slowly to a negligible value,
then at equilibrium state, set ∂u1

∂t = ∂u2
∂t = ∂u3

∂t = 0, we have

0 = δ + βu3 − α1u1u2 − μ1u1, (4)

0 = α2u2 − μ2u2 + ε∗, (5)

0 = α1u1u2 − (β + μ3)u3, (6)

Solving Eqs. (4)–(6) simultaneously, we obtain positive equilibrium values

u∗
1 = δ(β + μ3)

(β + μ3)
(
α1u∗

2 − μ1
) + βα1u

∗
2

, (7)

u∗
2 = ε∗

μ2 − α2
, (8)

u∗
3 = δα1u∗

2

(β + μ3)
(
α1u∗

2 − μ1
) + βα1u∗

2

. (9)

provided μ2 > α2 and ε∗
μ2−α2

≥ μ1

α1
, hence the proof.

Theorem 2 Let u′ = Ju be a linearized system of Eqs. (11)–(13). Suppose that the
Jacobian matrix J is a constant matrix, with eigenvalues λ1, λ2, λ3 and Re(λi) < 0
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for all i = 1, 2, 3, then the spatially homogeneous steady state ℘
(
u∗
1, u

∗
2, u

∗
3

)
of Eqs.

(1)–(3) is uniformly and asymptotically stable.

Proof Now, let the kinetic parts of Eqs. (1)–(3) be expressed as below:

ϕ1 = δ + βu3 − α1u1u2 − μ1u1, ϕ2 = α1u2 − μ2u2 + ε(x, t),

ϕ3 = α1u1u2 − (β + μ3)u3.

Then, the Jacobian matrix evaluated at (u∗
1, u

∗
2, u

∗
3) is given by

J (u∗
1, u

∗
2, u

∗
3) =

⎛

⎝
−α1u2 − μ1 −α1u1 β

0 α1 − μ2 0
α1u2 α1u1 −(β + μ3)

⎞

⎠.

Now, we solve for the eigenvalues from the characteristics equation as follows:

∣∣J (u∗
1, u

∗
2, u

∗
3) − λI

∣∣ =
∣
∣∣∣∣∣

−α1u∗
2 − μ1 − λ −α1u∗

1 β

0 α1 − μ2 − λ 0
α1u∗

2 α1u∗
1 −(β + μ3) − λ

∣
∣∣∣∣∣
= 0,

(10)

where λ is the eigenvalues while I is the 3 × 3 identity matrix. This leads to the
characteristic equation

(α1 − μ2 − λ)
(
λ2 − (A1 + A2)λ + A1A2 + A3

) = 0, (11)

where A1 = −α1u∗
2 − μ1,A2 = −(β + μ3), A3 = −βα1u∗

2.

Solving (11), we obtained the following eigenvalues

λ1 = α1 − μ2, λ2 = (A1 + A2) −
√

(A1 + A2)
2 − 4(A1A2 + A3)

2
,

λ3 = (A1 + A2) +
√

(A1 + A2)
2 − 4(A1A2 + A3)

2
(12)

It remains to check whether the real parts of Eq. (12) are negative. Clearly, λ1 and
λ2 are both negative but λ3 < 0 if and only if

(A1 + A2) >

√
(A1 + A2)

2 − 4(A1A2 + A3). (13)

This suffices to show that (A1A2 + A3) > 0

A1A2 + A3 = α1(β + μ3)u
∗
2 + μ1(β + μ3) − βα1u

∗
2 (14)

Since u∗
2 > 0 and β,μ3 are positive constants, therefore
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A1A2 + A3 > βα1u
∗
2 − βα1u

∗
2 + μ1(β + μ3) = μ1(β + μ3) > 0,⇒ λ3 < 0.

(15)

Since all the eigenvalues Eq. (12) are negative, the system is uniformly and asymp-
totically stable around the equilibrium point (u∗

1, u
∗
2, u

∗
3) and this completes the proof.

Now, we define the time dependent Sobolev spaces to enable us obtain the esti-
mates.

Definition 3 [15]: let X be a generic nonempty set and 1 ≤ p < ∞

C([0,T ];X ) := {u|u : [0,T ] → X continuous }, (16)

Lp(0,T ;X ) :=

⎧
⎨

⎩
u|umeasurable,

T∫

0

‖u(t)‖pdt < ∞
⎫
⎬

⎭
. (17)

For an integer m > 0 and real p with 1 ≤ p < ∞ and X = � ⊂ R
2, we define

the Sobolev space

Wm,p(�) = {
u ∈ Lp(�)|Dαu ∈ Lp(�)∀|α| ≤ m

}
(18)

equipped with the following norms

uWm,p(�) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∑

|α|≤m

∫

�

|Dαu|pdx
)1/p

1 ≤ p < ∞,

∑

|α|≤m
ess sup

�

|Dαu| p = ∞,

(19)

|u|Wm,p(�) :=

⎛

⎝
∑

|α|=m

∫

�

|Dαu|pdx
⎞

⎠

1/p

1 ≤ p < ∞. (20)

Now, for p = 2, a Hilbert space is defined Wm,2(�) = Hm(�) with the inner
product

(u, v)m,� =
∑

|α|≤m

(Dαu,Dαv)0,�. (21)

H 1
0 (�) = {

u ∈ H 1|u = 0 on ∂�
}
with dual H−1(Ω).

Theorem 4 Let u01, u
0
2, u

0
3 ∈ L2(�) and (x, t) ∈ L2

(
0,T ;L2(�)

)
, then u1, u2, u3 ∈

L2
(
0,T ;H 1

0 (�)
)
with ∂u1

∂t , ∂u2
∂t , ∂u3

∂t ∈ L2
(
0,T ;H−1

0 (�)
)
, furthermore the estimates
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⎛

⎜
⎝

‖u1(t)‖L2(H 1
0 )

‖u2(t)‖L2(H 1
0 )

‖u3(t)‖L2(H 1
0 )

⎞

⎟
⎠ and

⎛

⎝
‖u1(t)‖L∞(L2)

‖u2(t)‖L∞(L2)

‖u3(t)‖L∞(L2)

⎞

⎠

are bounded by the data.

Proof Multiplying Eq. (1) by u1 and integrating over the domain, we have

∫

�

∂u1
∂t

u1 = D1

∫

�

�u1u1 +
∫

�

δu1 + β

∫

�

u3u1 − α1

∫

�

u1u2u1 − μ1

∫

�

u1u1 (22)

Using the Young’s inequality, integrating the first term on the right hand side by
parts, applying the boundary condition and dropping the negative terms, we have

1

2

∂

∂t

∫

�

u21 + D1

∫

�

∇u1.∇u1 ≤ 1

2

∫

�

δu21 + β

2

∫

�

(
u23 + u21

)
, (23)

1

2

∂

∂t
‖u1(t)‖2L2 + D1‖u1(t)‖2H 1

0
≤ δ + β

2
‖u1(t)‖2L2 + β

2
‖u3(t)‖2L2 (24)

In the same manner for Eqs. (2) and (3), we have

1

2

∂

∂t
‖u2(t)‖2L2 + D2‖u2(t)‖2H 1

0
≤ α2

2
‖u2(t)‖2L2 + ‖ε(., t)‖L2‖u2(t)‖L2 (25)

1

2

∂

∂t
‖u3(t)‖2L2 + D3‖u3(t)‖2H 1

0
≤ α1

2

(‖u1(t)‖2L2 + ‖u2(t)‖2L2 + ‖u3(t)‖2L2
)

(26)

Writing Eqs. (24)–(26) in vector form, we realize

1

2

∂

∂t

⎛

⎝
‖u1(t)‖2L2
‖u2(t)‖2L2
‖u3(t)‖2L2

⎞

⎠ +
⎛

⎜
⎝

‖u1(t)‖2H 1
0

‖u2(t)‖2H 1
0

‖u3(t)‖2H 1
0

⎞

⎟
⎠ ≤ M

⎛

⎝
‖u1(t)‖2L2
‖u2(t)‖2L2
‖u3(t)‖2L2

⎞

⎠ +
⎛

⎝
0

‖ε(., t)‖L2‖u2(t)‖L2
0

⎞

⎠

(27)

M = max

(
δ + α1 + β

2
,
α1 + α2

2
,
α1 + β

2

)
= δ + α1 + β

2
.

Now integrating in time and using of Cauchy-Schwarz inequality leads to

1

2

⎛

⎝
‖u1(T )‖2L2
‖u2(T )‖2L2
‖u3(T )‖2L2

⎞

⎠ − 1

2

⎛

⎜
⎝

∥∥u01
∥∥2
L2∥∥u02

∥∥2
L2∥∥u03

∥∥2
L2

⎞

⎟
⎠ +

⎛

⎜⎜
⎝

‖u1(t)‖2L2(H 1
0 )

‖u2(t)‖2L2(H 1
0 )

‖u3(t)‖2L2(H 1
0 )

⎞

⎟⎟
⎠



268 S. Samuel et al.

≤ M

⎛

⎜⎜
⎝

‖u1(t)‖2L2(L2)
‖u2(t)‖2L2(L2)
‖u3(t)‖2L2(L2)

⎞

⎟⎟
⎠ +

⎛

⎜
⎝

0
‖ε(., t)‖L2(L2)‖u2(t)‖L2(L2)

0

⎞

⎟
⎠ (28)

Using Poincare’s inequality on the right hand side of Eq. (28) and that

⎛

⎜
⎝

‖u1(t)‖L2(H 1
0 )

‖u2(t)‖L2(H 1
0 )

‖u3(t)‖L2(H 1
0 )

⎞

⎟
⎠ ≤ C

⎧
⎪⎨

⎪⎩

⎛

⎝
0

‖ε‖L2(L2)
0

⎞

⎠ +
⎛

⎜
⎝

∥∥u01
∥∥2
L2∥∥u02

∥∥2
L2∥

∥u03
∥
∥2
L2

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
< ∞ (29)

⎛

⎜
⎝

‖u1(t)‖L∞(L2)
‖u2(t)‖L∞(L2)
‖u3(t)‖L∞(L2)

⎞

⎟
⎠ ≤ C

⎧
⎪⎨

⎪⎩

⎛

⎝
0

‖ε‖L2(L2)
0

⎞

⎠ +
⎛

⎜
⎝

∥
∥u01

∥
∥2
L2∥∥u02

∥∥2
L2∥∥u03

∥∥2
L2

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
< ∞ (30)

3 Numerical Solution

3.1 Diffusion Model

Assuming the diffusions of respective interacting components decrease to zero; we
solve the resulting system of ordinary differential equations using classical Runge-
Kutta method:

du1
dt

= δ + βu3 − α1u1u2 − μ1u1 (31)

du2
dt

= α2u2 − μ2u2 + ε(t) (32)

du3
dt

= α1u1u2 − (β + μ3)u3 (33)

u1(0) = u01, u2(0) = u02, u3(0) = u03,

Now, let u = (u1, u2, u3) and tn+1 = tn + h, n = 0, 1, 2 . . ., the fourth order
Runge-Kutta [16]

un+1 = un + 1

6
(k1 + 2k2 + 2k3 + k4)

k1 = f (tn, un)
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k2 = f

(
tn + h

2
, un + h

2
k1

)

k3 = f

(
tn + h

2
, un + h

2
k2

)

k4 = f (tn + h, un + hk3)

3.1.1 Chronic Stress

Using the initial values u1(0) = 3.6E02, u2(0) = 2.8, u3(0) = 0 and parameter
values in Table 1. In case of chronic stress transient function

ε(t) = t2e−0.15t

We infer from Fig. 1 below that, in the scenario where α2 = 0.04, μ2 = 0.1, in
line the stability condition μ2 > α2, the density of normal lymphocytes (blue line)
struggled initially but eventually recover from stress induced secretion of adrenal
hormones. The second scenario is when μ2 < α2 which is against the stability con-
dition. Here, the escalation of concentration of adrenal hormones leads to exponential
increase of number of bound lymphocytes which spell abnormal immune response
or reaction. This causes activation or inhibition depending on the particular hormone
and lymphocyte involved. This will lead to chronic stress related complications such

Fig. 1 Density of normal lymphocytes u1(x, t) (blue); the concentration of adrenal hormones
u2(x, t) (green) during chronic stress; the density of bound lymphocytes u3(x, t) (red) for α2 = 0.04
and α2 = 0.11
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Fig. 2 Density of normal lymphocytes u1(x, t) (blue); the concentration of adrenal hormones
u2(x, t) (green) during persistent stress; the density of bound lymphocytes u3(x, t) (red) for α2 =
0.04 and α2 = 0.11

as high blood pressure, hypertension and diabetes. However, the second scenario can
be explored to treat hyper immune reaction related diseases.

3.1.2 Persistent Stress

Here, a constant function is usedwith the samevalue as the initial value i.e. ε(t) = 2.8.
This is to emphasize that the fact, the initial concentration of adrenal hormones
persisted for a period of time. The numerical results shown inFig. 2, further illustrated
that, evenwhen the stability conditionμ2 > α2 is satisfiedwithμ2 = 0.1, α2 > 0.04,
the normal lymphocytes cannot recover back to original density. In case of μ2 < α2,
the density of normal lymphocytes crashed. The two cases will lead to stress related
complications.

3.2 Full Diffusion Model

We use an explicit forward in time, central in space (FTCS) method [17] to solve the
system. Let the compact form Eqs. (1)–(3) be given as

∂U

∂t
= D�U + F(U ), (34)

such that the two dimensions discretize form of Eq. (34) reduces to
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Un+1
ij − Un

ij

�t
= D

⎛

⎜⎜⎜⎜
⎝

Un
i+1j − 2Un

ij + Un
i−1j

�x2
+ Un

ij+1 − 2Un
ij + Un

ij−1

�y2
︸ ︷︷ ︸

�̃Un
ij

⎞

⎟⎟⎟⎟
⎠

+ F(Un)

(35)

This scheme has the stability condition [15]

�t ≤ �x2�y2

2D
(
�x2 + �y2

)

un+1
1ij = un1ij + �t

(
D1�̃un1ij + δ + βun3ij − α1u

n
1iju

n
2ij − μ1u

n
1ij

)
(36)

un+1
2ij = un2ij + �t

(
D2�̃un2ij + (α2 − μ2)u

n
2ij + ε(xn, yn, tn)

)
(37)

un+1
3ij = un3ij + �t

(
D3�̃un3ij + α1u

n
1iju

n
2ij − (β + μ3)u

n
3ij

)
(38)

In Theorem 1, this two conditions μ2 > α2 and ε∗
μ2−α2

≥ μ1

α1
must be satisfied for

the positivity of the solution. The parameter values are taken from Table 2 and we
used the initial conditions

u1(x, y, 0) = e−0.7(x+2)2−0.7(y+2)2 , u2(x, y, 0) = 2.8, u3(x, y, 0) = 0 (39)

Note that, from the initial conditions, it is assumed that, in a square domain � =
[−4, 4]2 the initial population of normal lymphocytes is densed at x = −2, y = −2
and the average concentrations adrenal hormone is constant. Also, it is assume that
the secretion of adrenal hormones induced by psychological stress is transient given
by

ε(x, y, t) = cos
(πx

2

)
cos

(πy

2

)
t2e−0.15t (40)

It is observed from Sect. 3.1 that, the system is highly sensitive to the net secretion
rate of the adrenal hormone. Here, a dynamic behaviour is also observed in Figs. 3,
4 and 5 shown at t = 1.25 and t = 2.5 for each component. Particularly, our light
is beamed on the density of bound lymphocytes. It is inferred in Fig. 5 that, bound
lymphocytes are more densed at areas of high concentration of adrenal hormones.
Indeed, this is in consonance with previous results on cortisol association with T cell
activation during HIV infection [9].
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Fig. 3 Density of normal lymphocytes u1(x, t) at t = 1.25 and t = 2.5

Fig. 4 The concentration of adrenal hormones u2(x, t) at t = 1.25 and t = 2.5

Fig. 5 The density of bound lymphocytes u3(x, t) at t = 1.25 and t = 2.5
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4 Conclusion

In this paper, a coupled systemof reaction-diffusion equations to study the interaction
of adrenal hormones induced by psychological stress on the human immune system
has been formulated. The system has only one critical point which is proved to
be uniformly and asymptotically stable (UAS) under certain prescribed constrains
μ2 > α2 and ε∗

μ2−α2
≥ μ1

α1
. Numerical solutions have further shown that, increase

in net secretion rate of stress absorbing hormones has great negative effect on the
human immune cell. Further research can be carried out in connection with other
terminal disease models such as cancer and HIV.
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Mathematical Modelling of Poor
Nutrition in the Human Life Cycle

Ebenezer Bonyah, Kojo Ababio and Patience Pokuaa Gambrah

Abstract Nutrition is very crucial in the survival of human race and more impor-
tantly the development of a child from the womb to adulthood. In some instances,
the age of the individuals determines the kind of nutrients required. Therefore, the
human cycle has something to do with the nutrients obtained. We formulate a mathe-
matical model as a system of non-linear ordinary differential equations to investigate
the effects of poor nutrition from conception to adulthood using the poor pregnant
woman nutrient status. The steady states are studied and R0 of poor nutrition in the
society are calculated. To keep the society healthy and free of malnutrition, mal-
nourished pregnant females are encouraged to eat foods that contain all the nutrients
needed for development. The model is supported with numerical simulation.

Keywords Nutrition · Reproduction number · Pregnant women · Steady states ·
Conception

1 Introduction

Malnutritionmeans basically an individual who is over or under nutrition. TheWorld
Food Programme (WFP) classifies malnutrition as a condition where the physical
function of the human body cannot be performed such as normal growth, pregnancy,
recovery from injury and diseases [1, 2].

Fromconception throughpregnancy, birth, childhood, adolescence and adulthood,
nutrition plays a vital role in every stage which supports health and wellness and
improving the quality of life. Good nutrition for pregnant women plays an important
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role in giving birth to a healthy baby and also ensuring good health status of the
nursing mother [2]. The effects of poor nutrition begin in the womb, continues well
into childhood, adulthood and cycles across generations [3, 4]. When a pregnant
woman is malnourished in essential elements such as potassium, calcium, iodine,
and others the unborn baby begins to face challenges in the proper development
which could affect such individual to the adulthood. There is a positive correlation
between the health status of the pregnant mother and the health status of the child to
be born. In many cases, the medical health practitioners are able to detect and advice
appropriately the food and other activities necessary for the health of the child [5]. A
malnourished pregnant woman is provided with micro-nutrients in order to improve
the nutrient status which will lead to healthy pregnancy. Anaemia is very dangerous
for pregnant woman and all effort must be put in place to reduce or prevent which
will bring about health growth with the right birth weights. Good birth weights depict
the healthy status of the baby which will lead to the proper development of the child
[3].

About one billion and nine hundred million (1.9 billion) adults worldwide are
deemed overweight, while four hundred and sixty-two (462) millionaire also known
to be underweight [6–10]. It has been found from studies that approximately 41
million children under the age of five (5) years are considered overweight or obese.
In addition, 159 million children in the entire world are found to be stunted and
50 million also identified as wasted. Adding to this burden, are the 528 million or
29% of women of reproductive age around the world affected by anaemia, for which
approximately half would be amenable to iron supplementation [11].

Nutrition has been identified to be a major factor in every human stages of devel-
opment from conception to adulthood. For one to become healthy in a society, good
nutrition is therefore required especially for pregnantwomen since the life cycle starts
from conception through pregnancy. Malnutrition is the most serious and common
health problem that occurs when a person’s diet does not contain the proper amounts
of nutrients. Mathematical modelling has become an indispensable tool in investi-
gating many scientific processes in the world including social, health, economic etc.
that addresses challenges in the absence of real data in the society.

Nita et al. [12], formulated a mathematical model in order to analyze transmission
dynamics of malnutrition and underweight individuals in pregnant women in the
society. They calculated the basic reproduction number R0 at the equilibrium state of
themodelwhich decided the existence ofmalnutrition and underweight in the society.
Local stability, global stability and numerical simulation were done for this model.
Their result suggested that, to live a better and healthy life, onemust consume healthy
and nutritive food. They further suggested that in future work, deciding (optimum)
dosage of nutrients at the early stage and incorporate different layers of the society
to have more realistic analysis.

Nita et al. [13], proposed a transmission model of poor nutrition in the human life
cycle to study the spread of poor nutrition at different stages of life from a malnutr-
ited pregnant female. They modelled the sample fertile female population using the
application of SEIRmodel constructed as a system of non-linear ordinary differential
equations for the various compartments. They calculated the basic reproduction num-
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ber R0 at an endemic equilibrium point which decided the existence of poor nutrition
in the society. Local stability, global stability and numerical simulation were done
for this model. Their results suggested that the transmission rate of healthy pregnant
female giving birth to low weight babies due to pregnancy complications contribute
largely to making a poor nutritional life cycle in the society.

Senelani et al. [14], constructed a mathematical model to explore the effect of
malnutrition on the spread of cholera. In their study, both nourished and malnour-
ished individuals were included in the model as those susceptible and infected of
cholera respectively. The sensitivity analysis carried out in their study revealed that
an increase in the number of individuals susceptible to cholera as a result of malnu-
trition led to a higher number of cholera infected individuals in a community. They
concluded that nutritional related matters should be attended to immediately so as
to improve the nutrition status of the rural communities affected by cholera. Diana
[15], developed a model hinged on the first law of thermodynamics which basically
focused on controlling and managing weight variations in the human body. In this
work, the authors assumed the human body as an open system which accommodates
input into the system in the form of food. They partitioned the human population
into resting metabolic rate, non-exercise activity thermogenesis and dietary induced
thermogenesis [15]. As a result of interactions between the various compartments a
set of nonlinear ordinary differential equations were obtained. Their study quantified
a metabolic adaptation because of caloric restriction that seek to defend baseline
body weight.

Carson et al. [16], also constructed a model that focused on a general description
with respect to general body weight, a given time interval and how the body will
behave. The available data suggested that there is no clear distinction between body
composition and mass, and an invariant manifold. For a constant food intake rate
with the corresponding physical activity level as well as the body weight all will lead
to a steady state and this matches with a unique body weight.

Dumitru et al. [17], proposed a mathematical model for poor nutrition in life
cycle in humans. They used the Caputo, Atangana-Baleanu and Fabrizio derivatives
on the model to investigate poor pregnant women nutrient status. They calculated
the basic reproduction number R0 at an endemic equilibrium points which decided
the existence of poor nutrition in the society. The proposed model was examined
in fractional derivatives sense via Caputo Fabrizio, Atanagan-Baleanu and Caputo.
Comparative numerical analysis of these operators was extensively carried out and
showed that Caputo and Atangana-Baleanu derivative in all alpha values produced
similar results. The Fabrizio Caputo operator converged quickly as compared to the
other two operator and therefore more efficient.

Milinda et al. [18], investigated nutrition status which concentrated on under-
nourished children in amalarial formulatedmodel. Logistic regressionwas employed
to explore mortality rate of malaria infection. They found out that insecticide-treated
bed nets given to under-nutritioned children led to fewer malaria deaths related
cases. The authors suggested that free bed net can be given to the vulnerable in the
communities.



278 E. Bonyah et al.

Several mathematical models on epidemiology have been formulated and ana-
lyzed, however, there are few models constructed on nutrition related issues such
as underweight and overweight. The formulation and analysis of nutrition related
model would go a long way to provide some qualitative information on this serious
health issue.

The main aim of this work is to present a modified model on poor nutrition in
the human life cycle and analyze to present some useful qualitative information for
decision making process.

2 Model Formulation

In this section, we assume that malnutrition is transmissible and can be treated.
Based on the above assumption, ‘we formulate mathematical model from conception
through pregnancy, birth, childhood and adolescence. The total population is denoted
by N (t),∀t > 0. The population is divided into five compartments.

2.1 Model Diagram

The proportion of babies from malnutrited pregnant female being low weight is β1

and high weight is (1 − β1). When low weight babies are not given proper breast
feeding or formula feeding for the first 6 months and medical care, they grow to
become child undergrowth at rate of δ. With good nutrition and health care, high
weight baby and under growth children grow to become healthy adolescents at rates
η and γ respectively. The induced mortality rate for malnutrition pregnant female
and low birth weight is denoted by α1 and natural mortality rate isμ. The recruitment
rate into malnutrited pregnant female is � (Table 1).

2.2 Model Equation

The nonlinear differential equations below describes lack of nutrition from one com-
partment to other in Fig. 1.

dFMP

dt
= � − β1FMPBLW − (1 − β1)FMPBHW − (α1 + μ)FMP

dBLW

dt
= β1FMPBLW − (δ + α1 + μ)BLW

dBHW

dt
= (1 − β1)FMPBHW − (η + μ)BHW (2.2.1)
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Table 1 The table gives
detailed explanation of the
model parameter and variable

Variables Description

N Sample size of female in fertile stage

FMP Malnutrited pregnant female

BLW Low weight baby

BHW High weight baby

CU Child undergrowth

AH Adolescent healthy growth

Parameters Description

� Recruitment rate into malnutrited pregnant
female

β1 Proportion of babies from FMP being low weight
baby

(1 − β1) Proportion of babies from FMP being high
weight baby

α1 Induced death rate of FMP and low birth weight

δ Rate at which individuals from BLW moves to
CU compartment

η Rate at which individuals from BHW grows to
AH compartment

γ Rate at which individuals from CU grows to AH
compartment

μ Natural death rate

dCU

dt
= δBLW − (γ + μ)CU

dAH

dt
= ηBHW + γCU − μAH

The total population at time t is represented byN (t),N (t) = FMP+BLW +BHW +
CU + AH ,

Then,
dN

dt
= � − α1(FMP + BLW ) − μN . (2.2.2)

2.3 Model Analysis

In this section, we verify some basic properties and perform stability analysis of the
system (2.2.1).
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Fig. 1 Compartmental model for the transmission of poor nutrition where arrows with head means
moving out or coming in of a compartment

2.3.1 Boundedness of the Solution

Lemma 2.3.1 The closed set φ =
{
(FMP,BLW ,BHW ,CU ,AH ) ∈ R

5+ : N ≤ �H
μ

}
is

positively invariant with respect to model (2.2.1).

Proof Assuming (FMP,BLW ,BHW ,CU ,AH ) ∈ R
5+ for all t > 0, we want to prove

that the region φ is positively invariant so that it becomes sufficient to look at the
dynamics of the system (2.2.1). From Eq. (2.2.2), we have the rate at which the total
population changes over time as:

dN

dt
= � − α1(FMP + BLW ) − μN

In the absence of malnutrition, this equation can be rewritten as

dN

dt
+ μN = � (2.3.1)

Solving the differential equation using the integrating factor, we obtain

N (t) = �

μ
+ Ke−μt

Using initial conditions, t = 0, N (0), we have
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N (t) = �

μ
+

(
N (0) − �

μ

)
e−μt

N (t) = N (0)e−μt + �

μ

(
1 − e−μt

)
(2.3.2)

as t → ∞:

lim
t→∞N (t) = �

μ

if N (0) ≤ �
μ
, then we have N (t) = �

μ
, ∀t > 0 as t → ∞.

Also, if N (0) > �
μ
, then the solutions (FMP(t),BLW (t),BHW (t),CU (t),AH (t)) in

the region φ is positively invariant.We conclude from this theorem that it is sufficient
to deal with the dynamics of system (2.2.1) in φ. Based on that, the model can be
assume to be epidemiologically well-posed for mathematical analysis [19].

2.4 Analysis of Malnutrition Free Steady State

Equation 2.4.1 Steady state. At steady state, we assume the population is constant
over time. We determine the steady state of malnutrition free by putting the right
hand side of system (2.2.1) to zero.

� − β1FMPBLW − (1 − β1)FMPBHW − (α1 + μ)FMP = 0

β1FMPBLW − (δ + α1 + μ)BLW = 0

(1 − β1)FMPBHW − (η + μ)BHW = 0

δBLW − (γ + μ)CU = 0

ηBHW + γCU − μAH = 0 (2.4.1)

Therefore the malnutrition free equilibrium (MFE) is given by

E0 = (
F0
MP, 0, 0, 0, 0

) =
(

�

(μ + α1)
, 0, 0, 0, 0

)

Solving the equations, we obtained endemic state of the system.

2.5 The Basic Reproduction Number

The basic reproduction number RLW , which provides some useful information on
the spread of disease was computed in this work [20]. The next generation matrix



282 E. Bonyah et al.

approach was employed to drive the threshold R0LW which is given by:

RLW = ρ
(
FV−1

)

RLW = β1�

(μ + α1)(δ + α1 + μ)
+ (1 − β1)�

(μ + α1)(η + μ)

2.6 Stability Analysis of Steady States

Let

φ =
{
(FMP,BLW ,BHW ,CU ,AH ) ∈ R

5
+ : N ≤ �H

μ

}

2.6.1 Local Stability of Malnutrition Free Steady State

Theorem 2.6.2 The malnutrition free equilibrium (E0) is locally asymptotically sta-
ble if RWL < 1 and unstable if RWL > 1.

Proof The Jacobian matrix of the system (2.2.1) is given by

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

−(α1 + μ) − β1BLW − (1 − β1)BHW −β1FMP −(1 − β1)FMP 0 0

β1BLW pβ1FMP − (δ + α1 + μ) 0 0 0

(1 − β1)BHW 0 (1 − β1)FMP − (η + μ) 0 0

0 δ 0 −(γ + μ) 0

0 0 η γ −μ

⎤
⎥⎥⎥⎥⎥⎥⎦

Evaluating at the malnutrition free equilibrium point gives

J (E0) =

⎡
⎢⎢⎢⎢⎢⎣

−(α1 + μ) − β1�

(μ+α1)
− (1−β1)�

(μ+α1)
0 0

0 β1�

(μ+α1)
− (δ + α1 + μ) 0 0 0

0 0 (1−β1)�

(μ+α1)
− (η + μ) 0 0

0 δ 0 −(γ + μ) 0
0 0 η γ −μ

⎤
⎥⎥⎥⎥⎥⎦

From the Jacobian matrix we obtain the eigenvalues as follows:

λ1 = −(α1 + μ), λ2 = (μ + α1)(δ + α1 + μ) − β1�

(μ + α1)
, λ3 = (μ + α1)(η + μ) + (1 − β1)�

(μ + α1)
,

λ4 = −(γ + μ) and λ5 = −μ
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Since all the eigenvalues are negative then RWL < 1. So we conclude that malnu-
trition free is locally asymptotically stable if RWL > 1.

2.6.2 Global Stability of the Malnutrition Free Steady State

Theorem 2.6.4 The disease steady-state free E0 whenever it exists, is globally
asymptotically stable if R0WL ≤ 1 when all solutions of system (2.2.1) in R

5 are
bounded.

Proof The proof requires that a suitable Lyapunov function is chosen by taking into
account the infective classes of the non-linear ordinary differential equations of the
system (2.2.1).

V (t) = c1

(
BLW − B0

LW − B0
LW ln

BLW

B0
LW

)
+ c2

(
BHW − B0

HW − B0
HW ln

BHW

B0
HW

)

where c1 and c2 are non-negative constant to be determined. Then V is C1 on the
interior of φ,E0 is global minimum of V on φ, and V

(
B0
LW ,B0

HW

) = 0. The time

derivative of V (t) computed along solutions of (2.2.1) is
.

.

V (t) = c1
dBLW
dt + c2

dBHW
dt

V̇ (t) = c1(δ + α1 + μ)(RWL − 1)BLW + c2(η + μ)(R0 − 1)BHW ≤ 0, if R0 ≤ 1
Now V̇ (t) is negative if R0 < 1 and V̇ (t) = 0 ⇔ BLW = BHW = 0, if RWL =

1. Therefore, the malnutrition free equilibrium is globally asymptotically stable if
R0 ≤ 1.

2.7 Stability of Endemic Steady State

� − β1FMPBLW − (1 − β1)FMPBHW − (α1 + μ)FMP = 0

β1FMPBLW − (δ + α1 + μ)BLW = 0

(1 − β1)FMPBHW − (η + μ)BHW = 0 (2.7.1)

δBLW − (γ + μ)CU = 0

ηBHW + γCU − μAH = 0

Solving the Eq. (2.7.1), we obtained an endemic equilibrium point
E∗
1 = (

F∗
MP,B∗

LW ,B∗
HW ,C∗

U ,A∗
H

)
and E∗

2 = (
F∗
MP,B∗

LW ,B∗
HW ,C∗

U ,A∗
H

)
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where

E∗
1 =

[
(δ + μ + α1)

β1
,
(μ + α1)

β1
(RLW − 1), 0,

(μ + α1)δ

β1(μ + γ )
(RLW − 1), δ

(μ + α1)

β1(μ + γ )
(RLW − 1)

]
and

E∗
2 =

[
η + μ

(1 − β1)
, 0,

(μ + α1)

(1 − β1)
(RHW − 1), 0,

η(μ + α1)δ

μ(1 − β1)
(RHW − 1)

]
.

Theorem 2.7.1 The malnutrition endemic equilibrium is locally asymptotically sta-
ble if RWL > 1 and unstable if RWL ≤ 1

Proof Evaluating the Jacobian matrix at the endemic equilibrium points gives

J
(
E∗
1
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(μ + α1) + (μ + α1)
(
1 − RLW

) −(δ + μ + α1) −
(
1−β1

)(
δ+μ+α1

)
β1

0 0

−(μ + α1)
(
1 − RLW

)
0 0 0 0

0 0
(
1−β1

)(
δ+μ+α1

)
β1

− (η + μ) 0 0

0 δ 0 −(γ + μ) 0

0 0 η γ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

J
(
E∗
2
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(μ + α1) + (μ + α1)
(
1 − RHW

) − β1(η+μ)(
1−β1

) −(η + μ) 0 0

0
β1(η+μ)(
1−β1

) − (δ + μ + α1) 0 0 0

−(μ + α1)
(
1 − RHW

)
0

(
1−β1

)(
δ+μ+α1

)
β1

− (η + μ) 0 0

0 δ 0 −(γ + μ) 0

0 0 η γ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where
RLW = − β1�

μ(δ+μ+α1)
and RHW = (1−β1)�

μ(η+μ)

The trace of J
(
E∗
1

)
is

tr
(
J
(
E∗
1

)) = −(α1 + μ) + (α1 + μ)(1 − RLW ) + (1−β1)(δ+α1+μ)

β1
− (η + μ) −

(γ + μ) − μ < 0 if
(1−β1)(δ+α1+μ)

β1
< (η + μ) and determinant is given by

det
(
J
(
E∗
1
)) = −

[
(δ + α1 + μ)(α1 + μ)

(
1 − RLW

)(
(η + μ) − (1 − β1)(δ + α1 + μ)

β1

)
(γ + μ)μ

]
> 0

If RLW > 1. Also the trace of J
(
E∗
2

)
is

tr
(
J
(
E∗
2

)) = −(α1 + μ) + (α1 + μ)(1 − RHW ) + β1(η+μ)

(1−β1)
− (δ + α1 + μ) −

(γ + μ) − μ < 0 if
β1(η+μ)

(1−β1)
< (δ + α1 + μ) and determinant is given by

det
(
J
(
E∗
2

)) = −
[
(η + μ)(α1 + μ)(1 − RHW )

(
β1(η+μ)

(1−β1)
− (δ + α1 + μ)

)
(γ + μ)μ

]
>

0 if RHW > 1.
Since the trace is negative and the determinant is positive then RWL > 1 in

both cases. We then conclude that malnutrition at endemic equilibrium is locally
asymptotically stable whenever RWL > 1.
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3 Numerical Simulation

In this section,wewill estimate the parameters in themodel based on literature values,
perform sensitivity analysis and finally we will conduct numerical simulations.

3.1 Parameter Estimation

The estimation of parameters has been a major challenge in the validation of epi-
demiological modelling. In this section we tried to estimate some of the parameter
values of system (2.2.1).

Some estimated assumptions were considered in order make purposeful of illus-
trations in tracking the dynamics of malnutrition. For unavailability of data, we used
literature values as indicated in the Table 2 based on model system Eq. (2.2.1). The
following initial conditions were used for the purpose of numerical simulation FMP

= 30, BLW = 20, BHW = 20, CU = 10 and AH = 35. The parameter values used for
the work is given in Table 2.

3.2 Sensitivity Analysis

Sensitivity analysis seeks to present to characterization of the uncertainty of param-
eters with regard to a given model. It offers the opportunity to have information on
the effect of a particular parameter in the modeling processes [21].

We performed sensitivity analysis on RLW with respect to the parameter value
so that vital parameter values influence can be measured for the malnutrition model
Eq. (2.2.1). For one to increase or reduce a parameter it is essential for one to have
some relative information regarding the human morbidity and mortality in relation
to the transmission dynamics of malnutrition. value In determining how best to
reduce human mortality and morbidity due to malnutrition. According to Chintnis
et al. [22], sensitivity analysis is commonly used to determine the robustness of

Table 2 The value of the
parameters of the model

Parameter Range Sources

� (0, 0.35) [12, 13]

β1 (0, 1) Assumed

α1 0.1 [12]

δ 0.006 [13]

η 0.013 Assumed

γ (0, 1) Assumed

μ 0.3 [12]
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Table 3 Sensitivity index for
malnutrition

R0 Parameter Sensitivity index

R0LW � 1

β1 1

α1 −0.46739

δ −0.1304347

μ −0.1304347

R0HW � 1

β1 −0.0012014

α1 −0.25

η −0.0415335

μ −1.708466

model predictions to parameter values. Thus, we are concerned with parameters that
would significantly affect the model’s basic reproduction number which is usually
responsible for the spread of the phenomenon. Sensitivity analysis allows themeasure
of the relative variation in a state variable when there is a parameter variation.

Definition 3.2.1 The normalized forward sensitivity index of a variable u, which
depends differentially on a parameter, p, is defined as: rup = ∂u

∂p × p
u .

Since the reproduction number R0 is a differentiable function of the parameters,
the sensitivity index may alternatively be defined using partial derivatives as: S =
∂R0
∂ρ

× ρ

R0
, where ρ is the parameter of interest.

From Table 3, it depicts that RLW was sensitive to β1 and �. When each one of
them increasesmaking other parameters fixed, their values rose up the since they have
positive indices. The most sensitive parameter observed was � which has an effect
on malnutrited pregnant female population as well as the infected compartment.

4 Results

4.1 Simulation Results

From Fig. 2a, we observed that as time increases, the malnutrition pregnant female
population increases to a maximum point and approaches the carrying capacity. That
is the upper bound of the population.

Also, Fig. 2b the low weight baby converge to the equilibrium point zero as time
increases. Thus low weight baby dies out from the population with time.

In Fig. 2c, we observe that as time increases, the high weight baby converged to
equilibrium point zero. That is high weight baby dies out from the population.

Furthermore, Fig. 2d shows that child undergrowth will converge to the equilib-
rium point zero with time. Thus child undergrowth dies out from the population.
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(a) Malnutrition pregnant females against time when R0<1

(c) high weight baby against time when R0< 1

(e) Healthy adolescence growth against time when R0< 1

(b) Low weight baby against time when R0< 1

(d) child undergrowth against time when R0< 1

Fig. 2 Simulation results for malnutrition free with R0 < 1

Figure 2e shows that healthy adolescent growthwill converge to equilibrium point
zero with time. That is healthy adolescent growth dies out from the population.

Again, we observed from Fig. 2b–e that all the populations converge to zero as
time evolves. This shows that malnutrition can be minimized with time. Therefore,
local stability of the malnutrition free state holds as shown in Theorem 2.6.2.

In Fig. 3a, it is observed that as time increases, the malnutrition pregnant female
population decreases which shows that there is movement to another compartment.
Thus, malnutrition pregnant female still exists in the population. In Fig. 3b, the low
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(a) malnutrition pregnant females against time (b) A plot of low weight baby against time

(c) A plot of high weight baby against time (d) A plot of child under growth against time

(e) A plot of healthy adolescence growth against time

Fig. 3 Simulation results for endemic steady states E∗
1
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weight baby decreases to equilibrium point as time increases. Thus, low weight baby
still exists in the population.

Also, Fig. 2c, we observe that as time increases, the high weight baby converged
to equilibrium point zero with time. This confirms the results on the steady state E∗

1 .
Furthermore, Fig. 3d shows that child undergrowth decreases to the equilibrium

point as time increases. Thus, child undergrowth will still exist in the population.
From Fig. 4a, we observe that as time increases, the malnutrition pregnant female

population reduces which shows that there is movement to another compartment.
Thus, malnutrition pregnant female still exists in the population.

(a) A plot of malnutrition pregnant females against Time (b) A plot of low weight baby against time

(c) A plot of high weight baby against time (d) A plot of child undergrowth against time

(e) A plot of healthy adolescence growth against time

Fig. 4 Simulation results for endemic steady states E∗
2
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(a) A plot of all the compartments with 0LWR <1 (b) A plot of all the compartments with 0LWR >1

Fig. 5 Simulation results for R0LW < 1 and R0LW > 1

In 4b, d, we observe that as time increases, the low weight baby and child under-
growth converged to equilibrium point zero with time. This confirms the results on
our steady state E∗

2 . Also, Fig. 4c, we observe that as time increases, the high weight
baby decreases to equilibrium point. That is high weight baby will still exist in the
populationwith time. Furthermore, from3e and 4e, the healthy adolescent population
will converge to zero as time increases.

Figure 5 shows how severe malnutrition at individual compartments. When
R0LW < 1 all the infected compartments converge to zero. Thus, effect of mal-
nutrition dies out from the population at malnutrition free.

Also, when R0LW > 1, three of the compartments converge to zero (dies out from
the population).

This confirms the steady states where both low weight babies and child under-
growth were found to be zero. Malnutrition is minimized but cannot be eradicated.
Therefore, the existence malnutrition in the population.

From Fig. 6a, when R0LW < 1 and R0HW < 1, we observe malnutrition free
equilibrium point E0. That is malnutrition is stable. Also, in Fig. 6b when R0HW < 1
and R0LW > 1, E0 will be unstable and the endemic equilibrium E∗

2 will be stable.
This means that high weigh babies and healthy adolescent will die out. However,
Fig. 6c shows the case where E0 will be unstable and the endemic equilibrium point
E∗
1 will be stable.
From Fig. 6b, c we observe that malnutrition cannot be eradicated but can be

minimized. Hence, malnutrition at endemic equilibrium is locally stable as shown in
Theorem 2.7.1.
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(a) all the compartments with 0 1LWR < and 0 1HWR <  (b) all the compartments with 0 1HWR < and 0 1LWR >

(c) A plot of all the compartments with 0 1LWR < and 0 1HWR >

Fig. 6 Simulation results for malnutrition free and endemic steady states

5 Conclusion

In this paper, we have successfully studied the effect of poor nutrition in the human
life cycle. The effect of poor nutrition begins in the womb, continues well into
childhood, adulthood and cycles across generations. We formulated a mathematical
model from the conception to adulthood using the pregnant women nutrient status.
The basic reproduction number R0 was calculated. This serves as a threshold to
which malnutrition will die out when R0 < 1 or will persist when R0 > 1. The model
is supported with numerical simulation. We had a multiple steady state, which was
written in terms of the reproduction number for low weight babies and high weight
babies. The analysis on the steady state suggested that both malnutrition free and
endemic equilibrium are both locally stable. Results from numerical simulations
for all the compartments showed that malnutrition will die out locally and become
unstable globally at the endemic state.Malnutrition can beminimized for a period but
cannot be eradicated completely from the society. This suggests that good nutrition
is very important in every stage of human development in the society. Good nutrition
will reduce the rate at which fertile female becomes malnourished in the society.
The pregnant women nutritional status should be improved to give birth to healthy
babywhich will grow eventually to become healthy adolescent. Literature values and
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assumed parameters were used because of the unavailability of data on malnutrition.
In future work, this model can be improved to consider all stages throughout the
human life cycle.
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Characteristics of Homogeneous
Heterogeneous Reaction on Flow
of Walters’ B Liquid Under the
Statistical Paradigm

Anum Shafiq, T. N. Sindhu and Z. Hammouch

Abstract In this article, significance of inclinedMHDstagnant point flowofWalters
B liquid because of stretched surface is investigated. Flow phenomenon is studied
with Newtonian heating, homogeneous heterogeneous reactions, Joule heating and
viscous dissipation. The nonlinear PDEs are converted to get nonlinear system of
ODEs by invoking suitable transformations and solved by utilizing OHAM. Statisti-
cal methodology is used to check the significance and insignificance of the physical
parameters via correlation coefficients and probable error. Characteristics of vari-
ous sundry parameters on velocity, concentration and temperature fields are studied.
Friction and Nusselt numbers are calculated and discuss in detail.

Keywords Statistical approach · Newtonian heating · Walters-B liquid · Inclined
MHD · Joule heating · Homogeneous heterogeneous reaction · OHAM

1 Introduction

The investigation of magnetohydrodynamics flow with heat transfer phenomenon in
non-Newtonian liquids has substantial usages in technology and science, like con-
struction of heat exchangers, installation of nuclear accelerators, design for cooling
of nuclear reactors, turbo machinery, blood flowmeasurement techniques. Ahmed et
al. [1] investigated impact of MHD on Jeffrey liquid flow along an extended surface
using power law temperature. Analytical solutions of non-linear PDEs using slip con-
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ditions are instigated flow of non-Newtonian MHD liquid in a pipe towards a porous
medium was analyzed by Zeeshan and Ellahi [2]. Nejad et al. [3] reported MHD
stream of electrically conducting power law liquids towards an isothermal vertical
wavy sheet. 3-Dimensional MHD Jeffrey nanoliquid flow along thermally radiative
surface under heat generation phenomenon was examined by Shehzad et al. [4]. Das
et al. [5] reported behavior of melting phenomenon on MHD stagnant point Jeffrey
liquid stream towards an extended surface with slip conditions. Venkateswarlu and
Satya Narayana [6] scrutinized behavior of chemical reactant on viscoelastic liq-
uid stream along a vertical plate with MHD. Rashidi et al. [7] explored impact of
magnetohydrodynamic and heat phenomena on two dimensional liquid flows along
a porous medium. Sheikholeslami et al. [8] obtained the simulation of problem of
CuO-water nanoliquid stream with convective heat phenomenon. Ellahi et al. [9]
reported simultaneous impacts of magnetohydrodynamic and partial slip on peri-
staltic stream of Jeffery liquid in a rectangular duct. Significance of Joule heating
phenomenon in third-grade liquid stream towards a radiative plate was studied by
Hayat et al. [10].

Both homogeneous and heterogeneous reactants are involved in numerous chemi-
cally reacting schemes. Some of them have capability to proceed slow or not, exclud-
ing catalyst. The homogeneous and heterogeneous reactants interplay is very com-
pound including consumption and production of reactant species at different rates
both within liquid and on catalytic exterior like reactions occurring in production of
polymer and ceramics, hydrometallurgical industry, crops damage via freezing, dis-
persion and fog formation, food processing, equipment design for chemical process-
ing, cooling towers and temperature fields and moisture over agricultural fields and
groves of fruit trees. Merkin [11] considered homogeneous-heterogeneous reactions
model in stream of viscous liquid towards a flat plate. He noted that outer reaction
is superior mechanism near leading edge of surface. Significance of homogenous-
heterogeneous reactants in stream of viscous liquid was numerically investigated
by Chaudhary and Merkin [12]. Stagnant-point stream along an extended plate
using homogeneous/heterogeneous reactants was analyzed by Bachok et al. [13].
Khan and Pop [14] reported significance of homogeneous-heterogeneous reactants
of viscoelastic liquid stream along an extended surface. Homogeneous heteroge-
neous reactants in micropolar liquid flow along a permeable extended/shrinking
plate was examined by Shaw et al. [15]. Khan and Pop’s [14] work was extended by
Kameswaran et al. [16] for nanoliquid along a porous extended plate. Importance
of homogeneous-heterogeneous reactants in stagnant point carbon nanotubes flow
with Newtonian heating was reported by Hayat et al. [17]. Behaviour of nanoliquid
MHD flow with homogeneous heterogeneous reactants and condition for velocity
slip was also examined by Hayat et al. [18]. Hayat et al. [19] reported significance
of homogeneous-heterogeneous reactants in Powell-Eyring liquid flow. Hayat et al.
[20] examinedOldroyd-BMHD liquid flow using homogeneous heterogeneous reac-
tions with Cattaneo-Christov model. Significance of MHD in bi-directional stream
of nanoliquid with homogeneous heterogeneous reactants and second-order velocity
slip was analyzed by Hayat et al. [21].
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Newtonian heating (or cooling process) is process where internal resistance is
supposed to be neglected in comparing with its surface resistance. Currently this
phenomenon has been used by various researchers because of its practical usages
like to configuration heat exchanger, conjugate warmth exchange around fins and
furthermore in convective streams setup where bounding edges absorb heat by solar
radiations. The Von Kármán stream and heat phenomenon of an electrically con-
ducting liquid was given by Sahoo [22]. Salleh et al. [23] examined heat transfer
flow along an extended surface using Newtonian heating. Significance of Newtonian
heating in second grade liquid flow along an extended surface was considered in [24].
Unsteady viscous liquidMHDflow towards a flat surface using Navier slip and New-
tonian heating effects was reportedMakinde [25]. Uddin et al. [26] is analyzedMHD
flow of nanoliquid towards a flat vertical surface with Newtonian heating. Sarif et al.
[27] numerically studied viscous flow induced by extended plate using Newtonian
heating through Keller Box technique. 3-Dimensional couple stress magnetohydro-
dynamic liquid flow with Newtonian heating is studied in [28]. Impact of viscous
dissipation and Newtonian heating on nanoliquids flow towards a flat surface was
investigated by Makinde [29]. The flow of Walters B liquid with Newtonian heating
was reported in [30].

The heterogeneous homogeneous reactants and Newtonian heating phenomenon
in flow of Walters B liquid along a stretched plate is investigated. Inclined MHD,
Stagnant flow and Joule heating is also considered. The non-linear ODEs are solved
by OHAM [31, 32]. Statistical approach is used to check the statistical significance
of physical parameters and the drag forces/local Nusselt number. Significance of
various sundry parameters on velocity, temperature and concentration fields, skin
friction and Nusselt numbers are examined very carefully.

2 Formulation

Walters B stagnation-point liquid flow with homogeneous and heterogeneous reac-
tions over a stretched plate is considered here. The flow is confined to y ≥ 0. Applied
magnetic field in such a way thats its making angle ψ with axis. Surface is also
subjected to Newtonian heating. Contribution due to viscous-dissipation and Joule
heating is present.

Simple homogeneous heterogeneous reactant model is [20]

A + 2B → 3B, rate = ab2k1. (1)

with
A → B, rate = ak2, (2)

where (a, b) are concentrations of chemical species (A,B) on the other side, rate
constants are presented as (k1, k2). These reactants equations tells us that in exter-
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nal stream and at outer boundary layer edge, reaction rate is zero. The governing
equations are [14, 15]

∂v̄

∂y
+ ∂ū

∂x
= 0, (3)

ū
∂ū

∂x
+ v̄

∂ū

∂y
− ν

∂2ū

∂y2
+ k0

ρ

[
ū

∂3ū

∂x∂y2
+ ∂ū

∂x

∂2ū

∂y2

+v̄
∂3u

∂y3
− ∂ū

∂y

∂2ū

∂x∂y

]
−Ue

dUe

dx
+ σB2

0

ρ
sin2 ψ (ū −Ue) = 0, (4)

ū
∂T̄

∂x
+ v̄

∂T̄

∂y
− K

ρcp

∂2T̄

∂y2
− σB2

0

ρcp
sin2 ψ (ū −Ue)

2 = 0, (5)

ū
∂ā

∂x
+ v̄

∂ā

∂y
+ k1āb̄

2 − DA
∂2ā

∂y2
= 0, (6)

ū
∂b̄

∂x
+ v̄

∂b̄

∂y
− k1āb̄

2 − DB
∂2b̄

∂y2
= 0, (7)

with

ū (x, 0) = cx, v̄(x, 0) = 0,
∂T̄

∂y

∣∣∣∣
y=0

= −hs T̄ ,

DB
∂b̄

∂y

∣∣∣∣
y=0

+ ksā = 0, DA
∂ā

∂y

∣∣∣∣
y=0

− k2ā = 0, (8)

ū → Ue(x) = dx, T̄ → T̄∞ ā → ā0, b̄ → 0 as y → ∞. (9)

σ electrical conductivity, B0 magnetic field, k0 liquidmaterial parameters,Uw stretch-
ing velocity, T temperature, ν kinematic viscosity, Ue free stream velocity, thermal
conductivity denoted by K , ρ density of liquid, cp specific heat, DB and DA dif-
fusion species coefficients of B and A, T∞ ambient liquid temperature, a0 positive
dimensional constant, hs denotes heat transfer coefficient and c represents stretching
rate.

Introducing dimensionless variables

v̄ (x, y) = −√
cν f (η) , ū (x, y) = cx f ′ (η) ,

θ = T̄ − T̄∞
T̄∞

, h(η) = b̄

ā0
, g(η) = ā

ā0
, η =

√
c

ν
y. (10)
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Thus
f ′′′ − (

f ′)2 − We
[
2 f ′ f ′′′ − (

f ′′)2 − f f (iv)
]

+ f f ′′ + A2

− M2 sin2 ψ
(−A + f ′) = 0,

f ′ (0) = 1, f ′ (∞) = A, f (0) = 0, (11)

θ′′ + Pr f θ′ + M2 Pr Ec sin2 ψ
(
f ′ − A

)2 = 0,

θ′(0) = −γ − γθ (0) , θ(∞) = 0, (12)

1

Sc
g′′ − Kgh2 + f g′ = 0,

g′ (0) = K2g(0), g (∞) → 1, (13)

δ1

Sc
h′′ + Kgh2 + f h′ = 0,

δ1h
′ (0) = −K2g(0), h (∞) → 0. (14)

Hartman number is denoted by M , ratio parameter is given by A, Weissenberg num-
ber denoted by We, Prandtl number is given by Pr, Eckert number is denoted by Ec
and conjugate parameter is given by γ, strength of homogeneous reactant parame-
ter is denoted by K , δ1 the ratio of mass diffusion coefficient, K2 the strength of
heterogeneous reaction parameter and Sc the Schmidt number and defined as

M =
√

σB2
0

ρc
, A = a

c
, We = k0c

μ0
, Pr = μ0cp

K
,

Ec = U 2
m

cpT∞
, γ = hs

√
ν

a
, K = k1a20

c
,

K2 = k2l Re−1/2
x

D
, δ1 = DB

DA
, Sc = ν

DA
. (15)

Where coefficients of diffusion of chemical species (B,A) are of comparable size.
This argument provides us to make further supposition that diffusion coefficients
(DB, DA) are equal i.e. δ1 = 1 and therefore [12]:

h (η) + g (η) − 1 = 0. (16)

Now Eqs. (13) and (14) yield

1

Sc
g′′ − Kg (g − 1)2 + f g′ = 0, (17)
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with
g′ (0) − K2g (0) = 0, g (η) → 1 as η → ∞. (18)

The expression of C f x and Nux are

C f x = τw

ρU 2
w

, Nux = xqw
K (T − T∞)

, (19)

where

qw = −K

(
∂T̄

∂y

)
y=0

, τw =
[
μ0

∂ū

∂y
− k0

(
v̄
∂2ū

∂y2
+ ū

∂2ū

∂x∂y
+ 2

∂ū

∂x

∂ū

∂y

)]
y=0

.

(20)
Thus (

Re
x

)1/2
C f = f ′′ (0) − 3Wef ′′ (0) , (21)

(
Re
x

)−1/2
Nux = γ

(
1 + 1

θ (0)

)
, (22)

where Rex = cx2/ν denotes local Reynolds parameter.

3 OHAM

The governing system of nonlinear ODEs are solved analytically by invoking reliable
methodology called optimal homotopy analysis method. Average squared residual
errors (ASRE) and corresponding optimal convergence control parameters are com-
puted. Initial guesses and linear operators

(
f0, θ0, L f , Lθ

)
are

f0 (η) = Aη − (A − 1) (1 − exp (−η)) , θ0 (η) = γ exp (−η)

1 − γ
, g0 (η) = 1 − 1

2
exp (−K2η) ,

(23)

L f [ f (η)] = d3 f

dη3
− d f

dη
, Lθ [θ (η)] = d2θ

dη2
− θ, Lg [g (η)] = d2g

dη2
− g, (24)

satisfying the following properties

L f
[
C̄1 + C̄2e

η + C̄3e
−η

] = 0, (25)

Lθ

[
C̄4e

η + C̄5e
−η

] = 0, (26)

Lg

[
C̄6e

η + C̄7e
−η

] = 0, (27)

in which C̄i (i = 1, . . . , 7) are constants.
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4 Optimal Convergence Control Parameters

Convergence control parameters (� f , �θ, �g) are calculated by BVPh2.0 package.
These values can be obtained by minimizing total error. The average square residual
error (ASRE) are used for minimizing the CPU time, at mth-order of approximation
as follows

ε f
m

(
� f , �θ

) = 1

1 + N1

N1∑
j=0

[
k∑

i=0

( fi )η= jπ

]2

,

εθ
m

(
� f , �θ

) = 1

1 + N1

N1∑
j=0

[
k∑

i=0

( fi )η= jπ ,

k∑
i=0

(θi )η= jπ

]2

,

and

εg
m

(
� f , �g

) = 1

1 + N1

N1∑
j=0

[
k∑

i=0

( fi )η= jπ ,

k∑
i=0

(gi )η= jπ

]2

.

The optimal values of
(
� f , �θ, �g

)
are � f = −0.427635, �θ = −0.8078 and �g =

−0.93495. when A = 0.1,We = 0.2,ψ = π/3, δ = 0.2, K1 = 1.5,Pr = 0.7,
K2 = 0.2, Ec = 0.4 and Sc = 0.4. In Fig. 1, corresponding total residual error is
plotted. Optimal convergence control parameters are given in Table1. Table1 shows
individual averaged squared residual errors of momentum, energy equations at vari-
ous order of approximation. By increasing order of approximation, squared residual
error decreases.

Fig. 1 Total error versus
order of approximations
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Table 1 ASREs at various order of approximationswhenψ = π/3, A = 0.1,We = 0.2, K2 = 0.2,
δ = 0.2, Pr = 0.7, K1 = 1.5, Sc = 0.4 and Ec = 0.4 by means of optimal control parameters
� f = −0.427635, �θ = −0.8078, �g = −0.93495

m ε
f
m εθ

m ε
g
m CPU time (s)

2 2.97384 × 10−2 4.10708 × 10−3 0.68448 1.24000

4 1.80930 × 10−2 2.00429 × 10−3 0.63293 5.84001

6 1.18885 × 10−2 1.25117 × 10−3 0.59691 18.1200

8 8.26666 × 10−3 8.90896 × 10−4 0.56910 42.1301

12 4.50178 × 10−3 5.54549 × 10−4 0.54652 142.530

14 3.46788 × 10−3 4.63210 × 10−4 0.53276 225.510

16 2.72896 × 10−3 3.95808 × 10−4 0.52610 352.510

5 Discussion

In this section, physical interpretation of the results for velocity, temperature and
concentration fields are discussed.

Change in velocity field with an increment in We is plotted in Fig. 2a. When
velocity of extending plate is larger than free stream velocity i.e. (A < 1), velocity
field reduces for larger values of We. However for A > 1, velocity profile rises.
Irrespective of A, corresponding boundary layer thins with enhancement in We.
Physically, larger values of We rises tensile stresses as a result oppose momentum
transport. Consequently, boundary layer width reduces. Significance of M on f ′
for both A > 1 and A < 1 cases are drawn in Fig. 2b. Enhancement in magnetic
number corresponds the reduction in velocity field when A < 1 and reverse effect
is observed on velocity field for A > 1. Since, applied transverse magnetic field
creates a retardant force. It has ability to resist liquid motion and because of this
reason, corresponding boundary layer width reduces for increment in magnetic field.

Fig. 2 a Impact of We on f ′ (η). b Impact of M on f ′ (η)
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Fig. 3 a Impact of A on f ′ (η). b Impact of Pr on θ (η)

Fig. 4 a Impact of Pr on θ (η). b Impact of Ec on θ (η)

f ′ is mounting function of A is reported in Fig. 3a. Boundary layer width rises
with enhancement in A with A < 1, while thinner boundary layer becomes for case
of enhancement in A provided A > 1. Additionally, no boundary layer is noted for
A = 1.

Figure3b is elucidated behavior of inclination angle ψ on f ′ (η) for cases A < 1
and A > 1. It is noticed that velocity field is decreasing forψwhen A < 1 and reverse
behavior is observed for A > 1. In fact, with augmented ψ, significance of magnetic
field on liquid particles rises because of rise in Lorentz force. Therefore, velocity
field reduces. It is also examined that for ψ = 0, magnetic field impact on velocity
profile is zero while for ψ = π/2, maximum resistance is observed.

The ratio of momentum to thermal diffusivity is defined as Prandtl parameter
which enhances pure convection but reduces conduction. Therefore, thermal bound-
ary layer thins and heat transfer rate at surface rises for increment Pr (see Fig. 4a).

Higher values of Eckert number, heat up liquid near vicinity of bounding surface
and therefore, corresponding boundary layer width rises (Fig. 4b).

Effect of γ, characterizing Newtonian heating strength on temperature field is
sketched in Fig. 5a. It is examined that stronger convective heating permits ther-
mal impact to penetrate deeper into quiescent liquid. Hence, corresponding thermal
boundary layer width for larger γ surface heat flux, being proportional to γ is mount-
ing function of γ.
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Fig. 5 a Impact of γ on θ (η) . b Impact of ψ on θ (η)

Figure5b is drawn ψ on temperature distribution. Temperature field is increased
for high values ofψ. Because, higherψ corresponds to increase magnetic field which
opposes liquid flow. Therefore, rise in temperature field occur.

Influence of K1 on concentration profile is investigated in Fig. 6a. Concentration
field reduces. Additionally boundary layer width increases for higher strength of
homogeneous reaction number.

Significance of K2 on concentration field is analyzed in Fig. 6b. Concentration
field reduces near surface of plate and it rises away from surface for larger K2.

Fig. 6 a Impact of K1 on g (η). b Impact of K2 on g (η). c Impact of Sc on g (η)
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Table 2 Variation of skin friction coefficient for various values of physical parameter

M We A ψ Re−1/2
x C f

0.0 0.2 0.1 π/3 0.39670

0.1 0.39795

0.2 0.40158

0.2 0.0 0.1 π/3 0.59370

0.1 0.62795

0.2 0.67358

0.2 0.2 0.0 π/3 0.41420

0.1 0.42158

0.3 0.44247

0.2 0.2 0.1 0.0 0.39670

π/3 0.40160

π/2 0.40320

Effect of Sc on concentration field is illustrated in Fig. 6c. Concentration field
decreases for higher Schmidt parameter. Additionally, solutal boundary layer width
reduces. As Schmidt parameter is ratio of diffusivity of momentum to mass, so larger
Schmidt parameter corresponds to little mass diffusivity. Consequently, concentra-
tion profile reduces.

Friction and local Nusselt numbers for different values of sundry parameters are
provided in Tables2 and 3. Friction coefficient is enhanced by increasing M,We, ψ
and A. On other side, local Nusselt parameter rises for increment in M, A,We, γ
and Pr while it reduces for large ψ and Ec.

6 Statistical Paradigm

We lengthen our examination for different out-turn of significant parameters on
the inspected issue. Arranged by need to comprehend correlation between different
sundry parameter and friction coefficient (F.C.) and furthermore for Nusselt number.
We revealed estimations of F.C. in Table2 and Nusselt number in Table3. The esti-
mations of correlation coefficients (c.c) are examined and recorded in Tables4 and
5 concerning F.C. and Nusselt number. It is evident that estimation of c.c is limited
between (−1, 1). Moreover absolute value is limited somewhere in range of 0 and
1. The c.c is not just investigate the connection between two variates yet in addition
uncovers the opposite and direct correspondence between them.

The c.c has accompanying interpretations:

• Positive perfect linear relationship of variables occurs if r = 1.
• Negative perfect linear relationship of variables occurs if r = −1.
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Table 3 Numerical values of Nusselt number

M We A ψ γ Pr Ec −Re1/2x Nux

0.0 0.2 0.1 π/3 0.2 0.7 0.4 0.49750

0.1 0.49835

0.2 0.49908

0.2 0.0 0.1 π/3 0.2 0.7 0.4 0.59850

0.1 0.69535

0.2 0.72308

0.2 0.2 0.0 π/3 0.2 0.7 0.4 0.48190

0.1 0.49308

0.2 0.50571

0.2 0.2 0.1 0 0.2 0.7 0.4 0.49750

π/3 0.49310

π/2 0.49170

0.2 0.2 0.1 π/3 0.0 0.7 0.4 0.43570

0.1 0.44534

0.4 0.52885

0.2 0.2 0.1 π/3 0.2 0.1 0.4 0.33570

0.2 0.41534

0.4 0.52185

0.2 0.2 0.1 π/3 0.2 0.7 0.0 0.49660

0.2 0.49308

0.4 0.48961

Table 4 Correlation
coefficient for skin friction
coefficient

r Re1/2x Cx

M 0.9625690

We 0.9966344

A 0.9973672

ψ 0.9954905

• Strong +ve linear relationship of variables occurs if 0.7 ≤ r ≤ 1.
• Strong −ve linear relationship of variables occurs if −1 ≤ r ≤ −0.7.
• No linear relationship of variables holds if r = 0.
It is noted from Table4, that strongly positive correlation is hold for friction coef-
ficient according to all physical attributes under study. Whereas for the Nusselt
number, we have found positive and negative correlation for all the parameters in
Table5.
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Table 5 Correlation
coefficient for Nusselt number

r Re−1/2
x Nux

M 0.9637310

We 0.9523335

A 0.9993825

ψ −0.9949968

Pr 0.9890194

Ec −0.9965454

7 Probable Error (P.E.)

The P.E. of c.r. can be computed by invoking following formula

P.E . (r) = 0.6745

(
1 − r2

)
√
n

,

where c.c. is denoted by r and number of observations is denoted by n. The c.c. is
insignificant if r is less than P.E . This shows that no correlation between variables
exists. The correlation is said to be certain when value of r is 6 times more than the
P.E . and insignificant when r is less than P.E . (r). This reveals that r is significant.
Thus P.E. is computed to see reliability of value of c.c. Probable error of friction and
local Nusselt number are given in Tables6 and 7. It is noted that for insignificant
correlation r < P.E . (r), and for significant correlation r > 6P.E . (r).

Table 6 P.E. for skin friction
coefficient

P.E . (r) Re1/2x Cx

M 0.0028607380

We 0.0002616859

A 0.0002047810

ψ 0.0003504271

Table 7 P.E. for Nusselt
number

P.E . (r) Re−1/2
x Nux

M 0.002773569

We 0.003624006

A 4.80818 × 10−5

ψ 0.0003886940

Pr 0.0008505241

Ec 0.0002685984
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Table 8 Values of r
P.E .(r) for

skin friction coefficient
r

P.E .(r) Re1/2x Cx

M 336.4758

We 3808.515

A 4870.410

ψ 2840.792

Table 9 Values of r
P.E .(r) for

Nusselt number
r

P.E .(r) Re−1/2
x Nux

M 347.4697

We 262.7847

A 20785.05

ψ −2559.846

Pr 1162.835

Ec −1505.629

7.1 Statistical Proclamation

Tables8 and 9 are made for values of r
P.E .(r) . From these tables, it is noted that

all values are satisfied abovementioned relation (see Table8). Also, for ψ and
Ec, r < P.E . (r) which tells us the statistically insignificance of correlation coeffi-
cient. For r = 1, we obtain perfect significant correlation. Consequently, here cor-
relation coefficients are remarkable and parameters are greatly interconnected to
physical attributes (see Tables8 and 9).

8 Conclusions

Here we studied significance of homogeneous/heterogeneous reactants and inclined
MHD in stagnant point flow of Walters’ B liquid. Heat transfer phenomenon using
Newtonian heating is carried out. The key points are mentioned below.

• f ′(η) is decaying function of M and We for A < 1, while it is mounting function
of M and We according to A > 1.

• Increment in M and We corresponds to a thinner momentum boundary layer.
• Significance rise is noted in temperature profile for higher conjugate parameter.
• Strongly positive correlation exists for friction coefficient according to all the
physical attributes on the contrary the negative relation is observed for ψ and Ec
with the Nusselt number.
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