Skip to main content

The cosmic radiation

  • Chapter
The Century of Space Science

Abstract

Cosmic ray research has developed as one of the most spectacular and vital contributors to science in the Twentieth Century. From a humble beginning early in this Century, the quest for an understanding of this radiation and the challenges confronting investigators led to the rise of new scientific disciplines, technologies and astrophysical concepts. Particle and high energy physics, radiocarbon dating and magnetic fields and plasmas of astrophysical origin are representative of the many research fields born from cosmic ray research. Examples of technological contributions include radiation instruments and balloon and space flight concepts required to reach the cosmic radiation beyond Earth’s atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alfvén, H. (1942). On the Existence of Electromagnetic-Hydrodynamic Waves. Arkiv für Matematik, Astronomi och Fysik., 29B, 2.

    Google Scholar 

  • Alfvén, H. (1949). On the Solar Origin of Cosmic Radiation. Physical Review, 2nd Series 75, No. 1, 1732.

    Article  ADS  Google Scholar 

  • Alfvén, H., Richtmyer, R.D. and Teller, E. (1949). On the Origin of Cosmic Rays. Physical Review, 75, 892.

    Article  ADS  Google Scholar 

  • Alvarez, L.W. (1987). Adventures of a Physicist, Basic Books.

    Google Scholar 

  • Alvarez, L.W. and Compton, A.H. (1933). A Positively Charged Component of Cosmic Rays. Physical Review, 43, 835–836.

    Article  ADS  Google Scholar 

  • Auger, P. and Maze, R. (1939). Extension et Pouvoir Pénétrant des Grandes Gerbes de Rayons Cosmiques. Compt. Rend., 208, 1641–43.

    Google Scholar 

  • Barnes, C.W. and Simpson, J.A. (1976). Evidence for Interplantary Acceleration of Nucleons in Corotating Interaction Regions. Astrophysical Journal, 210, L91–L96.

    Article  ADS  Google Scholar 

  • Bartels, J. (1940) in Geomagnetism, by Chapman, S. and Bartels, J. (Oxford Univ. Press, U.K.), Vol. 1, pp. 396–416.

    Google Scholar 

  • Becquerel, H. (1896). Sur les radiations émises par phosphorescence. Comptes rendus de l’Académie des Sciences, 120, 420–421.

    Google Scholar 

  • Berkner, L.V. and Odishaw (eds) (1961). Science in Space, McGraw-Hill Publ. (see Chapters 11, 13 and 14).

    Google Scholar 

  • Berriman, R.W. (1948). A Photographic Emulsion Sensitive to Minimum Ionization. Nature 162, 992.

    Article  ADS  Google Scholar 

  • Bethe, H.A., Korff, S.A. and Placzek (1940). On the Interpretation of Neutron Measurements in Cosmic Radiation. Physical Review, 54, 573–587.

    Article  ADS  Google Scholar 

  • Biermann, P. (1997). The Origin of the Highest Energy Cosmic Rays. J. Phys. G.: Nucl. Part. Phys., 23, 1–27.

    Article  ADS  Google Scholar 

  • Biermann, L. (1952). Über den Schweif des Kometen Halley im Jahre 1910. Zeitschrift für Naturforschung, 7a, 127–136.

    ADS  Google Scholar 

  • Blackett, P.M.S. and Occhialini, G.P.S. (1933). Some Photographs of the Tracks of Penetrating Radiation. Proc. Roy. Soc. (London), A139, 699–727.

    ADS  Google Scholar 

  • Blau, M. (1925).Über die photographische Wirkung natürlicher H-Strahlen. Sitzungsberichte Akademie der Wissenschaften in Wien (SBAWW) IIa, 134, 427.

    Google Scholar 

  • Blau, M. (1927). Relative Grain Densities in Tracks of Alpha Particles and Protons. Sitzungsberichte Akademie der Wissenschaften in Wien (SBAWW) IIa, 136, 469.

    Google Scholar 

  • Blau, M. and Wambacher, H. (1937). Disintegration Processes by Cosmic Rays with the Simultaneous Emission of Several Heavy Particles. Nature, 140, 585.

    Article  ADS  Google Scholar 

  • Bryant, D.A., Cline, T.L., Desai, U.O. and McDonald, F.B. (1963). New Evidence for Long-Lived Solar Streams in Interplanetary Space. Physical Review Letters, 11, 144.

    Article  ADS  Google Scholar 

  • Carmichael, H. (1964). QSY Instruction Manual 7, Deep River, Canada.

    Google Scholar 

  • Chandrasekhar, S. and Fermi, E. (1953a). Magnetic Fields in Spiral Arms. Astrophysical Journal, 118, 113.

    Article  MathSciNet  ADS  Google Scholar 

  • Chandrasekhar, S. and Fermi, E. (1953b). Problems of Gravitational Stability in the Presence of a Magnetic Field. Astrophysical Journal, 118, 116.

    Article  MathSciNet  ADS  Google Scholar 

  • Chapman, S. and Ferraro, V.C.A. (1940). The Theory of the First Phase of a Geomagnetic Storm. Terr. Mag., 45, No.3, 245–268.

    Article  MathSciNet  Google Scholar 

  • Chenette, D.L., Conlon, T.F. and Simpson, J.A. (1974). Bursts of Relativistic Electrons from Jupiter Observed in Interplanetary Space with the Time Variation of the Planetary Rotation Period. Journal of Geophysical Research, 79, 3551–3558.

    Article  ADS  Google Scholar 

  • Clay, J. (1928). Penetrating Radiation. Proc. Amsterdam, 31, 1091–1097 (and references therein).

    Google Scholar 

  • Coleman, P.J., Jr., Sonnett, C.P., Judge, D.L. and Smith, E.J. (1960). Some Preliminary Results of the Pioneer V Magnetometer Experiment. Journal of Geophysical Research, 65, 1856–1857.

    Article  ADS  Google Scholar 

  • Compton, A.H. (1933). A Geographic Study of Cosmic Rays. Physical Review, 43, 387–403.

    Article  ADS  Google Scholar 

  • Compton, A.H., Wollan, E.O. and Bennett, R.D. (1934). A Precision Recording Cosmic Ray Meter. Rev. Sci. Inst., 5, 415–422.

    Article  ADS  Google Scholar 

  • Cronin, J.W. (1999). Cosmic Rays: The most Energetic Particles in the Universe. Reviews of Modern Physics, 71, S165–S172.

    Article  ADS  Google Scholar 

  • Cummings, A.C., Stone, E.C. and Webber, W.R. (1987). Latitudinal and Radial Gradients of Anomalous and Galactic Cosmic Rays in the Outer Heliosphere. Geophysical Research Letters, 14, 174–177.

    Article  ADS  Google Scholar 

  • Darrow, K.K. (1932). Contemporary Advances in Physics, XXIII. Data and Nature of Cosmic Rays. Bell System Technical Journal, 11, 148–184.

    MATH  Google Scholar 

  • Davis, L. (1951). The Strength of Interstellar Magnetic Field. Physical Review, 81, 890.

    Article  ADS  Google Scholar 

  • Davis, L. and Greenstein, J.L. (1951). The Polarization of Starlight by Aligned Dust Grains. Astrophysical Journal, 114, 206.

    Article  ADS  Google Scholar 

  • Davis, L. (1955). Interplanetary Magnetic Fields and Cosmic Rays. Physical Review, 100, 1440–1444.

    Article  ADS  Google Scholar 

  • De Maria, M., and Russo, A. (1990). Cosmic rays and cosmological speculations in the 1920s. The debate between Jeans and Millikan. In B. Bertotti, R. Balbinot, S. Bergia and A. Messina (eds), Modern Cosmology in Retrospect, Cambridge University Press, Cambridge: 401–409.

    Google Scholar 

  • DeVorkin, D.H. (1989). Race to the Stratosphere: Manned Scientific Ballooning in America, Springer-Verlag, New York, 406 pp.

    Google Scholar 

  • Fan, C.Y., Gloeckler, G. and Simpson, J.A. (1966). Galactic Deuterium and the Energy Spectrum Above 20MeV Nucleon. Physical Review, Letters, 17, 329.

    Article  ADS  Google Scholar 

  • Fan, C.Y., Meyer, P. and Simpson, J.A. (1960a). Cosmic Radiation Intensity Decreases Observed at the Earth and in the Nearby Planetary Medium. Physical Review Letters, 4, 421.

    Article  ADS  Google Scholar 

  • Fan, C.Y., Meyer, P. and Simpson, J.A. (1960b). Rapid Reduction of Cosmic Ray Intensity Measured in Interplanetary Space. Physical Review Letters, 5, 269–271.

    Article  ADS  Google Scholar 

  • Fan, C.Y., Meyer, P. and Simpson, J.A. (1960c). Experiments on the Eleven Year Change of Cosmic Ray Intensity Using a Space Probe. Physical Review Letters, 5, 272–275.

    Article  ADS  Google Scholar 

  • Fermi, E., 1949, On the Origin of the Cosmic Radiation. Physical Review, 75, 1169.

    Article  ADS  MATH  Google Scholar 

  • Fimmel, R.O., Van Allen, J. and Burgers, E. (eds) (1980). Pioneer: First to Jupiter, Saturn and Beyond, NASA SP 446, US Government Printing Office, Washington, DC.

    Google Scholar 

  • Fisk, L.A., Koslovsky, B. and Ramaty, R. (1974). An Interpretation of the Observed Oxygen and Nitrogen Enhancements. Astrophysical Journal Letters, 190, L35–L37.

    Article  ADS  Google Scholar 

  • Fonger, W.H. (1953). Cosmic Radiation Intensity-Time Variations and their Origin: II. Energy Dependence of 27-Day Variations. Physical Review, 91, 351.

    Article  ADS  Google Scholar 

  • Forbush, S.E. (1938). On Cosmic-Ray Effects Associated with Magnetic Storms, Terr. Mag., 43, 135–150; Ibid, 203–218 (More accessible is: in Cosmic Rays, the Sun and Geomagnetism: The Works of Scott E. Forbush (Ed. J.A. Van Allen; Pub. Am. Geophys. U., 1993). See discussion: 27-day variations, 362–368. This volume is a collection of some of S.E.Forbush’s reprints and lecture notes including the period 1937–1954 on the 27-day variations.

    Article  Google Scholar 

  • Freier, P., Lofgren, E.J., Ney, E.P., Oppenheimer, F., Bradt, H.L. and Peters, B. (1948). Evidence for Heavy Nuclei in the Cosmic Radiation. Physical Review, 74, 213–217.

    Article  ADS  Google Scholar 

  • Garcia-Munoz, M., Mason, G.M. and Simpson, J.A. (1973). A New Test for Modulation Theory: The May-July 1972 Low Energy Cosmic Ray Proton and Helium Spectra. Astrophysical Journal, 182, L81.

    Article  ADS  Google Scholar 

  • Garcia-Munoz, M., Mason, G.M. and Simpson, J.A. 1975 The Cosmic Ray Age Deduced from the 10Be Abundance. Astrophysical Journal, 202, 265.

    Article  ADS  Google Scholar 

  • Geiger, H. and Müller, W. (1928). Electronenzählrohr zur Messung schwächster Aktivitäten. Naturwissenschaften, 16, 617–618.

    Article  ADS  Google Scholar 

  • Gockel, A. (1911). Messungen der durchdringenden Strahlung bei Ballonfahrten. Ballonfahrt Zeitschrift, 12, 595–597.

    Google Scholar 

  • Hall, J.S. (1949). Observations of the Polarized Light from Stars. Science, 109, 166.

    Article  ADS  Google Scholar 

  • Halpern, L. and Shapiro, M.M. (2001). Marietta Blau, Pioneer of the Nuclear Emulsion Technique. In N. Byers and G. Williams (eds), Out of the Shadows: Contributions of 20th Century Women in Physics, Cambridge University Press, Cambridge, England (in press).

    Google Scholar 

  • Hess, V.F. (1912). Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfarten. Physikalische Zeitschrift. 13, 1084–1091.

    Google Scholar 

  • Hess, V.F. (1940). The Discovery of Cosmic Radiation. Thought (Fordham Quarterly), 15, 225–236.

    Google Scholar 

  • Hiltner, W.A. (1949). Polarization of Distant Stars in the Interstellar Medium. Science, 109, 165.

    Article  ADS  Google Scholar 

  • Hiltner, W.A. (1951). Polarization of Stellar Radiation: III The Polarization of 841 Stars. Astrophysical Journal, 114, 241.

    Article  ADS  Google Scholar 

  • Hovestadt, D, Vollmer, O., Gloeckler, G and Fan, C.Y. (1973). Differential Energy Spectra of Low Energy (<8.5 MeV per Nucleon) Heavy Cosmic Rays During Solar Quiet Times. Physical Review Letters, 31, 650–653.

    Article  ADS  Google Scholar 

  • Johnson, T.H. (1933). The Azimuthal Asymmetry of the Cosmic Radiation. Physical Review, 43, 834–835.

    Article  ADS  Google Scholar 

  • Johnson, T.H. and Barry, J.G. (1939). The East-West Symmetry of the Cosmic Radiation at Very High Elevations at the Equator and Evidence that Protons Constitute the Primary Particles of the Hard Component. Physical Review, 56, 219–226.

    Article  ADS  Google Scholar 

  • Jokipii, J.R. and Kopriva, D.A. (1979). Effects of Particle Drift on the Transport of Cosmic Rays. III. Numerical Models of Galactic Cosmic-Ray Modulation. Astrophysical Journal, 234, 384–392.

    Article  ADS  Google Scholar 

  • Juliusson, E., Meyer, P. and Müller, D. (1972). Composition of Cosmic Ray Nuclei at High Energies. Physical Review Letters, 29, 445–448.

    Article  ADS  Google Scholar 

  • Kolhörster, W. (1913). Zur Messung der durchdringenden Strahlung. Physikalische Zeitschrift, 14, 1153–1156.

    Google Scholar 

  • Korff, S.A. (1939). Fast Neutron Measurements with Recoil Counters. Physical Review, 56, 1241.

    Article  ADS  Google Scholar 

  • Lattes, C.M.G., Occhialini, G.P.S. and Powell, C.F. (1947). Observations on the Tracks of Slow Mesons in Photographic Emulsions. Nature, 160, 453–456, 486–492.

    Article  ADS  Google Scholar 

  • Lemaitre, G. and Vallarta, M.S. (1933). On the Compton’s Latitude Effect of Cosmic Radiation. Physical Review, 43 87–91.

    Article  ADS  MATH  Google Scholar 

  • Libby, W.F. (1946). Atmospheric Helium Three and Radiocarbon From Cosmic Radiation. Physical Review, 69, 671–672.

    Article  ADS  Google Scholar 

  • Libby, W.F. (1955). Radiocarbon Dating, University of Chicago Press.

    Google Scholar 

  • Linsley, J. (1963). Evidence for a Primary Cosmic Ray Particle With Energy 1020eV. Physical Review Letters, 10, 146–148.

    Article  ADS  Google Scholar 

  • Lüst, R. and Simpson, J.A. (1957). Initial Stages in the Propagation of Cosmic Rays Produced by Solar Flares. Physical Review, 108, 1563–1576.

    Article  ADS  Google Scholar 

  • McDonald, F.B., Teegarden, B.J. and Trainor, J.H. (1974) The Anomalous Abundance of Cosmic-Ray Nitrogen and Oxygen Nuclei at Low Energies. Astrophysical Journal, 187, L105–L108.

    Article  ADS  Google Scholar 

  • McDonald, F.B., Teegarden, B.J., Trainor, J.H., von Rosenvinge, T.T. and Webber, W.R (1975). The Interplanetary Acceleration of Energetic Nucleons. Astrophysical Journal, 203, L149.

    Article  ADS  Google Scholar 

  • McKibben, R.B. (1989). Reanalysis and Confirmation of Positive Latitude Gradients for Anomalous Helium and Galactic Cosmic Rays Measured in 1975–1976 With Pioneer-11. Journal of Geophysical Research, 94, 17,021–17,033.

    Article  ADS  Google Scholar 

  • Meyer, P., Parker, E.N. and Simpson, J.A. (1956). The Solar Cosmic Rays of February 1956 and their Propagation Through Interplanetary Space. Physical Review, 104, 768–783.

    Article  ADS  Google Scholar 

  • Millikan, R.A. and Bowen, I.S. (1923). Penetrating Radiation at High Altitudes. Physical Review, 22, 198.

    Article  Google Scholar 

  • Millikan, R.A. and Cameron, G.H. (1926). High Frequency Rays of Cosmic Origin. III. Measurements in Snow-fed Lakes at High Altitudes. Physical Review, 28, 851–868.

    Article  ADS  Google Scholar 

  • Morrison, P. (1956). Solar Origin of Cosmic-ray Time Variations. Physical Review, 101, 1397–1404.

    Article  ADS  Google Scholar 

  • Mott-Smith, L.M. (1930). Possibility of Determining the Energy of the Cosmic β-Particles by Magnetic Detections. Physical Review, 35, 1125–1126.

    Article  ADS  Google Scholar 

  • Parker, E.N. (1958). Cosmic Ray Modulation by the Solar Wind. Physical Review, 110, 1445–1449.

    Article  ADS  Google Scholar 

  • Parker, E.N. (1963). Interplanetary Dynamical Processes, J. Wiley and Sons, Pub., New York, NY.

    MATH  Google Scholar 

  • Parker, E.N. (2001). A History of Solar Wind Concept. In: The Century of Space Science, pp. 225–255.

    Chapter  Google Scholar 

  • Pfotzer, G. (1936). Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphäre. 1. Messmethode und Ergebnisse, Zeitschrift für Physik, 102, 23–40.

    Article  ADS  Google Scholar 

  • Rochester, G.D. and Butler, C.C. (1947). Evidence for the Existence of New Unstable Elementary Particles. Nature, 160, 855.

    Article  ADS  Google Scholar 

  • Rossi, B. (1930a). Method of Recording Multiple Simultaneous Impulses of Several Geiger’s Counters. Nature, 125, 636.

    Article  ADS  Google Scholar 

  • Rossi, B. (1930b). On the Magnetic Deflection of Cosmic Rays. Physical Review, 36, 606–606.

    Article  ADS  Google Scholar 

  • Rossi, B. (1985). Arcetri, 1928–1931. In Y. Sekido and H. Elliot (eds), Early History of Cosmic Ray Studies, D. Reidel Publ., Dordrecht, p. 53.

    Chapter  Google Scholar 

  • Rosenberg, R.L., and Coleman, P.J. (1969). Heliographic Latitude Dependence of the Dominant Polarity of the Interplanetary Magnetic Field. Journal of Geophysical Research, 74, 5611–5622.

    Article  ADS  Google Scholar 

  • Schein, M., Jesse, W.P. and Wollan, E.O. (1941). The Nature of the Primary Cosmic Radiation and the Origin of the Mesotron. Physical Review, 59, 615.

    Article  ADS  Google Scholar 

  • Sekido, Y. and Elliot, H. (eds) (1985). Early History of Cosmic Ray Studies, D. Reidel Publ., Dordrecht.

    Google Scholar 

  • Serber, R. (1938). Transition Effects of Cosmic Rays in the Atmosphere. Physical Review, 54, 317.

    Article  ADS  Google Scholar 

  • Serber, R. (1983) In L.M. Brown and L. Hodderson (eds), The Birth of Particle Physics, Cambridge University Press, p. 215.

    Google Scholar 

  • Simpson, J.A. (1948). The Latitude Dependence of Neutron Densities in the Atmosphere as a Function of Altitude. Physical Review, 73, 1389–1391.

    Article  ADS  Google Scholar 

  • Simpson, J.A. (1951). Neutrons Produced in the Atmosphere by Cosmic Radiations. Physical Review, 83, 1175–1188.

    Article  ADS  Google Scholar 

  • Simpson, J.A. (1954). Cosmic radiation intensity-time variations and their origin: III. The origin of 27-day variations. Physical Review, 94, 426–440.

    Article  ADS  Google Scholar 

  • Simpson, J.A. (1985). Cosmic Ray Astrophysics at Chicago (1947–1960) In Y. Sekido and H. Elliot (eds), Early History of Cosmic Ray Studies, D. Reidel Pub. Co., Dordrecht, 385–409.

    Chapter  Google Scholar 

  • Simpson, J.A. (1989). Evolution of Our Knowledge of the Heliosphere. Advances in Space Research, 9, No. 4, 5–20.

    Article  ADS  Google Scholar 

  • Simpson, J.A. (1991). In Guide to the Simpson Papers, Dept. of Special Collections, University of Chicago Library.

    Google Scholar 

  • Simpson, J.A. (1994). A Physicist in the World of Geophysics and Space. Journal of Geophysical Research, 99, 19159–19173.

    Article  ADS  Google Scholar 

  • Simpson, J.A. (2000). The Cosmic Ray Nucleonic Component; The Invention and Scientific Uses of the Neutron Monitor. Space Science Series of ISSI, Vol. 10 and Space Science Review, 93, 11–32.

    Google Scholar 

  • Simpson, J.A., Fonger, W. and Treiman, S.B. (1953). Cosmic Ray Intensity-Time Variations and Their Origin: Neutron Intensity Variation Method and Meteorological Factors. Physical Review, 90, 934–950.

    Article  ADS  Google Scholar 

  • Simpson, J.A., Babcock, H.W. and Babcock, H.D. (1955). Association of a ’Unipolar’ Magnetic Region on the Sun With Changes of Primary Cosmic-Ray Intensity. Physical Review, 98, 1402–1406.

    Article  ADS  Google Scholar 

  • Simpson, J.A. Lentz, G.A. McKibben, R.B., O’Gallagher, J.J., Schroeder, W. and Tussolino, A.J. (1974). National Space Science Data Center, Tech. Ref. File B21970, GSFC, Greenbelt, Md.

    Google Scholar 

  • Simpson, J.A., Smith, D.A., Zhang, M. and Balogh, A. (1993). Jovian Electron Propagation in Three Dimensions of the Heliosphere: The Ulysses Instrument. Journal of Geophysical Research, 98, 21, 128–121.

    ADS  Google Scholar 

  • Skobeltzyn, D. (1929). Uber eine neue Art sehr schneller β-Strahlen. Zeitschrift für Physik, 54, 686–702.

    Article  ADS  Google Scholar 

  • Smith, E.J. and Wolfe, J.H. (1976). Observations of Interaction Regions and Corotating Shocks Between One and Five A.U.: Pioneer 10 and 11. Geophysical Research Letters, 3, 137–140.

    Article  ADS  Google Scholar 

  • Van Allen, J. (1993). Foreword. In reprint of Forbush (1938).

    Google Scholar 

  • Wilcox, J.M., and Ness, N.F. (1965). Quasi-Stationary Corotating Structure in the Interplanetary Medium. Journal of Geophysical Research, 70, 5793–5805.

    Article  ADS  Google Scholar 

  • Wilson, C.T.R. (1901). On the Ionization of Atmospheric Air. Proc. Roy. Soc., 68, 151–161.

    Article  Google Scholar 

  • Wolverton, M. (2000). Pathfinding the Rings: The Pioneer Saturn Trajectory Decision. Quest: The History of Spaceflight Quarterly, 7(4), 5–11.

    Google Scholar 

  • Wulf, Th. (1909). Über die in der Atmosphäre vorhandene Strahlung von hoher Durchdringungsfähigkeit. Physikalische Zeitschrift, 10, 152–157.

    Google Scholar 

  • Zirker, J.B. (ed) (1977). Coronal Holes and High Speed Wind Streams, Skylab Solar Workshop, Colorado University Press, Boulder, Co.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Simpson, J.A. (2001). The cosmic radiation. In: Bleeker, J.A.M., Geiss, J., Huber, M.C.E. (eds) The Century of Space Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0320-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0320-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7196-0

  • Online ISBN: 978-94-010-0320-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics