Skip to main content

On the Attitude Dynamics of Perturbed Triaxial Rigid Bodies

  • Conference paper
Dynamics of Natural and Artificial Celestial Bodies

Abstract

Attitude dynamics of perturbed triaxial rigid bodies is a rather involved problem, due to the presence of elliptic functions even in the Euler equations for the free rotation of a triaxial rigid body. With the solution of the Euler—Poinsot problem, that will be taken as the unperturbed part, we expand the perturbation in Fourier series, which coefficients are rational functions of the Jacobian nome. These series converge very fast, and thus, with only few terms a good approximation is obtained. Once the expansion is performed, it is possible to apply to it a Lie-transformation. An application to a tri-axial rigid body moving in a Keplerian orbit is made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abad, A., Elipe, A. and Vallejo, M.: 1994, ‘Automated Fourier series expansions for elliptic functions’, Mech. Res. Commun. 21, 361–366.

    Article  MATH  Google Scholar 

  2. Abad, A., Elipe, A. and Vallejo, M.: 1997, ‘Normalization of perturbed non-linear Hamiltonian oscillators’, Int. J. Non-lin. Mech. 32, 443–453.

    Article  MathSciNet  MATH  Google Scholar 

  3. Andoyer, H.: 1923, Cours de mécanique céleste, Paris, Gauthier-Villars et Cie

    MATH  Google Scholar 

  4. Arribas, M. and Elipe, A.: 1993, ‘Attitude dynamics of a rigid body on a Keplerian orbit: a simplification’, Celest. Mech. & Dyn. Astr. 55, 243–247.

    Article  ADS  MATH  Google Scholar 

  5. Barkin, Y. A.: 1992, Lecture notes Universidad de Zaragoza (unpublished).

    Google Scholar 

  6. Brumberg, V. A.: 1995, Analytical Techniques of Celestial Mechanics. Springer, Berlin.

    Book  MATH  Google Scholar 

  7. Deprit, A.: 1967, ‘Free rotation of a rigid body studied in the phase plane’, Am. J. Phy. 35, 424–428.

    Article  ADS  Google Scholar 

  8. Deprit, A.: 1969, ‘Canonical transformation depending on a small parameter’, Celestial Mechanics, 1, 12–30.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Deprit, A. and Elipe, A.: 1993, ‘Complete reduction of the Euler—Poinsot problem’, J. Astronaut. Sci. 41, 603–628.

    MathSciNet  ADS  Google Scholar 

  10. Elipe, A., Abad, A. and Arribas, M.: 1992, ‘Scaling Hamiltonians in attitude dynamics of two rigid bodies’, Rev. Acad. Ciencias de Zaragoza 47, 137–154.

    MathSciNet  Google Scholar 

  11. Ferrândiz, J. M. and Sansaturio, M. E.: 1989, ‘Elimination of the nodes when the satellite is a non-spherical rigid body’, Celest. Mech. & Dyn. Astr. 46, 307–320.

    Article  ADS  MATH  Google Scholar 

  12. Galgani, L., Giorgilli, A. and Strelcyn, J. M.: 1981, ‘Chaotic motion and transition to stochasticity in the classical problem of a heavy rigid body with a fixed point’, Il Nuovo Cimento B, 61, 1–20.

    Article  MathSciNet  ADS  Google Scholar 

  13. Kinoshita, H.: 1972, ‘First-order perturbations of the two finite body problem’, Publ. Astron. Soc. Japan 24, 423–457.

    MathSciNet  ADS  Google Scholar 

  14. Sadov, Yu. A.: 1970, ‘The Action-Angles Variables in the Euler-Poinsot Problem’, Akad. Nauk SSSR, Prep. 22.

    Google Scholar 

  15. Serret, J. A.: 1866, ‘Mémoire sur l’emploi de la méthode de la variation des arbitraires dans la théorie des mouvements de rotation’, Mémoi. Acad. Sci. Paris 35, 585–616.

    Google Scholar 

  16. Shuster, M.: 1993, ‘A survey on attitude representations’, J. Astronaut. Sci. 41, 439–517.

    MathSciNet  ADS  Google Scholar 

  17. Wisdom, J.: 1987, ‘Rotational dynamics of irregularly shaped natural satellites’, Astron. J. 94, 1350–1360.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Elipe, A., Vallejo, M. (2001). On the Attitude Dynamics of Perturbed Triaxial Rigid Bodies. In: Pretka-Ziomek, H., Wnuk, E., Seidelmann, P.K., Richardson, D.L. (eds) Dynamics of Natural and Artificial Celestial Bodies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1327-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1327-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5865-2

  • Online ISBN: 978-94-017-1327-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics