Skip to main content

Low Temperature Scanning Force Microscopy

  • Chapter
Forces in Scanning Probe Methods

Part of the book series: NATO ASI Series ((NSSE,volume 286))

Abstract

Low temperature scanning force microscopy may become an important tool to study magnetic and superconducting materials and immobilized atoms and molecules on surfaces. The increased stability of the instrument and lower thermally activated oscillation amplitudes of the cantilever improve the force resolution. True atomic resolution experiments, modification experiments on the atomic scale and nuclear magnetic resonance experiments on single atoms seem feasible. However, instrumentation has remained a challenge. Only a few successfully working instruments have been described. We first discuss different types of cryostats and deflection sensors suitable for low temperature scanning force microscopy. Then we concentrate on low temperature magnetic force microscopy experiments on high transition temperature superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Allenspach. Magnetic domains in ultrathin epitaxial films observed by spin-polarized scanning electron microscopy. Sixteenth Gwatt Workshop 1992, 1992.

    Google Scholar 

  2. D.M. Eigler and E.K. Schweizer. Positioning single atoms with a scanning tunneling microscope. Nature, 344:524–526, 1990.

    Article  ADS  Google Scholar 

  3. priv. comm. S. Behler, Institute of Physics, University of Basel, Switzerland, 1994.

    Google Scholar 

  4. J.G. Bednorz and K.A. Müller. Possible high Tc c superconductivity in the Ba-La-Cu-0 system. Z. Phys. B, 64:189–193, 1986.

    Article  ADS  Google Scholar 

  5. H.J. Hug, A. Moser, D. Weller, I. Parashikov, A. Tonin, H.R. Hidber, and H.-J. Güntherodt. Application of mhz-frequency detection to non-contact scanning force microscopy. To be published in J. Vac. Sci. Techn. B.

    Google Scholar 

  6. D. Rugar, C.S. Yannoni, and J.A. Sidles. Mechanical detection of magnetic resonance. Nature, 360:563–566, 1992.

    Article  ADS  Google Scholar 

  7. J.A. Sidles and D. Rugar. Signal to noise ratios in inductive and mechanical detection of magnetic resonance. Phys. Rev. Lett., 70:3506–3509, 1993.

    Article  ADS  Google Scholar 

  8. O. Züger and D. Rugar. First images from a magnetic resonance microscope. Appl. Phys. Lett, 63:2496, 1993.

    Article  ADS  Google Scholar 

  9. F.J. Giessibl, Ch. Gerber, and G. Binnig. A low-temperature atomic force microscope / scanning tunneling microscope for ultrahigh vacuum. J. Vac. Sci. Technol., 9:984–988, 1991.

    Article  Google Scholar 

  10. T.R. Albrecht, P. Grütter, D. Rugar, and D.P.E. Smith. Low temperature force microscopy with all-fiber interferometer. Ultramicroscopy, 42-44:1638–1646, 1992.

    Article  Google Scholar 

  11. H.J. Hug, A. Moser, Th. Jung, A. Wadas, and I. Parashikov H.-J. Güntherodt. Low temperature magnetic force microscopy. Rev. Sci. Instr., 64:2920–2925, 1993.

    Article  ADS  Google Scholar 

  12. H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles, and J.V. Waszxzak. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett, 62:214–216, 1989.

    Article  ADS  Google Scholar 

  13. H. Röder, E. Hahn, H. Brune, J.-P. Bucher, and K. Kern. Building one-and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature, 366:141–143, 1993.

    Article  ADS  Google Scholar 

  14. H. Röder, H. Brune, J.-P. Bucher, and K. Kern. Changing morphology of metallic mono-layers via temperature controlled heteroepitaxial growth. Surf. Sci., 298:121–126, 1993.

    Article  Google Scholar 

  15. G. Binnig, C.F. Quate, and Ch. Gerber. Atomic force microscopy. Phys. Rev. Lett., 56:930–933, 1986.

    Article  ADS  Google Scholar 

  16. H.J. Hug, Th. Jung, and H.-J. Güntherodt. A high stability and low drift atomic force microscope. Rev. Sci. Instr., 63:3900–3904, 1992.

    Article  ADS  Google Scholar 

  17. G. Meyer and N.M. Amer. Novel optical approach to atomic force microscopy. Appl. Phys. Lett, 53:1045–1047, 1988.

    Article  ADS  Google Scholar 

  18. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma, M. Longmire, and J. Gurley. An atomic resolution atomic force microscope implemented using an optical lever. J. Appl. Phys., 65:164–167, 1989.

    Article  ADS  Google Scholar 

  19. G.M. McClelland, R. Erlandsson, and S. Chiang. Atomic force microscopy: General principles and a new implementation. Plenum New York, 6:307, 1987.

    Google Scholar 

  20. Y. Martin, C.C. Williams, and H.K. Wickramanshinghe. Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J. Appl. Phys., 61:4723–4729, 1987.

    Article  ADS  Google Scholar 

  21. C.M. Mate, R. Erlandsson, G.M. McClelland, and S. Chiang. Atomic force microscopy studies of frictional forces and of force effects in scanning tunneling microscopy. J. Vac. Sci. Technol. A, 6:575–576, 1988.

    Article  ADS  Google Scholar 

  22. U. Hartmann, H. Lemke, and C. Heiden. J. Vac. Sci. Technol., A 8:383, 1990.

    Article  ADS  Google Scholar 

  23. C. Schönenberger and S.F. Alvarado. A differential interferometer for force microscopy. Rev. Sci. Instr., 60:3131–3134, 1989.

    Article  ADS  Google Scholar 

  24. D. Anselmetti, Ch. Gerber, B. Michel, H.-J. Güntherodt, and H. Rohrer. A compact, combined scanning tunneling/force microscope. Rev. Sci. Instr., 63:3003–3006, 1992.

    Article  ADS  Google Scholar 

  25. D. Rugar, H.J. Mamin, R. Erlandsson, J.E. Stern, and B.D. Terris. Force microscope using a fiber-optic displacement sensor. Rev. Sci. Instr., 59:2337–2340, 1988.

    Article  ADS  Google Scholar 

  26. A. Moser, H.J. Hug, Th. Jung, U.D. Schwarz, and H.-J. Güntherodt. A miniature fiber optic force microscope scanhead. Meas. Sci. Technol., 4:769–775, 1993.

    Article  ADS  Google Scholar 

  27. G. Binnig, Ch. Gerber, E. Stoll, T.R. Albrecht, and C.F. Quate. Atomic resolution with atomic force microscope. Europhys. Lett, 3:1281–1286, 1987.

    Article  ADS  Google Scholar 

  28. O. Marti, B. Drake, and P.K. Hansma. Atomic force microscopy of liquid-covered surfaces: Atomic resolution images. Appl. Phys. Lett., 51:484–486, 1987.

    Article  ADS  Google Scholar 

  29. E. Meyer, H. Heinzelmann, H. Rudin, and H.-J. Güntherodt. Atomic resolution on LiF(OOl) by atomic force microscopy. Z. Phys. B, 79:3–4, 1990.

    Article  ADS  Google Scholar 

  30. J.J. Saenz, N. Garcia, P. Grütter, E. Meyer, H. Heinzelmann, R. Wiesendanger, L. Rosenthaler, H.R. Hidber, and H.-J. Güntherodt. Magnetic domain structure by measuring magnetic forces. J. Appl. Phys., 62:4293–4295, 1987.

    Article  ADS  Google Scholar 

  31. A.L. Weisenhorn, P.K. Hansma, T.R. Albrecht, and C.F. Quate. Forces in atomic force microscopy in air and water. Appl. Phys. Lett, 54:2651–2653, 1989.

    Article  ADS  Google Scholar 

  32. C.M. Mate, G.M. McClelland, R. Erlandsson, and S. Chiang. Friction of a tungsten tip on a graphite surface. Phys. Rev. Lett, 59:1942–1945, 1987.

    Article  ADS  Google Scholar 

  33. priv. comm. D.P.E. Smith, NATO ASI on Scanning Force Microscopy, Schluchsee, Germany, 1994.

    Google Scholar 

  34. priv. comm. E. Meyer, Institute of Physics, University of Basel, Switzerland, 1994.

    Google Scholar 

  35. D. Rugar, H.J. Mamin, and P. Guethner. Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett, 55:2588–2590, 1989.

    Article  ADS  Google Scholar 

  36. J.D. Jackson. Klassische Elektrodynamik, de Gruyter, 1983.

    Google Scholar 

  37. U. Hartmann. Magnetic Interactions and fundamental aspects of contrast formation in scanning force microscopy. Habilitationsschrift, Giessen/Jülich (1991).

    Google Scholar 

  38. A. Wadas, H.J. Hug, and H.-J. Güntherodt. Models for the stray field from magnetic tips used in magnetic force microscopy. J. Appl. Phys., 72:203–206, 1992.

    Article  ADS  Google Scholar 

  39. A. Wadas, H.J. Hug, and H.-J. Güntherodt. Tunneling stabilized magnetic force microscopy of Ba-ferrite with a thin film tip. Appl. Phys. Lett, 61:357–359, 1992.

    Article  ADS  Google Scholar 

  40. H.J. Mamin, D. Rugar, J.E. Stern, R.E. Fontana Jr., and P. Kasiraj. Magnetic force microscopy of thin permalloy films. Appl. Phys. Lett., 55:318–320, 1989.

    Article  ADS  Google Scholar 

  41. A. Schilling, M. Cantoni, J.D. Gao, and H.R. Ott. Superconductivity above 130K in the Hg-Ba-Ca-Cu-O system. Nature, 363:56–58, 1993.

    Article  ADS  Google Scholar 

  42. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur. Vortices in high temperature supercondcutors. to be published in Rev. Mod. Phys., 1994.

    Google Scholar 

  43. G. J. Dolan, G. V. Chandrashekhar, T. R. Dinger, C. Feild, and F. Holtzberg. Vortex structure in YBa2 Cu3 O7 and evidence of intrinsic pinning. Phys. Rev. Lett., 62:827–828, 1989.

    Article  ADS  Google Scholar 

  44. G. J. Dolan, F. Holtzberg, C. Feild, and T. R. Dinger. Anisotropic vortex structure in YBa2 Cu3 O7. Phys. Rev. Lett, 62:2184, 1989.

    Article  ADS  Google Scholar 

  45. C. A. Murray, P. L. Gammel, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik. Observation of a hexatic vortex glass in flux lattices of the high-Tc superconductor Bi2.1 Sr1.9 Ca0.9 Cu2 O8+δ. Phys. Rev. Lett, 64:2312–2315, 1990.

    Article  ADS  Google Scholar 

  46. P.L. Gammel, C.A. Duran, D.J. Bishop, V.K. Kogan, M. Ledvij, A.Yu. Simonov, J.P. Rice, and D.M. Ginsberg. Observation of a new vortex structure driven by magnetic interactions near a sawtooth twin boundary in YBa2 Cu3 O7-δ. Phys. Rev. Lett., 69:3808–3811, 1992.

    Article  ADS  Google Scholar 

  47. P.L. Gammel, D.J. Bishop, J.P. Rice, and D.M. Ginsberg. Images of the vortex chain state in untwinned YBa2 Cu3 O7-δ crystals. Phys. Rev. Lett, 68:3343–3346, 1992.

    Article  ADS  Google Scholar 

  48. P.L. Gammel, L.F. Schneemeyer, J.V. Waszczak, and D.J. Bishop. Evidence from mechanical measurements for flux-lattice melting in single — crystal YBa2 Cu3 O7 and Bi2.2Sr2 Cao.8 Cu2 O8. Phys. Rev. Lett, 61:1666–1669, 1988.

    Article  ADS  Google Scholar 

  49. D.E. Farrel, J.P. Rice, and D.M. Ginsberg. Experimental evidence for flux-lattice melting. Phys. Rev. Lett, 67:1165–1168, 1991.

    Article  ADS  Google Scholar 

  50. R.G. Beck, D.E. Farrel, J.P. Rice, D.M. Ginsberg, and V.G. Kogan. Melting of the abrikoskov flux lattice in anisotropic superconductors. Phys. Rev. Lett., 68:1594–1597, 1992.

    Article  ADS  Google Scholar 

  51. J. Luzuriaga, M.-O. Andr e, and W. Benoit. Mechanical response of the flux lines in ceramic YBa2 Cu3 O7-δ. Phys. Rev. B, 45:12492–12497, 1992.

    Article  ADS  Google Scholar 

  52. R.H. Koch, V. Foglietti, W.J. Gallagher, G. Koren, A. Gupta, and M.P.A. Fisher. Expermental evidence for vortex-glass superconductivity in Y-Ba-Cu-0. Phys. Rev. Lett., 63:1511–1514, 1989.

    Article  ADS  Google Scholar 

  53. P.L. Gammel, L.F. Schneemeyer, and D.J. Bishop. SQUID picovoltometry of YBa2 Cu3 O7 single crystals: Evidence for a finite-temperature phase transition in the high field vortex state. Phys. Rev. Lett, 66:953–956, 1991.

    Article  ADS  Google Scholar 

  54. A. Schilling, H.R. Ott, and Th. Wolf. Measurements of the irreversibility boundary of superconducting YBa2 Cu3 O7 single crystals. Phys. Rev. B, 46:14253–14256, 1992.

    Article  ADS  Google Scholar 

  55. E.M. Forgan, D. McK. Paul, H.A. Mook, P.A. Timmins, H. Keller, S. Sutton, and J.S. Abell. Observation by neutron diffraction of the magnetic flux lattice in single-crystal YBa2 Cu3 O7-−δ. Nature, 343:735–737, 1990.

    Article  ADS  Google Scholar 

  56. H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles, and J.V. Waszxzak. Spectroscopic and spatial characterization of superconducting vortex core states with a scanning tunneling microscope. J. Vac. Sci. Technol., “ A 8”:450, 1990.

    Google Scholar 

  57. R. Berthe. Lokale Untersuchungen magnetischer Strukturen in Supraleitern mit einem Tieftemperatur-Rastertunnelmikroskop. PhD thesis, Universität Giessen/KFA-Jülich, 1991.

    Google Scholar 

  58. Ch. Renner, A.D. Kent, Ph. Niedermann, O. Fischer, and F. Levy. Scanning tunneling spectroscopy of a vortex core from the clean to the dirty limit. Phys. Rev. Lett., 67:1650–1652, 1991.

    Article  ADS  Google Scholar 

  59. H.F. Hess and C.A. Murray and J.V. Waszczak. Scanning-tunneling-microscopy study of distortion and instability of inclined flux-line lattice structures in the anisotropic superconductor 2H-NbSe2. Phys. Rev. Lett, 69:2138–2141, 1992.

    Article  ADS  Google Scholar 

  60. S. Behler, S.H. Pan, M. Bernasconi, P. Jess, H.J. Hug, O. Fritz, and H.-J. Giintherodt. Influence of a ferromagnetic tip on the abrikosov vortex lattice in NbSe2 studied by a low temperature scanning tunneling microscope. To be published in J. Vac. Sci. Techn. B.

    Google Scholar 

  61. S. Behler, S.H. Pan, P. Jess, A. Baratoff, H.-J. Güntherodt, F. Levy, G. Wirth, and J. Wiesener. Vortex pinning in ion-irradiated NbSe2 studied by scanning tunneling microscopy. Phys. Rev. Lett, 72:1750–1753, 1994.

    Article  ADS  Google Scholar 

  62. C. Renner. Low Temperature Scanning Tunneling Microscopy and Spectroscopy of layered Superconductors. PhD thesis, University of Geneva, 1993.

    Google Scholar 

  63. H.J. Hug, Th. Jung, H.-J. Giintherodt, and H. Thomas. Theoretical estimates of forces acting on a magnetic force microscope tip over a high temperature superconductor. Physica C, 175:357–362, 1991.

    Article  ADS  Google Scholar 

  64. A. Wadas, O. Fritz, H.J. Hug, and H.-J. Güntherodt. Magnetic force microscopy of flux line above a semi-infinite type II superconductor. Theoretical approach. Z. Phys. B, 88:317–320, 1992.

    Article  ADS  Google Scholar 

  65. O. Fritz, M. Wülfert, A. Wadas, H.J. Hug, H.-J. Güntherodt, and H. Thomas. Magnetic field and order parameter of an anisotropic type II superconductor with an isolated flux line. Phys. Rev. B, 47:384–389, 1993.

    Article  ADS  Google Scholar 

  66. H.-J. Güntherodt and R. Wiesendanger. Scanning Tunneling Microscopy I, volume Springer Series in Surface Science 20. Springer-Verlag, 1992.

    Google Scholar 

  67. K. Haralda, T. Matsuda, H. Kasai, J.E. Bonevich, T. Yoshida, U. Kawabe, and A. Tonomura. Vortex configuration and dynamics in Bi2 Sr1.8 CaC2 Ox thin films by lorentz microscopy. Phys. Rev. Lett., 71:3371–3374, 1993.

    Article  ADS  Google Scholar 

  68. A.M. Chang, H.D. Hallen, L. Harriot, H.F. Hess, H.L. Kao, R.E. Miller, R. Wolfe, and J. van der Ziel. Scanning hall probe microscopy. Appl. Phys. Lett., 61:1974–1976, 1992.

    Article  ADS  Google Scholar 

  69. A.M. Chang, H.D. Hallen, H.F. Hess, H.L. Kao, J. Kwo, A. Sudbo, and T.Y. Chang. Scanning hall probe microscopy of a vortex and field fluctuations in La1.85 Sr0.15 CuO4. Europhys. Lett, 20:645–650, 1992.

    Article  ADS  Google Scholar 

  70. H.J. Reittu and R. Laiho. Magnetic force microscopy of Abrikosov vortices. Supercond. Sci. Technol, 5:448–452, 1992.

    Article  ADS  Google Scholar 

  71. priv. comm. U. Hartmann, NATO ASI on Scanning Force Microscopy, Schluchsee, Germany, 1994.

    Google Scholar 

  72. A. Moser, H.J. Hug, O. Fritz, I. Parashikov, and H.-J. Güntherodt. Low temperature magnetic force microscopy on high-Tc-superconductors. To be published in J. Vac. Sci. Techn. B.

    Google Scholar 

  73. H.J. Hug, A. Moser, D. Weller, I. Parashikov, A. Tonin, H.R. Hidber, and H.-J. Güntherodt. Application of MHz-frequency detection to non-contact scanning force microscopy. To be published in J. Vac. Sci. Techn. B.

    Google Scholar 

  74. Microfabricated cantilevers with integrated tips from park scientific instruments.

    Google Scholar 

  75. A. Moser, H.J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Thomas, and H.-J. Güntherodt. Observation of single vortices condensed into a bose-glass by magnetic force microscopy. Submitted to Phys. Rev. Let.

    Google Scholar 

  76. J. Mannhart, D. Anselmetti, J.G. Bednorz, A. Catana, Ch. Gerber, K.A. Müller, and D.G. Schlom. Correlation between jc and screw dislocation density in sputtered YBa2 Cu3 O7-δ films. Z. Phys. B, 86:177–181, 1992.

    Article  ADS  Google Scholar 

  77. Th. Jung, A. Moser, H.J. Hug, D. Brodbeck, R. Hofer, H.R. Hidber, and U.D. Schwarz H.-J. Güntherodt. The atomic force microscope used as a powerful tool for machining surfaces. Ultramicroscopy, 42-44:1446–1451, 1992.

    Article  Google Scholar 

  78. T.A. Jung. Mikroskopische Experimente an Oberflächen mit Hilfe der Rastersen-sormikroskopie. PhD thesis, Universität Basel, 1992.

    Google Scholar 

  79. H.J. Hug, A. Moser, O. Fritz, I. Parashikov, H.-J. Güntherodt, and Th. Wolf. Low temperature magnetic force microscopy on high-Tc-superconductors. Physica B, 194-196:377–378, 1994.

    Article  ADS  Google Scholar 

  80. H.J. Hug, A. Moser, I. Parashikov, B. Stiefel, O. Fritz, H.-J. Güntherodt, and H. Thomas. Observation and manipulation of vortices in a YBa2 Cu3 O7 thin film with a low temperature magnetic force microscope. To be published in Physica C, 1994.

    Google Scholar 

  81. F.J. Giessibl and G. Binnig. Investigation of the (001) cleavage plane of pottasium bromide with an atomic force microscope at 4.2 k in ultra-high vacuum. Ultramicroscopy, 42-44:281–289, 1992.

    Article  Google Scholar 

  82. H. Ness and F. Gautier. Theoretical study of the interaction between a magnetic nanotip and a magnetic sample’s surface. To be published in Phys. Rev. B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hug, H.J., Moser, A., Fritz, O., Stiefel, B., Parashikov, I. (1995). Low Temperature Scanning Force Microscopy. In: Güntherodt, H.J., Anselmetti, D., Meyer, E. (eds) Forces in Scanning Probe Methods. NATO ASI Series, vol 286. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0049-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0049-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4027-3

  • Online ISBN: 978-94-011-0049-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics