Keywords

AMS Subject Classification (2010)

1 Introduction and Preliminaries

The applications of q-calculus emerged as a new area in the field of approximation theory from last two decades. The development of q-calculus has led to the discovery of various modifications of Bernstein polynomials involving q-integers. The aim of these generalizations is to provide appropriate and powerful tools to application areas such as numerical analysis, computer-aided geometric design and solutions of differential equations.

In 1987, Lupaş and in 1997, Phillips introduced a sequence of Bernstein polynomials based on q-integers and investigated its approximation properties.

Mursaleen et al. [12, 13, 18] introduced on Chlodowsky variant of Szász operators by Brenke-type polynomials, rate of convergence of Chlodowsky-type Durrmeyer Jakimovski–Leviatan operators and Dunkl generalization of q-parametric Szász–Mirakjan operators and shape preserving properties.

Several authors produced generalizations of well-known positive linear operators based on q-integers and studied them extensively. For instance, the approximation properties of A generalization of Szász–Mirakyan operators based on q-integers [5], convergence of the q-analogue of Szász-Beta operators [9], Dunkl generalization of q-parametric Szász–Mirakjan operators [18] and weighted statistical approximation by Kantorovich-type q-Szász–Mirakyan operators [6].

Recently, Mursaleen et al. introduced (pq)-calculus in approximation theory and constructed the (pq)-analogue of Bernstein operators [14], (pq)-analogue of Bernstein–Stancu operators [15]. Further, Acar [1] has studied recently, (pq)-generalization of Szász–Mirakyan operators.

In the present paper, we introduce the Chlodowsky variant of (pq) Szász–Mirakyan–Stancu operators on the unbounded domain. Most recently, the (pq)-analogue of some more operators has been studied in [2, 4, 10, 11, 14, 17, 19, 21].

The (pq)-integer or in general the (pq)-calculus was introduced to generalize or unify several forms of q-oscillator algebras well known in the Physics literature related to the representation theory of single-parameter quantum algebras. The (pq)-integer is defined by

$$\begin{aligned} \left[ n\right] _{p,q}=p^{n-1}+qp^{n-2}+\cdots +pq^{n-2}+q^{n-1}=\left\{ \begin{array}{ll} \dfrac{p^{n}-q^{n}}{p-q} &{} \qquad (p\ne q\ne 1) \\ &{} \\ \dfrac{1-q^{n}}{1-q} &{} \qquad (p=1) \\ &{} \\ n &{} \qquad (p=q=1). \\ &{} \end{array} \right. \end{aligned}$$
(1)

The (pq)-binomial expansion is

$$\begin{aligned} (ax+by)_{p,q}^{n}:=\sum \limits _{k=0}^{n}p^{\frac{(n-k)(n-k-1)}{2}}q^{\frac{ k(k-1)}{2}}\left[ \begin{array}{c} n \\ k \end{array} \right] _{p,q}a^{n-k}b^{k}x^{n-k}y^{k}, \end{aligned}$$
$$\begin{aligned} (x+y)_{p,q}^{n}:=(x+y)(px+qy)(p^{2}x+q^{2}y)\cdots (p^{n-1}x+q^{n-1}y), \end{aligned}$$
$$\begin{aligned} (1-x)_{p,q}^{n}:=(1-x)(p-qx)(p^{2}-q^{2}x)\cdots (p^{n-1}-q^{n-1}x). \end{aligned}$$

The (pq)-binomial coefficients are defined by

$$\begin{aligned} \left[ \begin{array}{c} n \\ k \end{array} \right] _{p,q}:=\frac{[n]_{p,q}!}{[k]_{p,q}![n-k]_{p,q}!}. \end{aligned}$$

The definite integrals of a function f is defined by

$$\begin{aligned} \int _{0}^{a}f(t)d_{p,q}t=(q-p)a\sum _{k=0}^{\infty }f\left( \frac{p^{k}}{ q^{k+1}}a\right) \frac{p^{k}}{q^{k+1}},\qquad if\left| \frac{p}{q} \right| <1, \end{aligned}$$
$$\begin{aligned} \int _{0}^{a}f(t)d_{p,q}t=(p-q)a\sum _{k=0}^{\infty }f\left( \frac{q^{k}}{ p^{k+1}}a\right) \frac{q^{k}}{p^{k+1}},\qquad if\left| \frac{q}{p} \right| <1. \end{aligned}$$

There are two (pq)-analogues of the classical exponential function defined as follows

$$\begin{aligned} e_{p,q}(x)=\sum _{n=0}^{\infty }\frac{p^{\frac{n(n-1)}{2}}x^{n}}{[n]_{p,q}!}, \end{aligned}$$

and

$$\begin{aligned} E_{p,q}(x)=\sum _{n=0}^{\infty }\frac{q^{\frac{n(n-1)}{2}}x^{n}}{[n]_{p,q}!}, \end{aligned}$$

which satisfy the equality \(e_{p,q}(x)E_{p,q}(-x)=1\). For \(p=1\), \(e_{p,q}(x)\) and \(E_{p,q}(x)\) reduce to q-exponential functions.

For \(0<q<1\), Aral [5] introduced the generalized q-Szász–Mirakyan operators as follows

$$\begin{aligned} S_{n,q}(f;x)=\sum _{k=0}^{\infty } s_{n,k}^{q}(x) f \bigg ( \dfrac{ [k]_{q}b_{n}}{[n]_{q}} \bigg ) \end{aligned}$$
(2)

where

$$\begin{aligned} s_{n,k}^{q}(x) = \dfrac{1}{E_{q}([n]_{q}\frac{x}{b_{n}})} \dfrac{ ([n]_{q}x)^{k}}{[k]_{q}! (b_{n})^{k}}. \end{aligned}$$

where \(0 \le x <\alpha _{q}(n),\) \(\alpha _{q}(n) :=\dfrac{b_{n}}{(1-q)[n]_{q} }\), \(f\in C( \mathbb {R}_{0} ) \) and \((b_{n}) \) is a sequence of positive numbers such that \(\lim _{n\rightarrow \infty } b_{n} =\infty . \)

Mursaleen et al. [10] introduced the (pq)-analogue of the Szász–Mirakyan operators as follows

$$\begin{aligned} {S}_{n,p,q}(f;x)= \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{ k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! }e_{p,q}(-[n]_{p,q}q ^{-k}x) f\left( \frac{[k]_{p,q}}{p^{k-1}[n]_{p,q}}\right) . \end{aligned}$$
(3)

Lemma 1.1

Let \(0<q<p\le 1\) and \(n\in \mathbb {N}\). We have

  1. (i)

    \({S}_{n,p,q}(1;x)=1\)

  2. (ii)

    \({S}_{n,p,q}(t;x)=x\)

  3. (iii)

    \({S}_{n,p,q}(t^{2};x)= \frac{x^{2}}{p}+\frac{ x}{[n]_{p,q} }\)

  4. (iv)

    \({S}_{n,p,q}(t^{3};x)= \frac{x^{3}}{p^{3^{}}}+ \frac{ 2p+q}{ p^{2}[n]_{p,q} }x^{2} + \frac{ x}{[n]_{p,q}^{2} }\)

  5. (v)

    \({S}_{n,p,q}(t^{4};x)= \frac{x^{4}}{p^{6^{}}}+ \frac{3p^{2}+ 2pq+q^{2}}{p^{5}[n]_{p,q} }x^{3} + \frac{3p^{2}+ 3pq+q^{2}}{ p^{3}[n]_{p,q}^{2} }x^{2}+ \frac{ x}{[n]_{p,q}^{3} }\) .

2 Construction of the Operators

We construct the Chlodowsky variant of (pq) Szász–Mirakyan–Stancu operators as

$$\begin{aligned} {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)= \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1) }{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} }e_{p,q}(-[n]_{p,q}q ^{-k}\frac{x}{b_{n}}) f\left( \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta }b_{n}\right) \end{aligned}$$
(4)

where \(n \in \mathbb {N}, \alpha , \beta \in \mathbb {N}_{0} \) with \(0 \le \alpha \le \beta , 0 \le x \le b_{n}, 0< q < p \le 1 \) and \(b_{n} \) is an increasing sequence of positive terms with the properties \( b_{n}\longrightarrow \infty \) and \(\dfrac{b_{n}}{[n]_{p,q}} \longrightarrow 0 \) as \(n \longrightarrow \infty \). We observe that \({S}_{n,p,q}^{(\alpha , \beta )} \) is positive and linear. Furthermore, in the case of \(q =p= 1 \) and \(\alpha =\beta =0 \), the operators (4) are similar to the classical Szász–Mirakyan operators.

Lemma 2.1

Let \(0<q<p\le 1\) and \(n\in \mathbb {N}\), \(\alpha , \beta \in \mathbb {N}_{0} \) with \(0 \le \alpha \le \beta \), \(0 \le x \le b_{n}\), and integer \(m\ge 0 \), we have

$$\begin{aligned} {S}_{n,p,q}^{(\alpha ,\beta )}(t^{m};x)= \dfrac{b_{n}^{m}}{ ( [n]_{p,q}+ \beta )^{m}} \sum _{j=0}^{m}\left( \begin{array}{c} m \\ j \end{array} \right) \alpha ^{m-j} {S}_{n,p,q}\left( t^{j};q^{-1}\frac{x}{b_{n}}\right) . \end{aligned}$$
(5)

Proof

Using the identity

$$\begin{aligned}{}[k+1]_{p,q}=p^{k}+q[k]_{p,q}, \end{aligned}$$

we can write

$$\begin{aligned} {S}_{n,p,q}^{(\alpha ,\beta )}(t^{m};x)= & {} \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! (b_{n})^{k} } e_{p,q}\left( -[n]_{p,q}q ^{-k}\frac{x}{b_{n}}\right) \left( \frac{p^{1-k}[k]_{p,q}+ \alpha }{[n]_{p,q}+ \beta }b_{n}\right) ^{m} \\= & {} \dfrac{b_{n}^{m}}{ ( [n]_{p,q}+ \beta )^{m} }\sum _{k=0}^{\infty } \frac{ p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! (b_{n})^{k} } e_{p,q}\left( -[n]_{p,q}q ^{-k}\frac{x}{b_{n}}\right) \left( p^{1-k}[k]_{p,q}+ \alpha \right) ^{m} \\= & {} \dfrac{b_{n}^{m}}{ ( [n]_{p,q}+ \beta )^{m} }\sum _{k=0}^{\infty } \frac{ p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! (b_{n})^{k} } e_{p,q}\left( -[n]_{p,q}q ^{-k}\frac{x}{b_{n}}\right) \\&\times \sum _{j=0}^{m}\left( \begin{array}{c} m \\ j \end{array} \right) \alpha ^{m-j} p^{j(1-k)}[k]_{p,q}^{j} \\= & {} \dfrac{b_{n}^{m}}{ ( [n]_{p,q}+ \beta )^{m}} \sum _{j=0}^{m}\left( \begin{array}{c} m \\ j \end{array} \right) \alpha ^{m-j} \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! (b_{n})^{k} } \\&\times e_{p,q}(-[n]_{p,q}q ^{-k}\frac{x}{b_{n}}) p^{j(1-k)}[k]_{p,q}^{j} \\= & {} \dfrac{b_{n}^{m}}{ ( [n]_{p,q}+ \beta )^{m}} \sum _{j=0}^{m}\left( \begin{array}{c} m \\ j \end{array} \right) \alpha ^{m-j} {S}_{n,p,q}(t^{j};q^{-1}\frac{x}{b_{n}}) \end{aligned}$$

   \(\square \)

which is desired.

Lemma 2.2

Let \({S}_{n,p,q}^{(\alpha ,\beta )}(f;x) \) be given by (4). Then the following properties hold:

$$\begin{aligned} (i)\,{S}_{n,p,q}^{(\alpha ,\beta )}(1;x)= & {} 1 \\ (ii)\,{S}_{n,p,q}^{(\alpha ,\beta )}(t;x)= & {} \dfrac{ [n]_{p,q} }{[n]_{p,q}+ \beta }x + \dfrac{\alpha b_{n}}{[n]_{p,q} + \beta } \\ (iii)\,{S}_{n,p,q}^{(\alpha ,\beta )}(t^{2};x)= & {} \frac{ [n]_{p,q}^{2} }{p ( [n]_{p,q}+ \beta )^{2} }x^{2} +\frac{(1+2 \alpha ) b_{n} [n]_{p,q} }{ ( [n]_{p,q}+ \beta )^{2}}x+\dfrac{\alpha ^{2} b_{n}^{2}}{ ( [n]_{p,q}+ \beta )^{2}}\\ (iv)\,{S}_{n,p,q}^{(\alpha ,\beta )}(t^{3};x)= & {} \frac{ [n]_{p,q}^{3} }{p^{3} ([n]_{p,q} + \beta )^{3} }x^{3} +\frac{(3p\alpha +2p+q) b_{n}[n]_{p,q}^{2} }{p^{2} ([n]_{p,q}+ \beta )^{3} }x^{2} \\&+\frac{(1+3 \alpha ++3 \alpha ^{2} ) b_{n}^{2} [n]_{p,q} }{ ( [n]_{p,q}+ \beta )^{3}}x+\dfrac{\alpha ^{3} b_{n}^{3}}{ ( [n]_{p,q}+ \beta )^{3}}\\ \end{aligned}$$
$$\begin{aligned} (v)\,{S}_{n,p,q}^{(\alpha ,\beta )}(t^{4};x)= & {} \frac{ [n]_{p,q}^{4} }{p^{6} ([n]_{p,q} + \beta )^{4} }x^{4}+ \frac{(3p^{2}+2pq+q^{2}+4p\alpha ) b_{n}[n]_{p,q}^{3} }{p^{5} ([n]_{p,q} + \beta )^{4} }x^{3} \\&+ \frac{( 3p^{2}+3pq+q^{2}+4pq\alpha +8p^{2}\alpha +6p^{2}\alpha ^{2} ) b_{n}^{2}[n]_{p,q}^{2} }{p^{3} ([n]_{p,q} + \beta )^{4} }x^{2} \\&+\frac{(1+4\alpha +6\alpha ^{2} +4\alpha ^{3} ) b_{n}^{3}[n]_{p,q} }{ ([n]_{p,q}+ \beta )^{4} }x +\dfrac{\alpha ^{4} b_{n}^{4}}{ ( [n]_{p,q}+ \beta )^{4}}.\\ \end{aligned}$$

Proof

  1. (i)
    $$\begin{aligned} {S}_{n,p,q}^{(\alpha ,\beta )}(1;x)= & {} {S}_{n,p,q}(1;q^{-1}\frac{x}{b_{n}}) \\= & {} 1. \end{aligned}$$
  2. (ii)
    $$\begin{aligned} {S}_{n,p,q}^{(\alpha ,\beta )}(t;x)= & {} \dfrac{b_{n}}{ ( [n]_{p,q}+ \beta )} \sum _{j=0}^{1}\left( \begin{array}{c} 1 \\ j \end{array} \right) \alpha ^{1-j} {S}_{n,p,q}\left( t^{j};q^{-1}\frac{x}{b_{n}}\right) \\= & {} \dfrac{b_{n}}{ ( [n]_{p,q}+ \beta )} \bigg \{ \alpha + {S} _{n,p,q}\left( t;q^{-1}\frac{x}{b_{n}}\right) \bigg \} \\= & {} \dfrac{b_{n}}{ ( [n]_{p,q}+ \beta )} \bigg \{ \alpha + \dfrac{ [n]_{p,q} }{b_{n}} x \bigg \} \\= & {} \dfrac{ [n]_{p,q} }{[n]_{p,q}+ \beta }x + \dfrac{\alpha b_{n}}{[n]_{p,q} + \beta }. \end{aligned}$$
  3. (iii)
    $$\begin{aligned} {S}_{n,p,q}^{(\alpha ,\beta )}(t^{2};x)= & {} \dfrac{b_{n}^{2}}{ ( [n]_{p,q}+ \beta )^{2}} \sum _{j=0}^{2}\left( \begin{array}{c} 2 \\ j \end{array} \right) \alpha ^{2-j} {S}_{n,p,q}(t^{j};q^{-1}\frac{x}{b_{n}}) \\= & {} \dfrac{b_{n}^{2}}{ ( [n]_{p,q}+ \beta )^{2}} \bigg \{ \alpha ^{2}+2\alpha {S}_{n,p,q}(t;q^{-1}\frac{x}{b_{n}}) + {S}_{n,p,q}(t^{2};q^{-1} \frac{x}{b_{n}}) \bigg \} \\= & {} \dfrac{b_{n}^{2}}{ ( [n]_{p,q}+ \beta )^{2}} \bigg \{ \alpha ^{2}+2\alpha \dfrac{ [n]_{p,q} }{b_{n}} x +\dfrac{ [n]_{p,q} }{b_{n}} x + \dfrac{ [n]_{p,q} ^{2}}{pb_{n}^{2}} x^{2} \bigg \} \\= & {} \frac{ [n]_{p,q}^{2} }{p ( [n]_{p,q}+ \beta )^{2} }x^{2} +\frac{(1+2 \alpha ) b_{n} [n]_{p,q} }{ ( [n]_{p,q}+ \beta )^{2}}x+\dfrac{\alpha ^{2} b_{n}^{2}}{ ( [n]_{p,q}+ \beta )^{2} }. \end{aligned}$$
  4. (iv)
    $$\begin{aligned}&{S}_{n,p,q}^{(\alpha ,\beta )}(t^{3};x) = \dfrac{b_{n}^{3}}{ ( [n]_{p,q}+ \beta )^{3}} \sum _{j=0}^{3}\left( \begin{array}{c} 3 \\ j \end{array} \right) \alpha ^{3-j} {S}_{n,p,q}(t^{j};q^{-1}\frac{x}{b_{n}}) \\&\qquad \qquad \,= \dfrac{b_{n}^{3}}{ ( [n]_{p,q}+ \beta )^{3}} \bigg \{ \alpha ^{3}+3\alpha ^{2} {S}_{n,p,q}(t;q^{-1}\frac{x}{b_{n}}) +3\alpha {S}_{n,p,q}(t^{2};q^{-1} \frac{x}{b_{n}})\\&\qquad \qquad \,\,\,\,\,+ {S}_{n,p,q}(t^{3};q^{-1}\frac{x}{b_{n}})\bigg \}\\&\qquad \,\,\,= \dfrac{b_{n}^{3}}{ ( [n]_{p,q}+ \beta )^{3}} \bigg \{ \alpha ^{3}+3\alpha ^{2} \dfrac{ [n]_{p,q} }{b_{n}} x +3\alpha \bigg ( \dfrac{ [n]_{p,q} }{b_{n}} x + \dfrac{ [n]_{p,q} ^{2}}{pb_{n}^{2}} x^{2} \bigg ) \\&\qquad \quad \,\,+ \dfrac{ [n]_{p,q} }{b_{n}} x+ \dfrac{2 [n]_{p,q}^{2} }{pb_{n}^{2}} x^{2}+\dfrac{ q[n]_{p,q}^{2} }{p^{2}b_{n}^{2}} x^{2} +\dfrac{ [n]_{p,q}^{3} }{p^{3}b_{n}^{3}} x^{3} \bigg \} \\&\qquad \,\,\,= \frac{ [n]_{p,q}^{3} }{p^{3} ([n]_{p,q} + \beta )^{3} }x^{3} +\frac{(3p\alpha +2p+q) b_{n}[n]_{p,q}^{2} }{p^{2} ([n]_{p,q}+ \beta )^{3} }x^{2} \\&\qquad \quad \,\,+\frac{(1+3 \alpha ++3 \alpha ^{2} ) b_{n}^{2} [n]_{p,q} }{ ( [n]_{p,q}+ \beta )^{3}}x+\dfrac{\alpha ^{3} b_{n}^{3}}{ ( [n]_{p,q}+ \beta )^{3}}. \end{aligned}$$
  5. (v)
    $$\begin{aligned} {S}_{n,p,q}^{(\alpha ,\beta )}(t^{4};x)= & {} \dfrac{b_{n}^{4}}{ ( [n]_{p,q}+ \beta )^{4}} \sum _{j=0}^{4}\left( \begin{array}{c} 4 \\ j \end{array} \right) \alpha ^{4-j} {S}_{n,p,q}(t^{j};q^{-1}\frac{x}{b_{n}}) \\= & {} \dfrac{b_{n}^{4}}{ ( [n]_{p,q}+ \beta )^{4}} \bigg \{ \alpha ^{4}+4\alpha ^{3} {S}_{n,p,q}(t;q^{-1}\frac{x}{b_{n}}) +6\alpha ^{2} {S}_{n,p,q}(t^{2};q^{-1} \frac{x}{b_{n}})\\&+ 4\alpha {S}_{n,p,q}(t^{3};q^{-1}\frac{x}{b_{n}}) + {S}_{n,p,q}(t^{4};q^{-1}\frac{x}{b_{n}}) \bigg \} \\= & {} \dfrac{b_{n}^{4}}{ ( [n]_{p,q}+ \beta )^{4}} \bigg \{ \alpha ^{4}+4\alpha ^{3} \dfrac{ [n]_{p,q} }{b_{n}} x +6\alpha ^{2} \bigg ( \dfrac{ [n]_{p,q} }{b_{n}} x + \dfrac{ [n]_{p,q} ^{2}}{pb_{n}^{2}} x^{2} \bigg ) \\&+4\alpha \bigg ( \dfrac{ [n]_{p,q} }{b_{n}} x+ \dfrac{2 [n]_{p,q}^{2} }{pb_{n}^{2}} x^{2}+\dfrac{ q[n]_{p,q}^{2} }{p^{2}b_{n}^{2}} x^{2} +\dfrac{ [n]_{p,q}^{3} }{p^{3}b_{n}^{3}} x^{3} \bigg ) + \dfrac{ [n]_{p,q}^{4} }{p^{6}b_{n}^{4}} x^{4}\\&+\dfrac{q^{2} [n]_{p,q}^{3} }{p^{5}b_{n}^{3}} x^{3} +\dfrac{2q [n]_{p,q}^{3} }{p^{4}b_{n}^{3}} x^{3}+ \dfrac{q^{2} [n]_{p,q}^{2} }{p^{3}b_{n}^{2}} x^{2}+ \dfrac{3 [n]_{p,q}^{3} }{p^{3}b_{n}^{3}} x^{3}+\dfrac{3q [n]_{p,q}^{2} }{p^{2}b_{n}^{2}} x^{2}\\&+\dfrac{ 3[n]_{p,q}^{2} }{pb_{n}^{2}} x^{2}+ \dfrac{ [n]_{p,q} }{b_{n}} x\bigg \} \\= & {} \frac{ [n]_{p,q}^{4} }{p^{6} ([n]_{p,q} + \beta )^{4} }x^{4}+ \frac{(3p^{2}+2pq+q^{2}+4p\alpha ) b_{n}[n]_{p,q}^{3} }{p^{5} ([n]_{p,q} + \beta )^{4} }x^{3} \\&+ \frac{( 3p^{2}+3pq+q^{2}+4pq\alpha +8p^{2}\alpha +6p^{2}\alpha ^{2} ) b_{n}^{2}[n]_{p,q}^{2} }{p^{3} ([n]_{p,q} + \beta )^{4} }x^{2} \\&+\frac{(1+4\alpha +6\alpha ^{2} +4\alpha ^{3} ) b_{n}^{3}[n]_{p,q} }{ ([n]_{p,q}+ \beta )^{4} }x +\dfrac{\alpha ^{4} b_{n}^{4}}{ ( [n]_{p,q}+ \beta )^{4}}. \end{aligned}$$

       \(\square \)

Lemma 2.3

Let \(p, q \in (0,1) \). Then for, \(x \in [0,\infty ) \), we have:

$$\begin{aligned} (i)\,{S}_{n,p,q}^{(\alpha ,\beta )}(t-x;x)= & {} \bigg ( \dfrac{ [n]_{p,q} }{ [n]_{p,q}+ \beta }-1\bigg ) x + \dfrac{\alpha b_{n}}{[n]_{p,q} + \beta } \\ (ii)\,{S}_{n,p,q}^{(\alpha ,\beta )}((t-x)^{2};x)= & {} \frac{((1-p)[n]_{p,q}^{2}{+}p\beta ^{2})x^{2} \,{+}\,( [n]_{p,q}\,{+}\,2\alpha \beta )pb_{n}x\,{+}\,p\alpha ^{2}b_{n}^{2}}{p ( [n]_{p,q}\,{+}\, \beta )^{2} }. \end{aligned}$$

3 Korovkin-Type Approximation Theorem

Suppose \(C_{\rho } \) is the space of all continuous functions f such that \(|f(x)|\le M\rho (x)\), \(-\infty< x <\infty \). Then \(C_{\rho } \) is a Banach space with the norm \(\Vert f\Vert _{\rho }=\sup \limits _{-\infty< x <\infty } \frac{|f(x)|}{\rho (x)}\). The subsequent results are used for proving Korovkin approximation theorem on unbounded sets.

Theorem 3.1

(See [8]) There exists a sequence of positive linear operators \(T_{n} \), acting from \(C_{\rho } \) to \(B_{\rho } \) , satisfying the conditions

  1. (i)
    $$ \lim \limits _{n\rightarrow \infty } \Vert T_{n} (1;x)-1 \Vert _{\rho } = 0 $$
  2. (ii)
    $$ \lim \limits _{n\rightarrow \infty } \Vert T_{n}(\varphi ;x)-\varphi \Vert _{\rho } = 0 $$
  3. (iii)
    $$ \lim \limits _{n\rightarrow \infty } \Vert T_{n} (\varphi ^{2};x)-\varphi ^{2} \Vert _{\rho } = 0, $$

where \(\varphi (x) \) is a continuous and increasing function on \( (-\infty ,\infty ) \), such that \(\lim \limits _{x\rightarrow \pm \infty } \varphi (x) = \pm \infty \), \(\rho (x)=1+\varphi ^{2} \), and there exists a function \(f^{*}\in C_{\rho } \), for which \(\overline{ \lim \limits _{n \rightarrow \infty } } \Vert T_{n} f^{*}-f^{*} \Vert _{\rho } >0. \)

Theorem 3.2

(See [8]) Conditions (i), (ii), (iii) of above theorem implies that

$$\begin{aligned} \lim \limits _{n\rightarrow \infty } \Vert T_{n} f-f \Vert _{\rho }= & {} 0, \end{aligned}$$

for any function f belonging to the subset

$$\begin{aligned} C_{\rho }^{0} =\bigg \{f\in C_{\rho }[0,\infty ):\lim \limits _{x\rightarrow \infty }\frac{\mid f(x)\mid }{\rho (x)}<\infty \bigg \}. \end{aligned}$$

Consider the weight function \(\rho (x) = 1 + x^{2} \) and operators:

$$\begin{aligned} T_{n,p,q}^{(\alpha ,\beta )} (f;x)=\left\{ \begin{array}{ll} {S}_{n,p,q}^{(\alpha ,\beta )}(f;x), &{} \qquad x \in [0, b_{n}] \\ &{} \\ f(x), &{} \qquad x \in [0, \infty ) /[0, b_{n}]. \end{array} \right. \end{aligned}$$
(6)

Thus for \(f \in C_{1+x^{2} } \) , we have

$$\begin{aligned} \Vert T_{n,p,q}^{(\alpha ,\beta )} (f;x) \Vert _{1+x^{2}}\le & {} \sup \limits _{x\in [0,b_{n} ]} \dfrac{|T_{n,p,q}^{(\alpha ,\beta )} (f;x) |}{1+x^{2}}+ \sup \limits _{b_{n}<x<\infty } \dfrac{|f(x) |}{1+x^{2}} \\\le & {} \Vert f \Vert _{1+x^{2} } \bigg ( \sup \limits _{x\in [0,\infty )} \dfrac{|T_{n,p,q}^{(\alpha ,\beta )} (1+t^{2};x) |}{1+x^{2}}+1 \bigg ). \end{aligned}$$

Now we will obtain,

$$\begin{aligned} \Vert T_{n,p,q}^{(\alpha ,\beta )} (f;x) \Vert _{1+x^{2}}\le & {} M \Vert f \Vert _{1+x^{2} } \end{aligned}$$

if \( p := (p_{n}) \) and \( q := (q_{n}) \) satisfy \(0<q_{n}<p_{n} \le 1\) and for n sufficiently large \( p_{n} \rightarrow 1 \), \( q_{n} \rightarrow 1 \) and \( p_{n}^{n} \rightarrow N \), \( q_{n}^{n} \rightarrow N \), \(N < \infty \) and \(\lim \limits _{n\rightarrow \infty } \dfrac{b_{n}}{ [n]_{p,q} }=0 \).

Theorem 3.3

Let \( p := (p_{n}) \) and \( q := (q_{n}) \) satisfy \(0<q_{n}<p_{n} \le 1\) and for n sufficiently large \( p_{n} \rightarrow 1 \), \( q_{n} \rightarrow 1 \) and \( p_{n}^{n} \rightarrow N \), \( q_{n}^{n} \rightarrow N \), \(N < \infty \) and \(\lim \limits _{n\rightarrow \infty } \dfrac{b_{n}}{ [n]_{p,q} }=0 \). Then, for any \(f \in C^{0}_{1+x^{2}} \), we have

$$\begin{aligned} \Vert T_{n,p_{n},q_{n}}^{(\alpha ,\beta )} (f;\cdot )-f(\cdot ) \Vert _{1+x^{2}}= & {} 0. \end{aligned}$$

Using the results of Theorem 3.1, Lemma 2.2, we will obtain the following assessments, respectively:

$$\begin{aligned} \sup \limits _{x\in [0,\infty )} \dfrac{|T_{n,p_{n},q_{n}}^{(\alpha ,\beta )} (1;x) -1|}{1+x^{2}}= & {} \sup \limits _{0\le x \le b_{n}} \dfrac{| {S} _{n,p_{n},q_{n}}^{(\alpha ,\beta )} (1;x)-1 |}{1+x^{2}}=0. \end{aligned}$$
$$\begin{aligned} \sup \limits _{x\in [0,\infty )} \dfrac{|T_{n,p_{n},q_{n}}^{(\alpha ,\beta )} (t;x)-t |}{1+x^{2}}= & {} \sup \limits _{0\le x \le b_{n}} \dfrac{|{S} _{n,p_{n},q_{n}}^{(\alpha ,\beta )} (t;x) -x|}{1+x^{2}} \\\le & {} \sup \limits _{0\le x \le b_{n}} \dfrac{\bigg ( \dfrac{ [n]_{p,q} }{ [n]_{p,q}+ \beta }-1\bigg ) x + \dfrac{\alpha b_{n}}{[n]_{p,q} + \beta } }{ 1+x^{2}} \\\le & {} \dfrac{\alpha b_{n}}{[n]_{p,q} + \beta } + \bigg | \dfrac{ [n]_{p,q} }{[n]_{p,q}+ \beta }-1 \bigg | \longrightarrow 0, \end{aligned}$$
$$\begin{aligned} \sup \limits _{x\in [0,\infty )} \dfrac{|T_{n,p_{n},q_{n}}^{(\alpha ,\beta )} (t^{2};x)-t^{2} |}{1+x^{2}}= & {} \sup \limits _{0\le x \le b_{n}} \dfrac{|{S} _{n,p_{n},q_{n}}^{(\alpha ,\beta )} (t^{2};x) -x^{2}|}{1+x^{2}} \\\le & {} \sup \limits _{0\le x \le b_{n}} \dfrac{1}{1+x^{2}}\bigg ( \dfrac{ ((1-p)[n]_{p,q}^{2}+p\beta ^{2})x^{2}}{p ( [n]_{p,q}+ \beta )^{2} } \\&+\dfrac{( [n]_{p,q}+2\alpha \beta )b_{n}x}{ ( [n]_{p,q}+ \beta )^{2} } + \dfrac{\alpha ^{2}b_{n}^{2}}{ ( [n]_{p,q}+ \beta )^{2} } \bigg ) \\\le & {} \dfrac{\alpha ^{2}b_{n}^{2}}{ ( [n]_{p,q}+ \beta )^{2} } + \bigg | \dfrac{(1-p)[n]_{p,q}^{2}+p\beta ^{2}}{p ( [n]_{p,q} + \beta )^{2} } \bigg | \\&+ \bigg | \dfrac{( [n]_{p,q}+2\alpha \beta )b_{n}}{ ( [n]_{p,q}+ \beta )^{2} }\bigg | \longrightarrow 0, \end{aligned}$$

whenever \(n \longrightarrow \infty \), because we have \(\lim \limits _{n \rightarrow \infty } q_{n}=\lim \limits _{n\rightarrow \infty } p_{n}= 1\), \( \lim \limits _{n\rightarrow \infty } \dfrac{b_{n}}{ [n]_{p,q} }=0 \), as \(n \longrightarrow \infty \).

Theorem 3.4

Assuming C as a positive and real number independent of n and f as a continuous function which vanishes on \([C,\infty ) \). Let \( p := (p_{n}) \) and \( q := (q_{n}) \) satisfy \(0<q_{n}<p_{n} \le 1\) and for n sufficiently large \( p_{n} \rightarrow 1 \), \( q_{n} \rightarrow 1 \) and \( p_{n}^{n} \rightarrow N \), \( q_{n}^{n} \rightarrow N \), \(N < \infty \) and \(\lim \limits _{n\rightarrow \infty } \dfrac{b_{n}}{ [n]_{p,q} }=0 \). Then

$$\begin{aligned} \lim \limits _{n\rightarrow \infty } \sup \limits _{0\le x \le b_{n}} | {S} _{n,p_{n},q_{n}}^{(\alpha ,\beta )} (f;x)-f(x) |= & {} 0. \end{aligned}$$

Proof

From the hypothesis on f, it is bounded, i.e. \(| f(x) | \le M (M>0) \). For any \(\varepsilon > 0 \), we have

$$\begin{aligned} \bigg | f\left( \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta } b_{n}\right) -f(x) \bigg |< & {} \varepsilon +\dfrac{2M}{ \delta ^{2} } \bigg ( \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta }b_{n}-x \bigg )^{2} \end{aligned}$$

where \(x \in [0, b_{n}] \) and \(\delta = \delta (\varepsilon ) \) are independent of n. Now since we know,

$$\begin{aligned} {S}_{n,p_{n},q_{n}}^{(\alpha ,\beta )} ((t-x)^{2};x)= & {} {S} _{n,p_{n},q_{n}}^{(\alpha ,\beta )} (t^{2};x)-2x {S}_{n,p_{n},q_{n}}^{(\alpha , \beta )} (t;x)+x^{2} {S}_{n,p_{n},q_{n}}^{(\alpha ,\beta )} (1;x). \end{aligned}$$

We can conclude by Theorem 3.3,

$$\begin{aligned} \sup \limits _{0\le x \le b_{n}} | {S}_{n,p_{n},q_{n}}^{(\alpha ,\beta )} (f;x)-f(x) |\le & {} \varepsilon +\dfrac{2M}{ \delta ^{2} } \bigg ( \dfrac{ \alpha ^{2}b_{n}^{2}}{ ( [n]_{p,q}+ \beta )^{2} } + \dfrac{ ((1-p)[n]_{p,q}^{2}+p\beta ^{2})x^{2}}{p ( [n]_{p,q} + \beta )^{2} } \\&+ \dfrac{( [n]_{p,q}+2\alpha \beta )b_{n}x}{ ( [n]_{p,q}+ \beta )^{2} } \bigg ). \end{aligned}$$

Since \(\dfrac{b_{n}}{ [n]_{p,q} }=0 \), as \(n\rightarrow \infty \), we have the desired result.    \(\square \)

4 Rate of Convergence

Now we give the rate of convergence of the operators \({S}_{n,p,q}^{(\alpha , \beta )}(f;x) \) in terms of the elements of the usual Lipschitz class \( Lip_{M}(\gamma )\).

Let \(f\in C_{B}[0,\infty )\), \(M>0\) and \(0<\gamma \le 1\). We recall that f belongs to the class \(Lip_{M}(\gamma )\) if the inequality

$$\begin{aligned} \mid f(t)-f(x)\mid \le M\mid t-x\mid ^{\gamma }~~~t,x\in [ 0,\infty ) \end{aligned}$$

is satisfied.

Theorem 4.1

Let \(0<q<p\le 1\). Then for each \(f\in Lip_{M}(\gamma ),\) we have

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid \le M (\delta _{n}(x))^{ \frac{\gamma }{2} } \end{aligned}$$

where

$$\begin{aligned} \delta _{n}(x)={S}_{n,p,q}^{(\alpha ,\beta )}((t-x)^{2};x). \end{aligned}$$

Proof

For \(f\in Lip_{M}(\gamma )\), we obtain

$$\begin{aligned}&\mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid \\&\quad = \bigg | \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{ k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} } e_{p,q}(-[n]_{p,q}q ^{-k}\frac{x}{b_{n}}) \bigg ( f\left( \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta }b_{n}\right) -f(x)\bigg ) \bigg | \\&\quad \le \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2} }}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} }e_{p,q}\left( -[n]_{p,q}q ^{-k} \frac{x}{b_{n}}\right) \bigg | f\left( \frac{p^{1-k} [k]_{p,q}+\alpha }{ [n]_{p,q}+\beta }b_{n}\right) -f(x)\bigg | \\&\quad \le M\sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} }e_{p,q}\left( -[n]_{p,q}q ^{-k} \frac{x}{b_{n}}\right) \bigg | \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta } b_{n} -x\bigg | ^{\gamma }. \end{aligned}$$

Applying Hölder’s inequality with the values \(p=\frac{2}{\gamma } \) and \( q=\frac{2}{2-\gamma } \), we get following inequality,

$$\begin{aligned}&\mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid \\&\quad \le M\left( \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{ k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} } e_{p,q}\left( -[n]_{p,q}q ^{-k}\frac{x}{b_{n}}\right) \bigg ( \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta }b_{n} -x\bigg ) ^{2}\right) ^{\frac{ \gamma }{2}} \\&\quad \quad \left( \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2 }}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} }e_{p,q}\left( -[n]_{p,q}q ^{-k} \frac{x}{b_{n}}\right) \right) ^{\frac{2-\gamma }{2}}. \end{aligned}$$

From Lemma 2.2, we get

$$\begin{aligned}= & {} M\left( {S}_{n,p,q}^{(\alpha ,\beta )}\left( (t-x)^{2};x\right) \right) ^{ \frac{\gamma }{2} } \left( {S}_{n,p,q}^{(\alpha ,\beta )}\left( 1;x\right) \right) ^{\frac{2-\gamma }{2}} \\= & {} M\left( {S}_{n,p,q}^{(\alpha ,\beta )}\left( (t-x)^{2};x\right) \right) ^{ \frac{\gamma }{2} }. \end{aligned}$$

Choosing \(\delta :\delta _{n}(x)={S}_{n,p,q}^{(\alpha ,\beta )}\left( (t-x)^{2};x\right) \),

we obtain

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid \le M (\delta _{n}(x))^{ \frac{\gamma }{2}}. \end{aligned}$$

Hence, the desired result is obtained.    \(\square \)

We will estimate the rate of convergence in terms of modulus of continuity. Let \(f \in C_{B}[0,\infty ) \), and the modulus of continuity of f denoted by \(\omega (f,\delta )\) gives the maximum oscillation of f in any interval of length not exceeding \(\delta >0\) and it is given by the relation

$$\begin{aligned} \omega (f,\delta )=\max _{\mid y-x \mid \le \delta } \mid f(y)-f(x) \mid ,~~~x,y \in [0,\infty ). \end{aligned}$$

It is known that \(\lim _{\delta \rightarrow 0+}\omega (f,\delta )=0\) for \(f \in C_{B}[0, \infty )\) and for any \(\delta >0\) one has

$$\begin{aligned} \mid f(y)- f(x) \mid \le \left( \frac{\mid y-x \mid }{\delta } +1\right) \omega (f,\delta ). \end{aligned}$$
(7)

Theorem 4.2

If \(f\in C_{B}[0,\infty )\), then

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid \le 2{\omega }(f;(\sqrt{ \delta _{n}(x)}), \end{aligned}$$

where \(\omega (f; \cdot ) \) is modulus of continuity of f and \(\delta _{n}(x) \) be the same as in Theorem 4.1.

Proof

Using triangular inequality, we get

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid= & {} \bigg | \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{ ([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} }e_{p,q}\left( -[n]_{p,q}q ^{-k}\frac{x}{ b_{n}}\right) \\&\times \bigg ( f\left( \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta } b_{n}\right) -f(x)\bigg ) \bigg | \\\le & {} \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2 }}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} }e_{p,q}\left( -[n]_{p,q}q ^{-k} \frac{x}{b_{n}}\right) \\&\times \bigg | f\left( \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta } b_{n}\right) -f(x) \bigg | . \end{aligned}$$

Now using inequality (7), Hölder’s inequality and Lemma 2.2, we get

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid= & {} \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} }e_{p,q}\left( -[n]_{p,q}q ^{-k}\frac{x}{b_{n}}\right) \\&\times \left( \frac{\mid \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta } b_{n}-x \mid }{\delta } +1\right) \omega (f,\delta ) \\\le & {} \omega (f,\delta ) \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{ q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} } e_{p,q}\left( -[n]_{p,q}q ^{-k}\frac{x}{b_{n}}\right) \\&+\dfrac{\omega (f,\delta )}{\delta }\sum _{k=0}^{\infty } \frac{p^{ \frac{ k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} }e_{p,q}\left( -[n]_{p,q}q ^{-k}\frac{x}{b_{n}}\right) \\&\times \bigg | \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta }b_{n}-x \bigg | \\= & {} \omega (f,\delta ) +\dfrac{\omega (f,\delta )}{\delta } \bigg ( \sum _{k=0}^{\infty } \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{ ([n]_{p,q}x)^{k} }{ [k]_{p,q}!(b_{n})^{k} } \\&\times e_{p,q}(-[n]_{p,q}q ^{-k}\frac{x}{b_{n}}) \bigg ( \frac{p^{1-k} [k]_{p,q}+\alpha }{[n]_{p,q}+\beta }b_{n}-x \bigg ) ^{2} \bigg ) ^{ \frac{1}{2}} \\= & {} \omega (f,\delta ) +\dfrac{\omega (f,\delta )}{\delta } \bigg ( {S} _{n,p,q}^{(\alpha ,\beta )}((t-x)^{2};x) \bigg ) ^{\frac{1}{2}}. \end{aligned}$$

Now choosing \(\delta =\delta _{n}(x) \) as in Theorem 4.1, we have

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid \le 2{\omega }(f;(\sqrt{ \delta _{n}(x)}). \qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\quad \square \end{aligned}$$

Now let us denote by \(C_{B}^{2}[0,\infty ),\) the space of all functions \(f \in C_{B}[0,\infty ),\) such that \(f^{^{\prime }},f^{^{\prime \prime }}\in C_{B}[0,\infty )\). Let \(\parallel f \parallel \) denote the usual supremum norm of f. Classical Peetre’s K-functional and the second modulus of smoothness of the function \(f \in C_{B}[0,\infty )\) are defined, respectively, as

$$\begin{aligned} K_{2}(f,\delta )=\inf _{g\in C_{B}^{2}[0,\infty )}\{\parallel f-g\parallel +\delta \parallel g^{^{\prime \prime }}\parallel \}, \end{aligned}$$

where \(\delta >0\) and \(g\in C_{B}^{2}[0,\infty )\). By Theorem 2.4 of [7], there exists an absolute constant \(C>0\) such that

$$\begin{aligned} K_{2}(f,\delta )\le C\omega _{2}(f,\sqrt{\delta }) \end{aligned}$$
(8)

where

$$\begin{aligned} \omega _{2} (f,\sqrt{\delta })=\sup _{0<h \le \sqrt{\delta }} \sup _{x, x+h\in I}\mid f(x+2h)-2f(x+h)+f(x)\mid \end{aligned}$$

is the second-order modulus of smoothness of \(f\in C_{B}^{2} [0,\infty )\). The usual modulus of continuity of \(f\in C_{B}^{2} [0,\infty )\) is defined by

$$\begin{aligned} \omega (f,\delta )=\sup _{0<h\le \delta } \sup _{x\in [0,\infty )}\mid f(x+h)-f(x)\mid . \end{aligned}$$

Theorem 4.3

Let \(x \in [0, b_{n}], \) \(f \in C_{B}[0,\infty )\) and  \(0< q < p \le 1\), \(0\le \alpha \le \beta \). Then for all \(n\in \mathbb {N},\) there exists a positive constant \(C > 0\) such that

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x) \mid\le & {} C \omega _{2}(f,\delta _{n}(x) )+\omega (f,\alpha _{n}(x) ), \end{aligned}$$

where

$$\begin{aligned} \delta _{n}(x)=\sqrt{{S}_{n,p,q}^{(\alpha ,\beta )}((t-x)^{2}; x)+(\alpha _{n}(x) })^{2} , \quad \alpha _{n}(x)=\bigg ( \dfrac{ [n]_{p,q} }{[n]_{p,q}+ \beta } -1\bigg ) x + \dfrac{\alpha b_{n}}{[n]_{p,q} + \beta } . \end{aligned}$$

Proof

For \(x \in [0,\infty )\), we consider the auxiliary operators \({\bar{S}} _{n}^{*}\) defined by

$$\begin{aligned} {\bar{S}}_{n}^{*}(f; x)= & {} {S}_{n,p,q}^{(\alpha ,\beta )}(f; x)+f(x)-f\left( \frac{[n]_{p,q}}{[n]_{p,q}+\beta }x +\frac{\alpha b_{n} }{ [n]_{p,q}+\beta } \right) . \end{aligned}$$

From Lemma 2.2 (i) (ii) and Lemma 2.3 (i), we observe that the operators \({\bar{S}}_{n}^{*}(f; x)\) are linear and reproduce the linear functions. Hence,

$$\begin{aligned} {\bar{S}}_{n}^{*}(1; x)= & {} {S}_{n,p,q}^{(\alpha ,\beta )}(1; x)+1-1=1 \\ {\bar{S}}_{n}^{*}(t; x)= & {} {S}_{n,p,q}^{(\alpha ,\beta )}(t; x)+x- \left( \frac{[n]_{p,q}}{[n]_{p,q}+\beta }x +\frac{\alpha b_{n} }{[n]_{p,q}+\beta } \right) =x \\ {\bar{S}}_{n}^{*}((t-x); x)= & {} {\bar{S}}_{n}^{*}(t; x)-x{\bar{S}} _{n}^{*}(1; x)=0. \end{aligned}$$

Let \(x \in [0,\infty )\) and \(g \in C_{B}^{2}[0,\infty ).\) Using Taylor’s formula

$$\begin{aligned} g(t) = g(x)+ g^{\prime }(x)(t-x)+\int _{x}^t(t-u)g^{\prime \prime }(u) \mathrm {d}u. \end{aligned}$$

Applying \({\bar{S}}_{n}^{*}\) to both sides of the above equation, we have

$$\begin{aligned} {\bar{S}}_{n}^{*}(g;x)-g(x)= & {} g^{\prime }(x){\bar{S}}_{n}^{*}((t-x); x)+ {\bar{S}}_{n}^{*}\left( \int _{x}^t(t-u)g^{\prime \prime }(u) \mathrm {d }u;x\right) \\= & {} {S}_{n,p,q}^{(\alpha ,\beta )} \left( \int _{x}^t(t-u)g^{\prime \prime }(u) \mathrm {d}u;x\right) \\&- \int _{x}^{\frac{[n]_{p,q}}{[n]_{p,q}+\beta }x +\frac{\alpha b_{n} }{ [n]_{p,q}+\beta }} \left( \frac{[n]_{p,q}}{[n]_{p,q}+\beta }x +\frac{\alpha b_{n} }{[n]_{p,q}+\beta } -u\right) g^{\prime \prime }(u) \mathrm {d}u. \end{aligned}$$

On the other hand, since

$$\begin{aligned} \bigg | \int _{x}^t(t-u)g^{\prime \prime }(u) \mathrm {d}u \bigg |\le & {} \int _{x}^t\mid t-u\mid \mid g^{\prime \prime }(u)\mid \mathrm {d}u \le \parallel g^{\prime \prime } \parallel \bigg | \int _{x}^t\mid t-u\mid \mathrm {d}u\bigg | \le (t-x)^{2}\parallel g^{\prime \prime } \parallel \end{aligned}$$

and

$$\begin{aligned} \bigg | \int _{x}^{\frac{[n]_{p,q}}{[n]_{p,q}+\beta }x +\frac{\alpha b_{n} }{ [n]_{p,q}+\beta }} \left( \frac{[n]_{p,q}}{[n]_{p,q}+\beta }x +\frac{\alpha b_{n} }{[n]_{p,q}+\beta } -u\right) g^{\prime \prime }(u) \mathrm {d}u \bigg | \end{aligned}$$
$$\begin{aligned} \le \left( \frac{[n]_{p,q}}{[n]_{p,q}+\beta }x+\frac{\alpha b_{n}}{ [n]_{p,q}+\beta }-x\right) ^{2}\parallel g^{\prime \prime }\parallel . \end{aligned}$$

We conclude that

$$\begin{aligned} \bigg | {\bar{S}}_{n}^{*}(g;x)-g(x)\bigg |\le & {} \bigg | {S} _{n,p,q}^{(\alpha ,\beta )}\left( \int _{x}^{t}(t-u)g^{\prime \prime }(u) \mathrm {d}u;x\right) \bigg | \\&+\bigg | \int _{x}^{\frac{[n]_{p,q}}{[n]_{p,q}+\beta }x+\frac{\alpha b_{n}}{ [n]_{p,q}+\beta }}\left( \frac{[n]_{p,q}}{[n]_{p,q}+\beta }x+\frac{\alpha b_{n}}{[n]_{p,q}+\beta }-u\right) g^{\prime \prime }(u)\mathrm {d}u\bigg | \\\le & {} \parallel g^{\prime \prime }\parallel {S}_{n,p,q}^{(\alpha ,\beta )}((t-x)^{2};x)+\parallel g^{\prime \prime }\parallel \left( \frac{[n]_{p,q}}{[n]_{p,q}+\beta }x+\frac{\alpha b_{n}}{[n]_{p,q}+\beta }-x\right) ^{2} \\= & {} \parallel g^{\prime \prime }\parallel \delta _{n}^{2}(x). \end{aligned}$$

Now, taking into account Lemma 2.2 (i), we have

$$\begin{aligned} \mid {\bar{S}}_{n}^{*}(f;x)\mid \le \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)\mid +2\parallel f\parallel \le 3\parallel f\parallel . \end{aligned}$$

Therefore,

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid\le & {} \mid {\bar{S}} _{n}^{*}(f-g;x)-(f-g)(x)\mid \\&+\bigg | f\left( \frac{[n]_{p,q}}{[n]_{p,q}+\beta }x+\frac{\alpha b_{n}}{ [n]_{p,q}+\beta }\right) -f(x)\bigg | +\mid {\bar{S}}_{n}^{*}(g;x)-g(x)\mid \\\le & {} 4\parallel f-g\parallel +\omega (f,\alpha _{n}(x))+\delta _{n}^{2}(x)\parallel g^{\prime \prime }\parallel . \end{aligned}$$

Hence, taking the infimum on the right-hand side over all \(g\in C_{B}^{2}[0,\infty ),\) we have the following result

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid \le 4K_{2}(f,\delta _{n}^{2}(x))+\omega (f,\alpha _{n}(x)). \end{aligned}$$

In view of the property of K-functional, we get

$$\begin{aligned} \mid {S}_{n,p,q}^{(\alpha ,\beta )}(f;x)-f(x)\mid \le C\omega _{2}(f,\delta _{n}(x))+\omega (f,\alpha _{n}(x)). \end{aligned}$$

This completes the proof of the theorem.    \(\square \)