Skip to main content

Physico-Chemical Characterization, Reactivity and Biodegradability of Soil Natural Organic Matter

  • Chapter
Bioavailability of Organic Xenobiotics in the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

Abstract

Soil organic matter is one of the five main constituents of the soils with minerals, solutions, gases and organisms. It contributes to the original, specific and major properties of soils. It is strongly involved in the control of the availability and cycling of elements and water and in the behaviour and fate of inorganic and organic pollutants. The knowledge of the fundamental chemical, physico-chemical and biological properties of soil organic matter is of great interest to understand soil functioning processes and to define soil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sposito, G. and Reginato, R.J. (1992) Opportunities in Basic Soil Science Research, Soil Sci. Soc. Amer. Inc., Madison.

    Google Scholar 

  2. Robert, M. (19%) Le sol, interface dans l’environnement,Masson, Paris, 244 p.

    Google Scholar 

  3. Duchaufour, Ph. (1997) Abrégé de Pédologie, sol, végétation, environnement, Masson, Paris.

    Google Scholar 

  4. Wilding, L.P., Smeck, N.E. and Hall, G.F. (1984) Pedogenesis and Soil Taxonomy, Vol. I and I I, Elsevier Publ., Amsterdam.

    Google Scholar 

  5. FAO-UNESCO (1988) Soil map of the World. Revised Legend,World Resources Report 60, FAO Roma.

    Google Scholar 

  6. Paton, T.R., Humphreys, G.S. and Mitchell, P.B. (1995) Soils, a new global view,University College Press, 213 p.

    Google Scholar 

  7. Bohn, H.L. (1976) Estimate of organic carbon in world soils, Soil Sci. Soc. Am. J. 40, 468–470.

    Google Scholar 

  8. Bohn, H.L. (1982) Estimate of organic carbon in world soils: II, Soil Sci. Soc. Am. J. 46, 1118–1119.

    Google Scholar 

  9. Andreux, F. (1996) Humus in World Soils, in A. Piccolo (ed.), Humic Substances in Terrestrial Ecosystems, Elsevier Science, Amsterdam, pp. 45–100.

    Chapter  Google Scholar 

  10. Balesdent, J. and Guillet, B. (1982) Les datations par le 14C des matières organiques des sols. Contribution à l’étude de l’humification et du renouvellement des substances humiques, Science du Sol 2, 93–112.

    Google Scholar 

  11. Guillet, B. (1994) L’abondance naturelle des isotopes du carbone comme moyen d’étude de l’âge, du renouvellement et de l’origine des matières organiques des sols, in M. Bonneau and B. Souchier (eds.), Pédologie, 2, Constituants et Propriétés du Sol, Masson, Paris, pp. 297–315.

    Google Scholar 

  12. McKeague, J.A., Cheshire, M.V., Andreux, F. and Berthelin, J. (1986) Organo-Mineral Complexes in relation to Pedogenesis, in P.M. Huang and M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organics and Microbes, Soil Sci. Soc. Am. Spec. Publ. 17, Madison, pp. 549–592.

    Google Scholar 

  13. Bruckert, S. (1979) Analyse des complexes organo-minéraux des sols, in M. Bonneau and B. Souchier (eds.), Pédologie, 2, Constituants et Propriétés du Sol, Masson, Paris, pp. 187–209.

    Google Scholar 

  14. Turchenek, L.W. and Oades, J.-M. (1979) Fractionation of Organo-Mineral Complexes by Sedimentation and Density Techniques, Geoderma 21, 311–343.

    Article  CAS  Google Scholar 

  15. Feller, C. (1979) Une méthode de fractionnement granulométrique de la matière organique des sols: application aux sols tropicaux à texture grossière, très pauvres en humus, Cah. ORSTOM, sér. Pédol. 24, 341–343.

    Google Scholar 

  16. Christensen, B.P. (1992) Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates, in Advances in Soil Science, Vol. 20, Springer Verlag, New-York, pp. 1–90.

    Chapter  Google Scholar 

  17. Vitorello, V., Cerri, C.C., Andreux, F., Feller, C. and Victoria, R.L. (1989) Organic Matter and Natural Carbon-13 Distribution in Forested and Cultivated Oxisols, Soil Sci. Soc. Am. J. 53, 773–778.

    CAS  Google Scholar 

  18. Cambardella, C.A. and Elliott, E.T. (1993) Methods for Physical Separation and Characterization of Soil Organic Matter Fractions, Geoderma 56, 449457.

    Google Scholar 

  19. Rouiller, J., Burtin, G. and Souchier, B. (1972) La dispersion des sols dans l’analyse granulométrique. Méthode utilisant les résines échangeuses d’ions, Bull. ENSAIA Nancy 14, 193–205.

    CAS  Google Scholar 

  20. Bartoff, F., Burtin, G. and Herbillon, A.J. (1991) Disaggregation and Clay Dispersion of Oxisols: Na Resin, a Recommended Methodology, Geoderma 49, 301–317.

    Article  Google Scholar 

  21. Tiessen, H. and Stewart, J.W.B. (1983) Particle Size Fractions and their Uses in Studies of Soil Organic Matter. II. Cultivation Effects on Organic Matter Composition, Soil Sci. Soc. Am. J. 47, 509–514.

    Article  CAS  Google Scholar 

  22. Kabir, M.D.M., Chotte, J.L., Rahman, M., Bally, R. and Jocteur-Monrozier, L. (1994) Distribution of Soil Fractions and Location of Soil Bacteria in a Vertisol under Cultivation and Perennial Grass, Plant and Soil 163, 243–255.

    Article  CAS  Google Scholar 

  23. Quénéhervé, P. and Chotte, J.L. (1996) Distribution of Nematodes in Vertisol Aggregates under a Permanent Pasture in Martinique, Appl. Soil Ecol. 4, 193–200.

    Article  Google Scholar 

  24. Achard, F.K. (1786) Chemische Untersuchungen des Trofs, Crell’s Chem. Ann. 2, 391–403.

    Google Scholar 

  25. Andreux, F. and Munier-Lamy, C. (1994) Genèse et propriétés des molécules humiques, in M. Bonneau and B. Souchier (eds.), Pédologie, 2, Constituants et Propriétés du Sol, Masson, Paris, pp. 109–142.

    Google Scholar 

  26. Bruckert, S., Gaiffe, M., Blondé, J.L. and Portal, J.-M. (1994) Fractionnement de la matière organique et analyse des composés humiques des sols calcimagnésiens humifères du Jura (France), Geoderma 61, 269–280.

    Article  CAS  Google Scholar 

  27. Cheshire, M.V. (1979) Nature and Origin of Carbohydrates in Soils,Academic Press, London.

    Google Scholar 

  28. François, C., Rafidison, Z., Villemin, G., Toutain, F. and Andreux, F. (1987) The Accumulation and Fate of Brown Pigments in Leaves from Litter of Fagus sylvatica L. a Morphological and Chemical Study, in G. Giovannozzi-Sermanni and P. Nannipieri (eds.), Current Perspectives in Environmental Biogeochemistry, CNR-IPRA Roma, pp. 317–327.

    Google Scholar 

  29. Dinel, H., Schnitzer, M. and Mehuys, G.R. (1990) Soil lipids: origin, nature, content, decomposition and effects on soil physical properties, in J.-M. Bollag and G. Stotzky (eds.), Soil Biochemistry, Vol. 6, Marcel Dekker Inc., New York, pp. 397429.

    Google Scholar 

  30. Schnitzer, M. (1990) Selected Methods for the Characterization of Soil Humic Substances, in P. MacCarthy, C.E. Clapp, R.L. Malcolm and P.R. Bloom (eds.), Humic Substances in Soil and Crop Sciences: Selected Readings, Amer. Soc. Agron., Soil Sci. Soc. Am., Madison, pp. 65–89.

    Google Scholar 

  31. Aiken, G.R., McKnight, D.M., Wershaw, R.L. and MacCarthy, P. (1985) Humic Substances in Soil, Sediment and Water. Geochemistry, Isolation and Characterization, J. Wiley and Sons, New York.

    Google Scholar 

  32. Thurman, E.M. and Malcolm, R.L. (1981) Preparative Isolation of Aquatic Humic Substances, Environ. Sci. Technol. 15, 463–466.

    Article  CAS  Google Scholar 

  33. Aiken, G.R. (1988) A Critical Evaluation of the Use of Macroporous Resins for the Isolation of Aquatic Humic Substances, in F.H. Frimmel and R.F. Christman (eds.), Humic Substances and their Role in the Environment, J. Wiley and Sons, New York, pp. 15–28.

    Google Scholar 

  34. Leenheer, J.A. (1985) Fractionation Techniques for Aquatic Humic Substances, in G.R. Aiken, D.M. McKnight, R.L. Wershaw and P. MacCarthy (eds.), Humic Substances in Soil, Sediment and Water. Geochemistry, Isolation and Characterization, J. Wiley and Sons, New York, pp. 409–429.

    Google Scholar 

  35. Buffle, J. and Leppard, G.G. (1995) Characterization of Aquatic Colloids and Macromolecules. 2. Key Role of Physical Structures on Analytical Results, Environ. Sci. Technol. 29, 2176–2184.

    Article  CAS  Google Scholar 

  36. Barriuso, E., Andreux, F. and Portal, J.-M. (1985) Quantification des acides humiques et fulviques d’un sol acide de montagne. Discussion méthodologique, Science du sol 1, 23–25.

    Google Scholar 

  37. Toutain, F. (1987) Les litières: siège de systèmes interactifs et moteur de ces interactions, Rev. Ecol. Biol. Sol 24, 321–242.

    Google Scholar 

  38. Foster, R.C. and Martin, J.K. (1981) In situ analysis of soil components of biological origin, in E.A. Paul and J.N. Ladd (eds.), Soil Biochemistry, Vol. 5, Marcel Dekker, New York, pp. 75–110.

    Google Scholar 

  39. Bisdom, E.B.A. (1981) Submicroscopy of soils and weathered rocks, Centre for Agricultural Publishing and Documentation, Wageningen.

    Google Scholar 

  40. Fedoroff, N. and Courty, M.A. (1994) Organisation du sol aux échelles microscopiques, in M. Bonneau et B. Souchier (eds.), Pédologie, 2, Constituants et Propriétés du Sol, Masson, Paris, pp. 349–375.

    Google Scholar 

  41. Foster, R.C. (1981) The Ultrastructure and Histochemistry of the Rhizosphere, New Phytol. 88, 263–273.

    Article  Google Scholar 

  42. Watteau, F., Villemin, G., Mansot, J.L., Ghanbaja, J. and Toutain, F. (1996) Localization and characterization by Electron Energy Loss Spectroscopy (EELS) of the Brown Cellular Substances of Beech Roots, Soil Biol. Biochem. 28, 1327–1332.

    Article  CAS  Google Scholar 

  43. Villemin, G., Mansot, J.L., Watteau, F., Ghanbaja, J. and Toutain, F. (1995) Etude de la biodégradation et de l’humification de la matière organique végétale du sol par la spectroscopie des pertes d’énergie d’électrons transmis (EELS: Electron Energy Loss Spectroscopy): répartition du carbone, de l’azote et évaluation du rapport C/N au niveau ultrastructural in situ, C.R. Acad. Sci. Paris 321, série IIa, 861–868.

    Google Scholar 

  44. Lemoine, M.C., Gianinazzi-Pearson, V., Gianinazzi, S. and Straker, C.J. (1992) Occurrence and Expression of Acid Phosphatase of Hymenoscyphus ericae (Reid) Korf and Kerman in Isolation or Associated with Plant Roots, Mycorrhiza 1, 137–146.

    Article  CAS  Google Scholar 

  45. Hayat, M.A. (1989) Principles and Techniques of Electron Microscopy. Biological Applications, CRC Inc., Boca Raton, Flo.

    Google Scholar 

  46. Ruel, K. and Joseleau, J.P. (1991) Involvement of an Extracellular Glucan Sheath during Degradation of Populus Wood by Phanerochaete chrysosporium, Appl. Environ. Microbiol. 57, 374–384.

    CAS  Google Scholar 

  47. Ghiorse, W.C., Miller, D.N., Sandoli, R.L. and Siering, P.L. (1996) Applications of Laser Scanning Microscopy for Analysis of Aquatic Microhabitats, Microscopy Research and Technique 33, 73–86.

    Article  CAS  Google Scholar 

  48. Anguish, L.J. and Ghiorse, W.C. (1997) Computer-Assisted Laser Scanning and Video Microscopy for Analysis of Cryptosporidium parvum Oocysts in Soil, Sediment and Feces, Appl. Environ. Microbiol. 63, 724–733.

    CAS  Google Scholar 

  49. Andreux, F. (1978) Etude de la stabilisation physico-chimique et biologique d’acides humiques modèles, Thèse Doctorat d’Etat, Univ. Nancy I, 174 p.

    Google Scholar 

  50. Andreux, F., Cerri, C.C., Eduardo, B. de P. and Choné, T. (1990) Humus content and transformations in native and cultivated soils, Sci. Tot. Environ. 90, 249–256.

    Article  CAS  Google Scholar 

  51. Barriuso, E. (1985) Caractérisation des fractions organo-minérales et des constituants humiques d’un sol de pelouse alpine, Thèse Doct. Univ. Nancy I, 186 p.

    Google Scholar 

  52. Pillon, P., Portal, J.-M., Gérard, B., Jeanson, P. and Jocteur-Monrozier, L. (1986) Oxygen containing functional groups in land-derived humic acids, II. Changes in the oxygen distribution of humic acids during early diagenesis as revealed by derivatization methods, Org. Geochem. 9, 313–319.

    Article  CAS  Google Scholar 

  53. Van Krevelen, D.W. (1950) Graphical-statistical method for the study of structure and reaction processes of coal, Fuel 29, 259–264.

    Google Scholar 

  54. Buffle, J. and Leppard, G.G. (1995) Characterization of Aquatic Colloids and Macromolecules, 1. Structure and Behavior of Colloidal Material, Environ. Sci. Technol. 29, 2169–2175.

    Article  CAS  Google Scholar 

  55. Rouiller, J., Souchier, B., Bruckert, S., Feller, C., Toutain, F., and Vedy, J.-C. (1994) Méthodes d’analyses des sols, in M. Bonneau et B. Souchier (eds.), Pédologie, 2, Constituants et Propriétés du Sol, Masson, Paris, pp. 619–652.

    Google Scholar 

  56. Jacquin, F., Bruckert, S., Nguyen Quat Hao (1971) Mise au point sur l’utilisation des gels Sephadex pour le fractionnement des composés humiques, Bull. Assoc. Fr. Etude Sol 2, 9–15.

    Google Scholar 

  57. Berthelin, J., Munier-Lamy, C. and Leyval, C. (1995) Effect of Microorganisms on Mobility of Heavy Metals in Soils, in P.M. Huang, J. Berthelin, J.-M. Bollag, W.B. McGill and A.L. Page (eds.), Environmental Impact of Soil Component Interactions, Vol. 2 Metals, Other Inorganics, and Microbial Activities, CRC Lewis Publishers, Boca Raton, pp. 3–17.

    Google Scholar 

  58. Munier-Lamy, C. and Berthelin, J. (1987) Formation of Polyelectrolyte Complexes with Major (Fe, Al) and Traces (U, Cu) Elements during Heterotrophic Microbial Leaching of Rocks, Geomicrobiol. J. 5, 119–147.

    Article  CAS  Google Scholar 

  59. Munier-Lamy, C., Adrian, P., Berthelin, J. and Rouiller, J. (1986) Comparison of Binding Abilities of Fulvic and Humic Acids Extracted from Recent Marine Sediments with UO2++ Org. Geochem. 2, 285–292.

    Article  Google Scholar 

  60. Brunelot, G., Adrian, P., Rouiller, J., Guillet, B. and Andreux, F. (1989) Determination of Dissociable Acid Groups of Organic Compounds Extracted from Soils, Using Automated Potentiometric Titration, Chemosphere 19, 1413–1419.

    Article  CAS  Google Scholar 

  61. Portal, J.-M., Pillon, P., Jeanson, P. and Gérard, B. (1986) Oxygen-Containing Functional Groups in Land-Derived Humic Acids. I. Evaluation by Derivatization Methods, Org. Geochem. 9, 305–311.

    Article  CAS  Google Scholar 

  62. Filip, Z., Flaig, W. and Rietz, E. (1977) Oxidation of some phenolic substances as influenced by day minerals, in Soil Organic Matter Studies, IAEA-FAO Vienna, Vol. II, pp. 91–96.

    Google Scholar 

  63. Flaig, W. (1974) in D. Provedo and H.L. Golterman (eds.), Proc. Intern. Meet. “Humic Substances” Pudoc, Wageningen, pp. 19–42.

    Google Scholar 

  64. Bruckert, S. and Kilbertus, G. (1980) Fractionnement et analyse des complexes organominéraux de sols bruns et de chernozems, Plant and Soil 57, 271–295.

    Article  CAS  Google Scholar 

  65. Germain, C. (1995) Nature, réactivité et biodégradation des matières organiques associées aux argiles d’un bassin sédimentaire, Thèse Doct. Univ., Univ. Henri-Poincaré Nancy I, 190 p.

    Google Scholar 

  66. Samrakandi, M.A. (1992) Rôle des nitrites dans l’oxydation des polyphénols et la formation de polycondensats de type humique, Thèse Doct. Institut National Polytechnique de Lorraine, 168 p.

    Google Scholar 

  67. Wershaw, R.L. (1985) Application of Nuclear Magnetic Resonance Spectroscopy for Determining Functionality in Humic Substances, in G.R. Aiken, D.M. McKnight, R.L. Wershaw and P. MacCarthy (eds.), Humic Substances in Soil, Sediment and Water. Geochemistry, Isolation and Characterization, J. Wiley and Sons, New York, pp. 561–582.

    Google Scholar 

  68. Catroux, G. and Schnitzer, M. (1987) Chemical Spectroscopic and Biological Characteristics of the Organic Matter in Particle Size Fractions Separated from an Aquoll, Soil Sci. Soc. Am. J. 51, 1200–1207.

    CAS  Google Scholar 

  69. Nanse, G. (1987) Rapport Action Thématique Programmée “Matières Organiques dans les Sols”, PIREN-CNRS, Université de Mulhouse, 204 p.

    Google Scholar 

  70. Cheshire, M.V., Cranwell, P.A., Falshaw, C.P., and Floyd, A.J. (1967) Humic acid. II. Structure of Humic Acids, Tetrahedron 23, 1669–1682.

    Article  CAS  Google Scholar 

  71. Khan, S.U. and Schnitzer, M. (1972) Permanganate oxidation of humic acids extracted from a gray wooded soil under different cropping system and fertilizer treatments, Geoderma 1 /2, 113–120.

    Article  Google Scholar 

  72. Hansen, E.H. and Schnitzer, M. (1967) Oxidative degradation of Danish illuvial organic matter, Trans. Comm. II and IV, Int. Soc. Soil Sci., Aberdeen 1966, pp. 87–92.

    Google Scholar 

  73. Steelink, C., Berry, J.W., Ho, A. and Nordby, H. (1960) Alkaline degradation products of soil humic acids, Sci. Proc. Roy. Dublin Soc. A, I, 59–57.

    Google Scholar 

  74. Hansen, E.H. and Schnitzer, M. (1969) Zn dust distillation and fusion of a soil humic and fulvic acid, Soil Sci. Soc. Amer. Proc. 33, 29–36.

    Article  CAS  Google Scholar 

  75. Bremner, J.-M. (1965) Organic forms of nitrogen, in C.A. Black (ed.), Methods of Soil Analysis, Agron. Soc. Inc Madison, Wisconsin, pp. 1238–1255.

    Google Scholar 

  76. Jocteur-Monrozier, L. and Andreux, F. (1981) L’azote organique des sols. Exemples de quantification des formes protéiques et des combinaisons complexes, Science du Sol 3, 219–242.

    Google Scholar 

  77. Jocteur-Monrozier, L. (1984) Nature et évolution de l’azote organique dans les sols et les sédiments marins récents, Thèse Doctorat d’Etat, Univ. Nancy I, 176 p.

    Google Scholar 

  78. Sowden, F.J. (1977) A survey of the distribution of nitrogen in representative Canadian soils, Soil Res. Inst. Publ., Canada Depart. Agric., Ottawa, Ontario, 45 p.

    Google Scholar 

  79. Dubois, M., Gille, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances, Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  80. Cheshire, M.V., Mundie, C.M. and Shepherd, H. (1973) The origin of soil polysaccharides: transformation of sugars during the decomposition in soil of plant material labelled with 14C, J. Soil Sci. 24, 54–68.

    Article  CAS  Google Scholar 

  81. Barriuso, E., Andreux, F. and Portal, J.-M. (1985) Etude de la répartition des glucides associés aux constituants humiques dans un sol humifère de montagne, C.R. Acad. Sci. Paris 300, série II, 827–830.

    Google Scholar 

  82. Haider, K., Frederick, L.R. and Flaig, W. (1965) Reactions between amino-acid compounds and phenols during oxidation, Plant and Soil 22, 49–64.

    Article  CAS  Google Scholar 

  83. Barriuso, E., Andreux, F. and Portal, J.-M. (1990) Caractérisation par hydrolyse acide de l’azote des fractions organiques et organo-minérales d’un sol humifère, Science du Sol 28, 223–236.

    CAS  Google Scholar 

  84. Barriuso, E., Portal, J.-M. and Andreux, F. (1987) Cinétique et mécanisme de l’hydrolyse acide de la matière organique d’un sol humifère de montagne, Can. J. Soil Sci. 67, 647–658.

    Article  Google Scholar 

  85. Dupuis, T., Jambu, P. and Dupuis, J. (1972) Sur les formes de liaison entre le calcium et les acides fulviques, C.R. Acad. Sci. Paris 274D, 3362–3364.

    CAS  Google Scholar 

  86. Stevenson, F.J. and Coh, K.M. (1974) Infrared spectra of humic acids: elimination of interference due to hygroscopic moisture and structural changes accompanying heating with KBr, Soil Sci. 177, 34–41.

    Article  Google Scholar 

  87. Konchits, V.A. and Raskatov, V.A. (1979) Changes of fulvic acid composition during thermal degradation, Dokl. Tskh. A. 253, 133–363.

    CAS  Google Scholar 

  88. Iosselis, P., Ikan, R. and Frenkel, M. (1980) Thermal degradation of metal-complexed humic substances, Phys. Chem. Earth 12, 566–577.

    Google Scholar 

  89. Barriuso, E., Portal, J.-M. and Andreux, F. (1985) Controlled thermal degradation of humic and fulvic acids extracted at different pH values from an umbric dystrochrept, Org. Geochem. 8, 115–116.

    Article  Google Scholar 

  90. Schnitzer, M. and Hoffman, I. (1964) Pyrolysis of soil organic matter, Soil Sci. Soc. Am. Proc., 520–525.

    Google Scholar 

  91. Irwin, W.J. (1979) Analytical pyrolysis, an overview, J. Anal. Appl. Pyrol.1, 3–25 and 89–128.

    Google Scholar 

  92. Bracewell, J.-M., Haider, K., Larter, S.R. and Schulten, H.R. (1989) Thermal Degradation Relevant to Structural Studies of Humic substances, in M.H.B. Hayes, P. MacCarthy, R.L. Malcolm and R.S. Swift (eds.), Humic Substances II, In Search of Structure, Chap. VII, John Wiley and Sons, Ltd, pp. 181–222.

    Google Scholar 

  93. Bracewell, J.-M. and Robertson, G.W. (1981) Analytical potential of pyrolysis products derived from soil organic matter, in Anal. Proc. Pyrolysis–Recent Advances and Novel Applications, Joint Meet. Univ. Reading, UK, pp. 532–535.

    Google Scholar 

  94. Stewart, I.M., Skinner, M. and Schnitzer, M. (1975) Rapid identification by gas chromatography-mass spectrometry-computer of organic compounds resulting from the degradation of humic substances, Anal. Chim. Acta 75, 207–211.

    Article  Google Scholar 

  95. Saiz-Jimenez, C., Haider, K. and Meuzelaar, H.L.C. (1979) Comparisons of soil organic matter and its fractions by pyrolysis mass spectrometry, Geoderma 22, 25–37.

    Article  CAS  Google Scholar 

  96. Saiz-Jimenez, C. and Martin, F. (1979) Low boiling point compounds produced by pyrolysis of fungal melanins and model phenolic polymers, Soil Biol. Biochem. 11, 305–309.

    Article  CAS  Google Scholar 

  97. Bracewell, J.-M., Robertson, G.W. and Welsh, D.I. (1980) Polycarboxylic acids as the origin of some pyrolysis products. Characteristic of soil organic matter, J. Anal. Appl. Pyrol. 2, 239–248.

    Article  CAS  Google Scholar 

  98. Robert, M. and Berthelin, J. (1986) Role of Biological and Biochemical Factors in Soil Mineral Weathering, in P.M. Huang and M. Schnitzer (eds.), in Interactions of Soil Minerals with Natural Organics and Microbes, Soil Sci. Soc. Am. Spec. Publ. 17, Madison, pp. 453–495.

    Google Scholar 

  99. Stevenson, F.J. and Ardakani, M.S. (1972) Organic matter reactions involving micronutrients in soils, in J.J. Mortvedt, P.M. Giordano and W.L. Lindsay (eds.), Micronutrients in Agriculture, Am. Soc. Agron., pp. 79–114.

    Google Scholar 

  100. Trudinger, P.A. and Swaine, D.J. (1979) Biogeochemical Cycling of Mineral-Forming Elements, Studies in Environmental Science 3, Elsevier Sci. Pub. Co, Amsterdam, 612 p.

    Google Scholar 

  101. Berthelin, J. (1988) Microbial weathering processes in natural environment, in A. Lerman and M. Meybeck (eds.), Physical and Chemical Weathering in Geochemical Cycles, Kluwer Academic Publ., pp. 33–59.

    Google Scholar 

  102. Bach, A., Capus, C. and Portal, J.-M. (1981) Formation de complexes organo-uranifères dans la zone d’altération à partir de la matière organique de sédiments anciens, in Coll. Intern. CNRS 303, Nancy,Migrations organo-minérales dans les sols tempérés, CNRS Paris Publ., pp. 413420.

    Google Scholar 

  103. Deneux-Mustin, S., Rouiller, J., Durecu, S., Munier-Lamy, C. and Berthelin, J. (1994) Détermination de la capacité de fixation des métaux par des biomasses microbiennes des sols, des eaux et des sédiments: intérêt de la méthode du titrage potentiométrique, C.R. Acad. Sci. Paris 319, série II, 1057–1062.

    Google Scholar 

  104. Sarret, G., Manceau, A., Cuny, D., Van Haluwyn, C., Déruelle, S., Hazemann, J.L., Soldo, Y., Eybert-Bérard, L. and Menthonnex, J.J. (in press) Mechanism of Lichen Resistance to Metallic Pollution,Environ. Sci. Technol.

    Google Scholar 

  105. Sarret, G. (1988) Biogéochimie structurale du zinc et du plomb: interactions avec des acides humiques, des parois cellulaires de champignon et des lichens, Thèse Doct. Univ. Grenoble I.

    Google Scholar 

  106. Hatira, A., Gallali, T., Rouiller, J. and Guillet, B. (1990) Stabilité et solubilité des complexes formés entre le cuivre, le plomb, le zinc et les acides fulviques, Science du Sol 28, 123–135.

    CAS  Google Scholar 

  107. Fourest, E. (1993) Etude des mécanismes de biosorption des métaux lourds par des biomasses fongiques industrielles en vue d’un procédé d’épuration des effluents aqueux contaminés, Thèse Doct. Univ. Grenoble I.

    Google Scholar 

  108. Fourest, E. and Roux, J.-C. (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH, Appl. Microbiol. Biotechnol. 37, 399–403.

    Article  CAS  Google Scholar 

  109. Calvet, R., Tercé, M. and Arvieu, J.-C. (1980) Mise au point bibliographique: Adsorption des pesticides par les sols et leurs constituants. I. Description du phénomène d’adsorption, Ann. Agron. 31, 33–62.

    CAS  Google Scholar 

  110. Hsu, T.S. and Bartha, R. (1976) Hydrolysable and non hydrolysable 3,4 dichloroaniline-humus complexes and their respective rates of biodegradation, J. Agric. Food Chem. 24, 118–122.

    Article  CAS  Google Scholar 

  111. Bertin, G. and Schiavon, M. (1989) Les résidus non extractibles de produits phytosanitaires dans les sols, Agronomie 9, 117–124.

    Article  Google Scholar 

  112. Andreux, F., Portal, J.-M., Schiavon, M. and Bertin, G. (1992) The binding of atrazine and its dealkylated derivatives to humic-like polymers derived from catechol, Sci. Tot. Environ. 117 /118, 207–217.

    Google Scholar 

  113. Völkel, W., Choné, T., Portal, J.-M., Gérard, B., Mansour, M., Andreux, F. (1993) Reaction of the pesticide metabolite 3,4 Dichloroaniline with humic acid monomers, Fresenius Environ. Bull. 2, 262–267.

    Google Scholar 

  114. Andreux, F., Portal, J.-M., Schiavon, M. and Berlin, G. (1991) The usefullness of humus fractionation methods in studies about the behaviour of pollutants in soils, Toxicol. Environ. Chem. 31–32, 29–38.

    Article  Google Scholar 

  115. Schiavon, M., Jacquin, F. and Goussault, C. (1977) Blocage de molécules s-triaziniques par la matière organique, in Soil Organic Matter Studies II, IAEA-FAO Vienna, pp. 327–332.

    Google Scholar 

  116. Khan, S.U. and Ivarson, K.C. (1982) Release of soil bound (non extractable) residues by various physiological groups of microorganisms, J. Environ. Health, Part B Pest. Food Contamin. Agric. Wastes B17, 737–749.

    CAS  Google Scholar 

  117. Khan, S.U. and Ivarson, K.C. (1981) Microbial release of unextracted (bound) residues from an organic soil treated with prometryn, J. Agric. Food Chem. 29, 1301–1303.

    Article  CAS  Google Scholar 

  118. Alexander, M. (1994) Biodegradation and Bioremediation, Academic Press, New York.

    Google Scholar 

  119. Dommergues, Y. and Mangent, F. (1970) Ecologie Microbienne du Sol, Masson, Paris.

    Google Scholar 

  120. Haider, K., Martin, J.P. and Filip, Z. (1975) Humus Biochemistry, in E.A. Paul and A.D. McLaren (eds.), Soil Biochemistry, Vol. 4, Marcel Dekker, New-York, pp. 195–244.

    Google Scholar 

  121. Alexander, M. (ed.) (1977) Introduction to Soil microbiology, 2nd edition, John Wiley and Son Inc., New-York.

    Google Scholar 

  122. Ladd, J.N., Foster, R.C., Nannipieri, P. and Oades, J.-M. (1996) Soil Structure and Biological Activity, in G. Stotzky and J.-M. Bollag (eds.), Soil Biochemistry, Vol. 9, Marcel Dekker Inc., New-York, pp. 23–78.

    Google Scholar 

  123. Ruggiero, P., Dec, J. and Bollag, J.M. (1996) Soil as a Catalytic System, in G. Stotzky and J.-M. Bollag (eds.), Soil Biochemistry, Vol. 9, Marcel Dekker Inc., New-York, pp. 79–122.

    Google Scholar 

  124. McBride, M.B. (1994) Environmental Chemistry of Soils, Oxford University Press, New-York.

    Google Scholar 

  125. Stotzky, G. (1986) Influence of Soil Mineral Colloids on Metabolic Processes, Growth, Adhesion and Ecology of Microbes and Viruses, in P.M. Huang and M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organics and Microbes, Soil Sci. Soc. Am. Spec. Publ. 17, Madison, pp. 305–428.

    Google Scholar 

  126. Young, C.S. and Burns, R.G. (1993) Detection, Survival and Activity of Bacteria Added to Soil, in J.-M. Bollag and G. Stotzky (eds.), Soil Biochemistry, Vol. 8, Marcel Dekker Inc., New York, pp. 1–63.

    Google Scholar 

  127. Gianfreda, L. and Bollag, J.-M. (1996) Influence of Natural and Anthropogenic Factors on Enzyme Activity in Soil, in J.-M. Bollag and G. Stotzky (eds.), Soil Biochemistry, Vol. 9, Marcel Dekker Inc., New-York, pp. 123–193.

    Google Scholar 

  128. Haider, K. (1992) Problems related to the humification processes in soils of temperate climates, in G. Stotzky and J.-M. Bollag (eds.), Soil Biochemistry, Volume 7, Marcel Dekker Inc., New-York, pp.. 55–94.

    Google Scholar 

  129. Berthelin, J., Nibart, F. and Leyval, C. (in press) Assessment of polyaromatic hydrocarbon (PAH) removal by microbial biodegradation in multi-polluted soils, in Symposium 38, Proc. World Cong. Soil Sci., Montpellier, France, 1998.

    Google Scholar 

  130. Andreux, F., Boudot, J.P., Choné, T. and Gueniot, B. (1983) Relation entre la biodégradation de la glycine libre ou combinée et la nature du complexe d’altération des sols, Agronomie 3, 247–257.

    Article  Google Scholar 

  131. Boudot, J.P., Bel Hadj, B.A. and Choné, T. (1986) Carbon mineralization in andosols and aluminium-rich Highland soils, Soil Biol. Biochem.18, 457–461.

    Google Scholar 

  132. Munier-Lamy, C., Adrian, P. and Berthelin, J. (1991) Fate of organo-heavy metal complexes of sludges from domestic wastes in soils: a simplified modelization, Toxicol. Environ. Chem. 31/ 32, 527–538.

    Google Scholar 

  133. Metzger, L., Munier-Lamy, C., Choné, T., Belgy, M.-J., Andreux, F., and Védy, J.-C. (1996) Fate of a sulfonylurea herbicide in an alluvial soil, as shown by experimental degradation of pyrimidine-2–14C-labelled rimsulfuron, Chemosphere 33, 625–633.

    Article  CAS  Google Scholar 

  134. Amador, J.A. and Alexander, M. (1988) Effect of humic acids on the mineralization of low concentrations of organic compounds, Soil Biol. Biochem. 20, 185–191.

    Article  CAS  Google Scholar 

  135. Martin, J.P. and Haider, K. (1980) Microbial degradation and stabilization of 14C-labelled lignin, phenols and phenolic polymers in relation to soil humus formation, in T.K. Kirk et al. (eds.), Lignin biodegradation: Microbiology, chemistry and potential applications, Vol. I, CRC Press, Boca Raton, Flo.

    Google Scholar 

  136. Martin, J.P., Parsa, A.A. and Haider, K. (1978) Influence of intimate association with humic polymers on biodegradation of [14C) labelled organic substrates in soil, Soil Biol. Biochem. 10, 483–486.

    Article  CAS  Google Scholar 

  137. Völkel, W., Choné, T., Andreux, F., Mansour, M. and Korte, F. (1994) Influence of temperature on the degradation and formation of bound residues of 3,4-dichloroaniline in soil, Soil Biol. Biochem. 26, 1673–1679.

    Article  Google Scholar 

  138. Hayar S., Munier-Lamy, C., Choné, T. and Schiavon, M. (1997) Physico-chemical versus microbial release of 14C-atrazine bound residues from a loamy clay soil incubated in laboratory microcosms, Chemosphere 34, 2683–2697.

    Article  CAS  Google Scholar 

  139. Guckert, A., Tok, H.H. and Jacquin, F. (1977) Biodégradation de polysaccharides bactériens adsorbés sur une montmorillonite, in Soil Organic Matter Studies, I, IAEA-FAO Vienna, pp. 403–411.

    Google Scholar 

  140. Sung Ahn, Ik., Lion, L.W. and Schuler, M.L. (1996) Microscale-Based Modeling of Polynuclear Aromatic Hydrocarbon Transport and Biodegradation in Soil, Biotechnol. Bioeng. 51, 1–14.

    CAS  Google Scholar 

  141. Janzen, R.A., Xing, B., Gomez, C.C., Salloum, M.-J., Druber, R.A. and McGill, W.B. (1996) Compost extract enhances desorption of a—naphthol and naphthalene from pristine and contaminated soils, Soil Biol. Biochem. 28, 1089–1098.

    Article  CAS  Google Scholar 

  142. Burns, R.G. (1986) Interaction of enzymes with soil mineral and organic colloids, in P.M. Huang and M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organics and Microbes, Soil Sci. Soc. Am. Spec. Publ. 17, Madison, pp. 429–451.

    Google Scholar 

  143. Filip, Z. and Claus, H. (1995) Effects of soil minerals on the microbial formation of enzymes and their possible use in remediation of chemically polluted sites, in P.M. Huang, J. Berthelin, J.-M. Bollag, W.B. McGill and A.L. Page (eds.), Environmental Impact of Soil Component Interactions, Vol. 2, Metals, Other Inorganics, and Microbial Activities, CRC Lewis Publ., Boca Raton, pp. 409–421.

    Google Scholar 

  144. Berthelin, J. and Cheikhzadeh-Mossadegh, D. (1977) Biodégradation de complexes organoferriques dans un sol brun acide et dans un sol podzolique sur granite, In Soil Organic Matter Studies, I, IAEA-FAO Vienna, pp. 413–424.

    Google Scholar 

  145. Cheikhzadeh-Mossadegh, D. Choné, T. and Berthelin, J. (1981) Influence de l’activité microbienne sur la migration et le devenir du fer et du carbone d’un complexe organoferrique dans les sols acides et un sol carbonaté, in Coll. Intern. CNRS 303, Nancy,Migrations organo-minérales dans les sols tempérés, CNRS Paris Publ., pp. 199–207.

    Google Scholar 

  146. Huang, P.M. and Schnitzer, M. (1986) Interactions of Soil Minerals with Natural Organics and Microbes, Soil Sci. Soc. Am. Spec. pub. 17, Madison.

    Google Scholar 

  147. Berthelin, J., Leyval, C. and Toutain, F. (1994) Biologie des Sols. Rôle des organismes dans l’altération et l’humification, in M. Bonneau and B. Souchier (eds.), Pédologie,2, Constituants et Propriétés des sols, Masson, Paris, pp. 143–237.

    Google Scholar 

  148. Senesi, N. and Miano, T.M. (1995) The Role of Abiotic Interactions with Humic Substances on the Environmental Impact of Organic Pollutants, in P.M. Huang, J. Berthelin, J.-M. Bollag, W.B. McGill and A.L. Page “edq.), Environmental Impact of Soil Component Interactions, Vol. 1, Natural and Anthropogenic Organics, CRC Lewis Pub., Boca Raton, pp. 311–335.

    Google Scholar 

  149. Chaussod, R. (1999) La qualité biologique des sols: Evaluation et implications, Etude et gestion des sols 3 /4, 261–278.

    Google Scholar 

  150. Huang, P.M. (1990) Role of Soil Minerals in Transformation of Natural Organics and Xenobiotics in Soil, in J.-M. Bollag and G. Stotzky (eds.), Soil Biochemistry, 6, Marcel Dekker Inc., New York, pp. 29–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berthelin, J., Munier-Lamy, C., Portal, JM., Toutain, F. (1999). Physico-Chemical Characterization, Reactivity and Biodegradability of Soil Natural Organic Matter. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics