Skip to main content

Part of the book series: Mathematics Education Library ((MELI,volume 30))

Abstract

The objective of this chapter is to situate this book by giving a global overview of the history of the change in perspectives on symbolizing and modeling in the mathematics education community. This history describes a shift from the use of symbols and models as embodiments of mathematical concepts and objects in instructional practice, design and theory, to explorations in semiotics as a central field of interest. Underlying this shift is a shift from correspondence theories of truth to contextualist theories of truth. The latter category encompasses constructivism and socio-cultural theory, which constitute the main background theories that are currently adopted in the mathematics education community. The chapter starts with a discussion of two instruction theories that have incorporated the classical use of manipulative materials and visual models. These concem the so-called ‘mapping theory’, which has emerged within the context of information-processing theory, and Gal’perin’s theory of the stepwise formation of mental actions. Next follows a sketch of the constructivist critique. This is followed by a discussion of the role of (cultural) tools from a socio-cultural perspective. Finally the change in ways of describing and conceptualizing symbolizations that has emerged recently is addressed. In relation to this, the semiotic notion of a sign as an integrated signifier/signified pair is discussed. This is complemented with a discussion of the notion of an inscription as the material correlate of a sign, and of the instrumentation of ict tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Artigue, M. (1997). Le logiciel ‘Derive’ comme relevateur de phenomenes didactiques lies a l’utilisation d’environnements informatiques pour l’apprentissage. Educational Studies in Mathematics 33, 133–169.

    Article  Google Scholar 

  • Bakhtin, M. M. (1981). The dialogic imagination: Four essays. Austin: University of Texas Press.

    Google Scholar 

  • Balacheff, N. (1994). Didactique et intelligence artificielle. Recherche en didactique des mathématiques 14 (1–2), 9–42.

    Google Scholar 

  • Brousseau, G. (1988). Le contrat didactique: le milieu. Recherche en didactique des mathématiques 9 (3), 33–115.

    Google Scholar 

  • Brown, J.S. and Leim, K. van (1982). Towards a generative theory of ‘bugs’. In T.P. Carpenter, J.M. Moser, and T.A. Romberg (Eds.), Addition and subtraction: A cognitive perspective. Hillsdale, NJ: Lawrence Erlbaum Associates, 117–135.

    Google Scholar 

  • Chevallard, Y. (1992). Concepts fondamentaux de la didactique: perspectives apportées par une approche anthropologique. Recherche en didactique des mathématiques 12 (1), 73–112.

    Google Scholar 

  • Cobb, P., Yackel, E. and Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23 (1), 2–33.

    Article  Google Scholar 

  • Freudenthal, H. (1983). Didactical Phenomenology of Mathematical Structures. Dordrecht: Reidel.

    Google Scholar 

  • Gal’perin, P. Y. (1969). Stages in the development of mental acts. In: M. Cole and I. Maltzman (Eds.), A handbook of contemporary Sovjet psychology. New York/London: Basic Books Inc., 249–273.

    Google Scholar 

  • Gravemeijer, K., Cobb, P., Bowers, J., and Whitenack, J. (2000). Symbolizing, Modeling, and Instructional Design. In P. Cobb, E. Yackel and K. McClain (Eds.). Communicating and symbolizing in mathematics: Perspectives on discourse, tools, and instructional design. Mahwah, NJ: Lawrence Erlbaum Associates, 225–273.

    Google Scholar 

  • Greeno, J.G. (1987). Instructional Representations Based on Research about Understanding. In: A.H. Schoenfeld. Cognitive Science and Mathematics Education. London: Lawrence Erlbaum Ass. Ltd., 61–88.

    Google Scholar 

  • Lagrange, J.-b. (1999). Complex calculators in the classroom: theoretical and practical reflections on teaching pre-calculus. International Journal of Computers for Mathematical Learning, 4, 51–81.

    Article  Google Scholar 

  • Latour, B. (1990). Drawing things together. In: M. Lynch, and S. Woolgar (Eds.), Representations inscientific practice. Cambridge: MIT-press.

    Google Scholar 

  • Meira, L. (1995). The microevolution of mathematical representations in children’s activities. Cognition and Instruction, 13 (2), 269–313.

    Article  Google Scholar 

  • Nemirovsky, R. (1994). On Ways of Symbolizing: The Case of Laura and Velocity Sign. Journal of Mathematical Behavior, 13, 389–422.

    Article  Google Scholar 

  • Oers, B. van (2000). The appropriation of mathematical symbols: A psychosemiotic approach to mathematics learning. In: P. Cobb, E. Yackel and K. McClain (Eds.). Communicating and symbolizing in mathematics: Perspectives on discourse, tools, and instructional design. Mahwah, NJ: Lawrence Erlbaum Associates, 225–273.

    Google Scholar 

  • Pepper, S. C. (1942). World hypotheses. Berkley: University of California Press.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies - approche cognitive des instruments contemporains. Paris: Armand Colin.

    Google Scholar 

  • Resnick, L.B. and Omanson, S.F. (1987). Learning to Understand Arithmetic. In: Glaser, R. Advances in Instructional Psychology, Vol. 3. London: Lawrence Erlbaum Ass.

    Google Scholar 

  • Roth, W-M. and McGinn, M. K. (1998). Inscriptions: Toward a Theory of Representing as Social Practice. Review of Educational Research, vol 68, no 1, pp 35–59, 1998.

    Google Scholar 

  • Schoenfeld, A.H. (Ed.) (1987). Cognitive Science and Mathematics Education. Hillsdale: Lawrence Erlbaum Ass. Ltd.

    Google Scholar 

  • Sfard, A. (2000). Symbolising mathematical reality into being—or how mathematical discourse and mathematical objects create each other. In P. Cobb, E. Yackel and K. McClain (Eds.). Communicating and symbolizing in mathematics: Perspectives on discourse, tools, and instructional design. Mahwah, NJ: Lawrence Erlbaum Associates, 37–98.

    Google Scholar 

  • Trouche, L. (2000). La parabole du gaucher et de la casserole à bec verseur: étude des processus d’apprentissage dans un environnement de calculatrices symboliques. Educational Studies in Mathematics 41, 239–264.

    Article  Google Scholar 

  • Vergnaud, G. (1990). Le théorie des champs conceptuels. Recherche en didactique des mathématiques 10(2–3), 133 —170.

    Google Scholar 

  • Verschaffel, L., Greer, B., and de Corte (2000). Making sense of word problems. Lisse: Swets and Zeitlinger. Walkerdine, V. (1988). The mastery of reason. London: Routledge.

    Google Scholar 

  • Werner, H. and Kaplan, B. (1963). Symbol formation: An organismic-developmental approach to language and the expression of thought. New York: John Wiley and Sons.

    Google Scholar 

  • Whitson, J. A. (1997). Cognition as a Semiotic Process: From Situated Mediation to Critical Reflective Transcendence. In D. Kirschner, and J. A. Whitson (Eds.). Situated cognition theory: Social, semiotic, and neurological perspectives (pp. 97 150 ). Hillsdale, NJ: Erlbaum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gravemeijer, K. (2002). Preamble: From Models to Modeling. In: Gravemeijer, K., Lehrer, R., Van Oers, B., Verschaffel, L. (eds) Symbolizing, Modeling and Tool Use in Mathematics Education. Mathematics Education Library, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3194-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3194-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6180-5

  • Online ISBN: 978-94-017-3194-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics