Skip to main content

Signal transduction, Ca2+-triggered membrane glycerolipid turnover and growth/senescence equilibria

  • Chapter
Plant Membranes
  • 116 Accesses

Abstract

This topic initially will be dealt with by presenting an overview later to be followed with detailed descriptions of the various signal transduction components. While emphasizing plant mechanisms an attempt will be made to draw certain analogies to mammalian systems which in several aspects have been investigated in greater detail than in plants.

“Yond’ Calcium has a lean and hungry look” Shakespeare. Julius Ceasar I.ii. 195 (with due apologies to Ca2+ssius)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References and recommended reading

  • Berridge, M.J. and Irvine, R.F. 1984. Inositoltrisphosphate. A novel second messenger in cellular signal transduction. Nature 312: 315–21.

    Article  CAS  PubMed  Google Scholar 

  • Biffin, M. and Hanke, D. E. 1990. Polyphosphoinositdase activity in soybean membranes is Cat+ dependent and shows no requirement for guanine nucleotides. Plant Science 69: 147–56.

    Article  Google Scholar 

  • Blackshear, P. J., Naim, A. G. and Kuo, J. F. 1988. Protein kinases 1988: a current perspective. FASEB Jour. 2: 2957–69.

    CAS  Google Scholar 

  • Blum, W., Hinsch, K.D., Schultz, G. and Weiler, E.W. 1988. Identification of GTP binding proteins in the plasma membrane of higher plants. Biochem. Biophys. Res. Comm. 156: 54–9.

    Article  Google Scholar 

  • Borochov, A. 1991. Personal communication.

    Google Scholar 

  • Boss, W.F. and Massel, M.O. 1985. Polyphosphoinositides are present in plant tissue culture cells. Biochem. Biophys. Res. Comm. 132: 1018–23.

    Article  CAS  PubMed  Google Scholar 

  • Casey, P.J. and Gilman, A.G. 1988. G protein involvement in receptor-effector coupling. Jour. Biol. Chem. 203: 2577–80.

    Google Scholar 

  • Cockcroft, S. 1987. Polyphosphoinositide phosphodiesterase: regulation by a novel guanine nucleotide binding protein, Gp. Trends Biochem. Sci. 12: 75–8.

    Article  CAS  Google Scholar 

  • Dillenschneider, M.A., Hetherington, A., Graziana, A., Albert, A., Berta, P., Haiech, J. and Ranjeva, R. 1986. The formation of inositol phosphate derivatives by isolated membranes from Acer pseudoplatanus is stimulated by guanine nucleotides. FEBS Let. 208: 4 1308.

    Google Scholar 

  • Droback, B.K., Allan, J.G., Comerford, J.G., Roberts, K. and Dawson, P. 1988. Presence of guanine nucleotide-binding protein in a plant hypocotyl microsomal fraction. Biochem. Biophys. Res. Comm. 150: 899–903.

    Article  Google Scholar 

  • Droback, B.K. and Ferguson, I.B. 1985. Release of Ca2± from plant hypocotyl microsomes by inositol-1,4,5 trisphosphate. Biochem. Biophys. Res. Comm. 130: 1241–6.

    Article  Google Scholar 

  • Einspahr, K.J., Peeler, T.C., Thompson, G.A. Jr. 1988. Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella saliva to hypo-osmotic shock. Jour. Biol. Chem. 263: 5775–9.

    CAS  Google Scholar 

  • Einspahr, K.J. and Thompson, G.A. Jr. 1990. Transmembrane signaling via polyphosphoinositol 4,5-bisphosphate hydrolysis in plants. Pl. Physiol. 93: 361–6.

    Article  CAS  Google Scholar 

  • Elliott, D.C., Fournier, A. and Kokke, Y.S. 1988. Phosphatidylserine activation of plant protein kinase C. Phytochem. 27: 3725–30.

    Article  CAS  Google Scholar 

  • Epand, R.M. and Lester, D.S. 1990. The role of membrane biophysical properties in the regulation of protein kinase C activity. Trends in Pharm. Sci. 11: 317–20.

    Article  CAS  Google Scholar 

  • Ettlinger, C. and Lehle, L. 1988. Auxin induces rapid changes in PI metabolites. Nature 331: 176–7.

    Article  CAS  PubMed  Google Scholar 

  • Harmon, A.C., Putnam-Evans, A. and Cormier, M.J. 1987. A calcium dependent but calmodulin independent protein kinase from soybean. Plant Physiol. 83: 8307.

    Article  Google Scholar 

  • Heim, S. and Wagner, K.G. 1986. Evidence of phosphorylated phosphatidylinositols in the growth cycle of suspension cultured plant cells. Biochem. Biophys. Res. Comm. 134: 1175–81.

    Article  CAS  PubMed  Google Scholar 

  • Heim, S. and Wagner, K.G. 1989. Inositol phosphates in the growth cycle of suspension cultured plant cells. Plant Sci. 63: 159–65.

    Article  CAS  Google Scholar 

  • Hemberg, M., Miersch, O. and Sembdner, G. 1988. Absolute configuration of phytodienoic acid (a jasmonic acid precursor). Lipids 23: 521–4.

    Article  Google Scholar 

  • Hetherington, A.M., Battey, N.H. and Millner, P.A. 1990. Protein kinase. pp. 371–83. In: Ed. P.J. Lea. Methods in Plant Biochemistry. Academic Press, London and New York.

    Google Scholar 

  • Irvine, R.F., Letcher, A.J., Lander, D.J., Droback, B.K., Dawson, A.P. and Musgrave, A. 1989. PI 4,5 bisphosphate and PI-4 phosphate in plant tissues. Plant Physiol. 89: 882–92.

    Article  Google Scholar 

  • Klucis, E. and Polya, G.M. 1988. Localization solubilization and characterization of plant membrane associated calcium dependent protein kinases. Plant Physiol. 88: 164–71.

    Article  CAS  PubMed  Google Scholar 

  • Koda, Y., Kikuta, Y., Takazaki, H., Tsujino, Y., Sakamura, S. and Yoshihara, T. 1991. Potato tuber inducing activities of jasmonic acid and related compounds. Phytochem. 30: 1435–8.

    Article  CAS  Google Scholar 

  • Leopold, A.C. 1990. Calcium and second messengers in hormonal regulation. pp. 203–8. In: Eds. R.P. Pharis and S.B. Rood. Plant Growth Substances 1988. Springer Verlag, Berlin.

    Google Scholar 

  • Leshem, Y. 1987. Membrane phospholipid catabolism and calcium activity in the control of plant senescence (minireview). Physiol. Plant. 69: 551–9.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y. 1988. Plant senescence processes and free radicals (review). Free Rad. Biol. and Med. 5: 39–44.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y., Halevy, A.H. and Frenkel, C. 1986. Processes and Control of Plant Senescence. Elsevier, Amsterdam.

    Google Scholar 

  • Mazliak, P., Douady, D., Demandre, C. and Kader, J.C. 1975. Exchange processes between organelles involved in membrane lipid biosynhesis. pp. 301–18. In: Eds.

    Google Scholar 

  • Signal transduction 253

    Google Scholar 

  • T. Galliard and E.J. Mercer. Recent Advances in the Chemistry and Biochemistry of Plant Lipids. Academic Press, New York.

    Google Scholar 

  • McMurray, W.C. and Irvine, R.F. 1988. Phosphatidyl 4,5-bisphosphate phosphodiesterase in higher plants. Biochem. Jour. 249: 877–81.

    CAS  Google Scholar 

  • McTavish, A., Sawada, M. and Enesco, H.E. 1990. Nifedipine influences rotifer lifespan: studies on the calcium theory of aging. Age 13: 65–71.

    Article  Google Scholar 

  • Melin, P.M., Sommarin, M., Sandelius, A.S. and Jergil, B. 1987. Identification of Cat+ stimulated PI phospholipase C in isolated plant plasma membranes. FEBS Lett. 223: 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Morré, D.J. 1988. Stimulus-response coupling in auxin regulation of plant cell elongation. pp. 81–114. In: Eds. W. Boss and D.J. Morré. Second Messengers in Plant Growth and Development. Alan R. Liss, New York.

    Google Scholar 

  • Morse, M.J., Crain, R.C. and Satter, R.L. 1987. Phosphatidylinositol cycle metabolites in Samanea saman pulvini. Pl. Phys. 83: 640–4.

    Article  CAS  Google Scholar 

  • Morse, M.J., Satter, R.L., Crain, R.C. and Coté, C.G. 1989. Signal transduction and PI turnover in plants. Physiol. Plant. 76: 118–21.

    Article  CAS  Google Scholar 

  • Nowack, D.D., Morré, D.M., Paulik, M., Keenan, T.W. and Morré, D.J. 1987. Intercellular membrane flow; reconstitution of transition membrane vesicle formation in a cell free system. Proc. Nat. Acad. Sci. USA 84: 6098–102.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffman, H., Hartmann, E., Brightman, A.O. and Morré, D.J. 1987. Phosphatidylinositol specific phospholipase C of plant systems. Pl. Phys. 85: 1151–5.

    Article  Google Scholar 

  • Polya, G.M., Minichiello, J., Nott, R., Klucis, E. and Keane, P.J. 1990. Differential inhibition of plant Ca-dependent protein kinases by long chain fatty acids and other amphiphiles. Plant Sci. 71: 45–54.

    Article  CAS  Google Scholar 

  • Poovaiah, B.W., Reddy, A.S.N. and McFadden, J.J. 1987. Calcium messenger system; role of protein phosphorylation and inositol bisphospholipids (minireview). Physiol. Plant. 69: 569–73.

    Article  CAS  PubMed  Google Scholar 

  • Ranjeva, R. and Boudet, A.M. 1987. Phosphorylation of proteins in plants: from metabolic regulation to potential involvement in stimulus response coupling. Ann. Rev. Pl. Phys. 38: 73–93.

    Article  CAS  Google Scholar 

  • Rincon, M. and Boss, W.F. 1987. Myo-inositol trisphosphate mobilizes calcium from fusogenic carrot protoplasts. Pl. Physiol. 83: 395–8.

    Article  CAS  Google Scholar 

  • Sandelius, A.S. and Morré, D.J. 1987. Characteristics of a phosphatidylinositol exchange activity of soybean microsomes. Pl. Phys. 84: 1022–7.

    Article  CAS  Google Scholar 

  • Sandelius, A.S. and Sommarin, M. 1986. Phosphorylation of phosphatidylinositol in isolated plant membranes. FEBS Lett. 201: 282–6.

    Article  CAS  Google Scholar 

  • Sandelius, A.S. and Sommarin, M. 1990. Membrane-localized reactions involved in polyphosphoinositide turnover in plants. In: Eds. D.J. Morré, W.F. Boss and F. Loewas. Inositol Metabolism in Plants. Alan R. Liss, New York (In press).

    Google Scholar 

  • Scherer, G.F.E., André, B. and Martiny-Baron, G. 1989. A rapid response to a plant hormone: auxin stimulates phospholipase A2 in vivo and in vitro. Biochem. Biophys. Res. Comm. 163: 111–17.

    Article  CAS  PubMed  Google Scholar 

  • Scherer, G.F.E., André, B. and Martiny-Baron, G. 1990. Hormone activated phospholipase A2 and lysophospholipid activated protein kinase: a new signal s transduction chain: a new, second messenger system in plants? Curr. Top. Plant. Biochem., Physiol. 9 (In press).

    Google Scholar 

  • Sommarin, M. and Sandelius, A.S. 1988. Phosphatidylinositol and phosphatidylinositolphosphate kinases in plant plasma membranes. Biochim. Biophys. Acta 958: 26878.

    Google Scholar 

  • Talkenau, E., Heim, S. and Wagner. 1987. Effect of cytokinins on the phospholipid

    Google Scholar 

  • phosphorylation of the suspension cultured Catharanthus roseus cells. Pl. Sci. 50:173–8.

    Google Scholar 

  • Zbell, B. and Walter-Back, C. 1986. About the search for the molecular action of high affinity auxin-binding sites on membrane localized rapid PI metabolism in plant cells. pp. 141–54. In: Ed. D. Klämbt. Plant Hormone Receptors. Springer Verlag, Berlin.

    Google Scholar 

  • Zbell, B. and Walter-Back, C. 1988. Signal transduction of auxin in isolated plant cell membranes; indications for a rapid polyphosphoinositide response stimulated by indoleacetic acid. Jour. Pl. Phys. 133:353–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leshem, Y.Y. (1992). Signal transduction, Ca2+-triggered membrane glycerolipid turnover and growth/senescence equilibria. In: Plant Membranes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2683-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2683-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4096-1

  • Online ISBN: 978-94-017-2683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics