Skip to main content

Phytochrome genes and their expression

  • Chapter
Photomorphogenesis in Plants

Abstract

The molecular cloning of phytochrome (phy) genes has unveiled a rich source of information on the structure, evolution and biological functions of the photoreceptor. In addition, it has provided a powerful experimental system for exploring the central unresolved question in phytochrome research, namely, the molecular mechanism by which the photoreceptor regulates gene expression and thereby plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Further reading

  • Furuya M. ed. (1987) Phytochrome and Photoregulation in Plants. Academic Press, New York, Tokyo.

    Google Scholar 

  • Kendrick R.E. and Nagatani A. (1991) Phytochrome mutants. Plant J. 1:133–139.

    Article  Google Scholar 

  • Quail P.H. (1991) Phytochrome: A light-activated molecular switch that regulates plant gene expression. Annu. Rev. Genet. 25: 389–409.

    Article  PubMed  CAS  Google Scholar 

  • Quail P.H., Hershey H.P., Idler K.B., Sharrock R.A., Christensen A.H., Parks B.M., Somers D., Tepperman J., Bruce W.B. and Dehesh K. (1991)phy-gene structure, evolution, and expression. In: Phytochrome Properties and Biological Action, pp. 13–38, Thomas B. and Johnson C. (eds.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Rüdiger W. and Thümmler F. (1991) Phytochrome, the visual pigment of plants. Angew. Chem. Int. Ed. Engl. 30:1216–1228.

    Article  Google Scholar 

  • Thomas B. and Johnson C. eds. (1991) Phytochrome Properties and Biological Action, Springer-Verlag, Berlin.

    Google Scholar 

References

  • Boylan M.T. and P.H. Quail. (1991) Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc. Natl Acad. Sci. USA 88:10806–10810.

    Article  PubMed  CAS  Google Scholar 

  • Bruce W.B., Deng X.-W. and Quail P.H. (1991) A negatively acting DNA sequence element mediates phytochrome-directed repression of phyA gene transcription. EMBOJ. 10: 3015–3024.

    CAS  Google Scholar 

  • Chang C, Bowman J.L., DeJohn A.W. and Lander E.S. (1988) Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc. Natl. Acad Sci. USA 85: 6856–6860.

    Article  PubMed  CAS  Google Scholar 

  • Chory J. (1991) Light signals in leaf and chloroplast development: photoreceptors and downstream responses in search of a transduction pathway. New Biologist 3: 538–548.

    PubMed  CAS  Google Scholar 

  • Cotton J.L.S., Ross C.W., Byrne D.H. and Colbert J.T. (1990) Down-regulation of phytochrome mRNA abundance by red light and benzyladenine in etiolated cucumber cotyledons. Plant Mol. Biol. 14: 707–714.

    Article  PubMed  CAS  Google Scholar 

  • Dehesh K., Bruce W.B. and Quail P.H. (1990) A trans-acting factor that binds to a GT-motif in a phytochrome gene promoter. Science 250:1397–1399.

    Article  PubMed  CAS  Google Scholar 

  • Dehesh K., Tepperman J., Christensen A.H. and Quail P.H. (1991) phyB is evolutionarily conserved and constitutively expressed in rice-seedling shoots. Mol. Gen. Genetics 225: 305–313.

    Article  CAS  Google Scholar 

  • Dehesh K., Hung H., Tepperman J.M. and Quail P.H. (1992) GT-2: A transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity. EMBOJ. 11: 4131–4144.

    CAS  Google Scholar 

  • Furuya M. (1989) Molecular properties and biogenesis of phytochrome I and II. Adv. Biophys. 25: 133–167.

    Article  PubMed  CAS  Google Scholar 

  • Gilmartin P.M., Sarokin L., Memelink J. and Chua N.-H. (1990) Molecular light switches for plant genes. Plant Cell 2: 369–378.

    PubMed  CAS  Google Scholar 

  • Hanelt S., Braun B., Marx S. and Schneider-Poetsch H. (1992) Phytochrome evolution: a phylogenetic tree with the first complete sequence of phytochrome A of a cryptogamic plant (Selaginella martensii Spring). Photochem. Photobiol. 56: 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Herbomel P. (1990) Synergistic activation of eukaryotic transcription: the multiacceptor target hypothesis. New Biologist 2:1063–1070.

    PubMed  CAS  Google Scholar 

  • Heyer A. and Gatz C. (1992) Isolation and characterization of a cDNA-clone encoding for potato type B phytochrome. Plant Mol. Biol. 20: 589–600.

    Article  PubMed  CAS  Google Scholar 

  • Komeda Y., Yamashita H., Sato N., Tsukaya H. and Naito S. (1991) Regulated expression of a gene-fusion product derived from the gene for phytochrome I from Pisum sativum and the uidA gene from E. coli in transgenic Petunia hybrida. Plant Cell Physiol. 32: 737–743.

    CAS  Google Scholar 

  • Lopez-Juez E., Nagatani A., Tomizawa K.-I, Deak M., Kern R., Kendrick R.E. and Furuya M. (1992) The cucumber long hypocotyl mutant lacks a light-stable phyB-like phytochrome. Plant Cell 4: 241–251.

    PubMed  CAS  Google Scholar 

  • Lissemore J.L. and Quail P.H. (1988) Rapid transcriptional regulation by phytochrome of the genes for phytochrome and chlorophyll a/b-binding protein in Avena sativa. Mol. Cell. Biol. 8: 4840–4850.

    PubMed  CAS  Google Scholar 

  • McCormac A.C., Wagner D., Boylan M.T., Quail P.H., Smith H. and Whitelam G.C. (1993) Photoresponses of transgenic Arabidopsis seedlings expressing introduced phytochrome B-encoding cDNAs: Evidence that phytochrome A and phytochrome B have distinct photoregulatory functions. Plant J., in press.

    Google Scholar 

  • Parks B.M. and Quail P.H. (1991) Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3:1177–1186.

    PubMed  CAS  Google Scholar 

  • Parks B.M. and Quail P.H. (1993) hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5: 39–48.

    PubMed  CAS  Google Scholar 

  • Reed J.W., Nagpal P., Poole D.S., Furuya M. and Chory J. (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5: in press.

    Google Scholar 

  • Sato N. (1988) Nucleotide sequence and expression of the phytochrome gene in Pisum sativum: Differential regulation by light of multiple transcripts. Plant Mol. Biol. 11: 697–710.

    Article  CAS  Google Scholar 

  • Schneider-Poetsch H.A.W., Sensen C. and Hanelt S. (1991) Are bacterial sensory systems models for phytochrome action? Hydrophobie cluster analysis of the phytochrome module related to bacterial transmitter modules. Z. Naturforsch. 46c: 750–758.

    Google Scholar 

  • Sharrock R.A. and Quail P.H. (1989) Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Develop. 3:1745–1757.

    Article  PubMed  CAS  Google Scholar 

  • Smith H. and Whitelam G.C. (1990) Phytochrome, a family of photoreceptors with multiple physiological roles. Plant Cell Environ. 13: 695–707.

    Article  CAS  Google Scholar 

  • Somers D.E., Sharrock R.A., Tepperman J.M. and Quail P.H. (1991) The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. Plant Cell 3:1263–1274.

    PubMed  CAS  Google Scholar 

  • Thümmler F., Dufner M., Kreisl P. and Dittrich P. (1992) Molecular cloning of a novel phytochrome gene of the moss Ceratodon purpureus which encodes a putative light-regulated protein kinase. Plant Mol. Biol. 20:1003–1017.

    Article  PubMed  Google Scholar 

  • Tomizawa K.-I, Sato N., Furuya M. (1989) Phytochrome control of multiple transcripts of the phytochrome gene in Pisum sativum. Plant Mol. Biol. 12: 295–299.

    Article  CAS  Google Scholar 

  • Wagner D., Tepperman J.M. and Quail P.H. (1991) Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis. Plant Cell 3:1275–1288.

    PubMed  CAS  Google Scholar 

  • Whitelam G.C., McCormac A.C., Boylan M.T. and Quail P.H. (1992) Photoresponses of Arabidopsis seedlings expressing an introduced oat phyA cDNA: persistence of etiolated plant type responses in light-grown plants. Photochem. Photobiol. 56: 617–622.

    Article  CAS  Google Scholar 

  • Winands A., Wagner G., Marx S. and Schneider-Poetsch H.A.W. (1992) Partial nucleotide sequence of phytochrome from the zygnematophycean green alga Mougeotia. Photochem. Photobiol. 56: 765–770.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quail, P.H. (1994). Phytochrome genes and their expression. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics