Skip to main content

Gene duplication and other evolutionary strategies: from the RNA world to the future

  • Chapter
Genome Evolution
  • 625 Accesses

Abstract

Beginning with a hypothetical RNA world, it is apparent that many evolutionary transitions led to the complexity of extant species. The duplication of genetic material is rooted in the RNA world. One of two major routes of gene amplification, retroposition, originated from mechanisms that facilitated the transition to DNA as hereditary material. Even in modern genomes the process of retroposition leads to genetic novelties including the duplication of protein and RNA coding genes, as well as regulatory elements and their juxtapositon. We examine whether and to what extent known evolutionary principles can be applied to an RNA-based world. We conclude that the major basic Neo-Darwinian principles that include amplification, variation and selection already governed evolution in the RNA and RNP worlds. In this hypothetical RNA world there were few restrictions on the exchange of genetic material and principles that acted as borders at later stages, such as Weismann’s Barrier, the Central Dogma of Molecular Biology, or the Darwinian Threshold were absent or rudimentary. RNA was more than a gene: it had a dual role harboring, genotypic and phenotypic capabilities, often in the same molecule. Nuons, any discrete nucleic acid sequences, were selected on an individual basis as well as in groups. The performance and success of an individual nuon was markedly dependent on the type of other nuons in a given cell. In the RNA world the transition may already have begun towards the linkage of nuons to yield a composite linear RNA genome, an arrangement necessitating the origin of RNA processing. A concatenated genome may have curbed unlimited exchange of genetic material; concomitantly, selfish nuons were more difficult to purge. A linked genome may also have constituted the beginning of the phenotype/genotype separation. This division of tasks was expanded when templated protein biosynthesis led to the RNP world, and more so when DNA took over as genetic material. The aforementioned barriers and thresholds increased and the significance and extent of horizontal gene transfer fluctuated over major evolutionary transitions. At the dawn of the most recent transformation, a fast evolutionary transition that we will be witnessing in our life times, a form of Lamarckism is raising its head.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adami, C., Ofria, C. and Collier, T.C. (2000) Evolution of biological complexity. Proc. Natl. Acad. Sci. USA, 97, 4463–4468.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, J.A., Carrel, L., Chakravarti, A. and Eichler, E.E. (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl. Acad. Sci. USA, 97, 6634–6639.

    Article  PubMed  CAS  Google Scholar 

  • Baltimore, D. (1970) Viral RNA-dependent DNA polymerase. Nature, 226, 1209–1211.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D.P. and Unrau, P.J. (1999) Constructing an RNA world. Trends Cell Biol., 9, M9–M13.

    Article  PubMed  CAS  Google Scholar 

  • Blackmore, S. (1999) The Meme Machine. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Bonner, J.T. (1980) The Evolution of Culture in Animals. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Bowler, P.J. (1992) Lamarckism. In Keywords in Evolutionary Biology (Keller, E.F. and Lloyd, E.A.), Harvard University Press, Cambridge, MA, pp. 188–193.

    Google Scholar 

  • Bridges, C. (1936a) The Bar ‘gene’: a duplicaton. Science, 83, 210–211.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, C.B. (1936b) Genes and chromosomes. Teaching Biol., 17–23.

    Google Scholar 

  • Britten, R.J. (1996) DNA sequence insertion and evolutionary variation in gene regulation. Proc. Natl. Acad. Sci. USA, 93, 9374–9377.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J. (1997) Mobile elements inserted in the distant past have taken on important functions. Gene, 205, 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. (1991) Retroposons—seeds of evolution. Science, 251, 753.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. (1999a) Genomes were forged by massive bombardments with retroelements and retrosequences. Genetica, 107, 209–238.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. (1999b) Many G-protein-coupled receptors are encoded by retrogenes. Trends Genet., 15, 304–305.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. (1999c) RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene, 238, 115–134.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. (1999d) Transmutation of tRNA over time. Nat. Genet., 22, 8–9.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. (2001) tRNAs in the spotlight during protein biosynthesis. Trends Biochem. Sci., 26, 653–656.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. (2003a) The contribution of RNAs and retroposition to evolutionary novelties. Genetica, in press.

    Google Scholar 

  • Brosius, J. (2003b) Echoes from the past — are we still in an RNP world? In preparation.

    Google Scholar 

  • Brosius, J. and Gould, S.J. (1992) On’ genomenclature’: a comprehensive (and respectful) taxonomy for pseudogenes and other’ junk DNA. Proc. Natl. Acad. Sci. USA, 89, 10706–10710.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. and Gould, S.J. (1993) Molecular constructivity. Nature, 365, 102.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. and Tiedge, H. (1995a) Neural BC1 RNA: Dendritic localization and transport. In Lipshitz, H.D. (ed.) Localized RNAs. R.G. Landes, Austin, TX, pp. 289–330.

    Google Scholar 

  • Brosius, J. and Tiedge, H. (1995b) Reverse transcriptase: mediator of genomic plasticity. Virus Genes, 11, 163–179.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. and Tiedge, H. (2001) Dendritic BC1 RNA: Intracellular transport and activity-dependent modulation. In Richter, D. (ed.) Cell polarity and subcellular RNA localization. Springer Verlag, Berlin, pp. 129–138.

    Chapter  Google Scholar 

  • Cairns-Smith, A.G. (1982) Genetic Takeover and the Mineral Origins of Life. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Cairns-Smith, A.G. and Davis, C.J. (1977) In Duncan, R. and Weston-Smith, M. (eds.), Encyclopaedia of Ignorance. Pergamon Press, p. 397–403.

    Google Scholar 

  • Cavaillé, J., Buiting, K., Kiefmann, M., Lalande, M., Brannan, C.I., Horsthemke, B., Bachellerie, J.P., Brosius, J. and Huttenhofer, A. (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl. Acad. Sci. USA, 97, 14311–14316.

    Article  PubMed  Google Scholar 

  • Crick, F.H.C. (1958) On protein synthesis. Symp. Soc. Exp. Biol, 12, 138–183.

    PubMed  CAS  Google Scholar 

  • Crick, F.H.C. (1968) The origin of the genetic code. J Mol Biol, 38, 367–379.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C. (1872) The origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London.

    Google Scholar 

  • Dawkins, R. (1976) The selfish gene. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Dawkins, R. (1982) The extended phenotype. Freeman, San Francisco.

    Google Scholar 

  • Dawkins, R. (1992) Progress. In Keller, E.F. and Lloyd, E.A. (eds.), Keywords in evolutionary biology. Harvard University Press, Cambridge, MA, pp. 263–272.

    Google Scholar 

  • DeChiara, T.M. and Brosius, J. (1987) Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content. Proc. Natl. Acad. Sci. USA, 84, 2624–2628.

    Article  PubMed  CAS  Google Scholar 

  • Eddy, S.R. (1999) Noncoding RNA genes. Curr. Opin. Genet. Dev., 9, 695–699.

    Article  PubMed  CAS  Google Scholar 

  • Eddy, S.R. (2001) Noncoding RNA genes and the modern RNA world. Nat. Rev. Genet., 2, 919–929.

    Article  PubMed  CAS  Google Scholar 

  • Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  • Erdmann, V.A., Barciszewska, M.Z., Hochberg, A., de Groot, N. and Barciszewski, J. (2001a) Regulatory RNAs. Cell. Mol. Life Sci., 58, 960–977.

    Article  PubMed  CAS  Google Scholar 

  • Erdmann, V.A., Barciszewska, M.Z., Szymanski, M., Hochberg, A., de Groot, N. and Barciszewski, J. (2001b) The noncoding RNAs as riboregulators. Nucleic Acids Res., 29, 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Famulok, M. and Jenne, A. (1999) Catalysis based on nucleic acid structures. Top. Curr. Chem., 202, 101–131.

    Article  CAS  Google Scholar 

  • Ferris, J. (1994) Origins of life — chemical replication. Nature, 369, 184–185.

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz, W. (2000) Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc. Natl. Acad. Sci. USA, 97, 14035–14037.

    Article  PubMed  CAS  Google Scholar 

  • Fry, I. (2000) The Emergence of Life on Earth: A Historical Overview. Rutgers University Press, New Brunswick, NJ.

    Google Scholar 

  • Gesteland, R.F., Cech, T.R. and Atkins, J.F. (1999) The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Ghiselin, M.T. (1974) A radical solution to the species problem. Systematic Zoology, 23, 536–544.

    Article  Google Scholar 

  • Ghiselin, M.T. (1989) Intellectual Compromise. The Bottom Line. Paragon House, New York.

    Google Scholar 

  • Ghiselin, M.T. (1994) The imaginary Lamarck: a look at bogus ‘history’ in schoolbooks. The Textbook Letter. Sept–Oct.

    Google Scholar 

  • Ghiselin, M.T. (1997) Metaphisics and the Origin of Species. State University of New York Press, Albany, NY. [ISBN 0-7914-3467-2].

    Google Scholar 

  • Gilbert, W. (1986) The RNA world. Nature, 319, 618.

    Article  Google Scholar 

  • Giraud, T., Pedersen, J.S. and Keller, L. (2002) Evolution of super-colonies: The Argentine ants of southern Europe. Proc. Natl. Acad. Sci. USA, 99, 6075–6079.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S.J. and Vrba, E.S. (1982) Exaptation — a missing term in the science of form. Paleobiology, 8, 4–15.

    Google Scholar 

  • Gould, S.J. (1996) Full House. The Spread of Excellence from Plato to Darwin. Harmony Books, New York.

    Book  Google Scholar 

  • Gould, S.J. (2002) The Structure of Evolutionary Theory. The Belknap Press of Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35, 849–857.

    Article  PubMed  CAS  Google Scholar 

  • Haruna, I. and Spiegelman, S. (1965) Autocatalytic synthesis of a viral RNA in vitro. Science, 150, 884–886.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, B. (1999) Experimental Lamarckism. Am. Sci., 87, 494–498.

    Google Scholar 

  • Herbert, A. and Rich, A. (1999) RNA processing and the evolution of eukaryotes. Nat. Genet., 21, 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Hüttenhofer, A. and Brosius, J. (2002) Experimental RNomics. In Functional Genomics (Eds. Galperin, M. and Koonin, E.V.). Horizon Scientific Press, New York.

    Google Scholar 

  • Hüttenhofer, A., Kiefmann, M., Meier-Ewert, S., O’Brien, J., Lehrach, H., Bachellerie, J.-P. and Brosius, J. (2001) RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J., 20, 2943–2953.

    Article  PubMed  Google Scholar 

  • Jablonka, E. and Lamb, M.J. (1995) Epigenetic Inheritance and Evolution in the Lamarckian Dimension. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Jablonka, E., Lamb, M.J. and Avital, E. (1998) Lamarckian mechanisms in Darwinian evolution. Trends Ecol. Evol., 13, 206–210.

    Article  PubMed  CAS  Google Scholar 

  • James, K.D. and Ellington, A.D. (1995) A search for missing links between self-replicating nucleic acids and the RNA world. Origins Life Evol Biosphere, 25, 515–530.

    Article  CAS  Google Scholar 

  • Jantsch, E. (1979) Die Selbstorganisation des Universums: Vom Urknall zum Menschlichen Geist. Carl Hanser Verlag, München, Germany.

    Google Scholar 

  • Jeffares, D.C., Poole, A.M. and Penny, D. (1998) Relics from the RNA world. J. Mol. Evol, 46, 18–36.

    Article  PubMed  CAS  Google Scholar 

  • Joyce, G.F. (2002) The antiquity of RNA-based evolution. Nature 418, 241–221.

    Article  CAS  Google Scholar 

  • Jurka, J. (1998) Repeats in genomic DNA: mining and meaning. Curr. Opin. Struct. Biol., 8, 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, S.A. (1993) The Origins of Order. Self-Organization and Selection in Evolution. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Kidwell, M.G. and Lisch, D. (1997) Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA, 94, 7704–7711.

    Article  PubMed  CAS  Google Scholar 

  • Kiedrowski, G.v. (1986) A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl, 25, 932–935.

    Article  Google Scholar 

  • Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E. and Cech, T.R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C, Rosetti, M., Santos, R., Sheridan, A., Sougnez, C, Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T, Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R.H., Wilson, R.K., Hillier, L.W., McPherson, J.D., Marra, M.A., Mardis, E.R., Fulton, L.A., Chinwalla, A.T., Pepin, K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L., Delehaunty, A., Kramer, J.B., Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., et al. (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  • Lau, N.C., Lim, L.P., Weinstein, E.G. and Bartel, D.P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.C. and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science, 294, 862–864.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E.B. (1951) Pseudoallelism and gene evolution. Cold Spring Harbor Symp. Quant. Biol, 16, 159–174.

    Article  PubMed  CAS  Google Scholar 

  • Li, T and Nicolaou, K.C. (1994) Chemical self-replication of palindromic duplex DNA. Nature, 369, 218–221.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, M.F. (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet., 80, 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, M.F. (2000) LINE-1 elements and X chromosome inactivation: a function for ‘junk’ DNA? Proc. Natl. Acad. Sci. USA, 97, 6248–6249.

    Article  PubMed  CAS  Google Scholar 

  • Maizels, N. and Weiner, A.M. (1987) Peptide-specific ribosomes, genomic tags, and the origin of the genetic code. Cold Spring Harbor Symp. Quant. Biol., 52, 743–749.

    Article  PubMed  CAS  Google Scholar 

  • Makalowski, W. (2000) Genomic scrap yard: how genomes utilize all that junk. Gene, 259, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L. (1970) Origin of Eukaryotic Cells. Yale University Press, New Haven, CT.

    Google Scholar 

  • Martignetti, J.A. and Brosius, J. (1993a) BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. Proc. Natl. Acad. Sci. USA, 90, 11563–11567.

    Article  PubMed  CAS  Google Scholar 

  • Martignetti, J.A. and Brosius, J. (1993b) Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc. Natl. Acad. Sci. USA, 90, 9698–9702.

    Article  PubMed  CAS  Google Scholar 

  • Mattick, J.S. (2001) Noncoding RNAs: the architects of eukaryotic complexity. EMBO Rep., 2, 986–991.

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith, J. and Szathmáry, E. (1995) The Major Transitions in Evolution. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Mayr, E. (1960) The emergence of evolutionary novelties. In Tax, S. (ed.) Evolution after Darwin, Vol. 1. The University of Chicago, Chicago, IL, pp. 349–380.

    Google Scholar 

  • Mayr, E. (2001) What Evolution Is. Basic Books, New York.

    Google Scholar 

  • McDonald, J.F. (1993) Evolution and consequences of transposable elements. Curr. Opin. Genet. Dev., 3, 855–864.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J.F. (1995) Transposable elements: possible catalysts of organismic evolution. Trends Ecol. Evoi, 10, 123–126.

    Article  CAS  Google Scholar 

  • Mendel, G. (1866) Versuche über Pflanzenhybriden. Verhandl. naturforsch. Ver. Brünn, 4, 3–47.

    Google Scholar 

  • Mendel, G. (1870) Über einige aus künstlicher Befruchtung gewonnene Hieraciumbastarde. Verhandl. naturforsch. Ver. Brünn, 8, 26–31.

    Google Scholar 

  • Muller, HJ., Prokofyeva-Belgovskaya, A.A. and Kossikov, K.V. (1936) Unequal crossing-over in the Bar mutant as a result of duplication of a minute chromosome section. CR. (Doklady) Acad. Sci. URSS, 1, 87–88.

    Google Scholar 

  • multiple authors. (1987) Evolution of Catalytic Function, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Nei, M. (1969) Gene duplication and nucleotide substitution in evolution. Nature, 221, 40–42.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S. (1970) Evolution by Gene Duplication. Springer, New York, NY.

    Google Scholar 

  • Orgel, L.E. (1968) Evolution of the genetic apparatus. J. Mol Biol., 38, 381–393.

    Article  PubMed  CAS  Google Scholar 

  • Orgel, L.E. (1998) The origin of life — a review of facts and speculations. Trends Biochem. Sci., 23, 491–495.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, J.W. (1984) Is Weissmann’s barrier absolute?, pp. 291–314, In Beyond Neo-Darwinism. An introduction to the new evolutionary paradigm, edited by M.-W. Ho and P.T. Saunders. Academic Press, London.

    Google Scholar 

  • Poole, A.M., Jeffares, D.C. and Penny, D. (1998) The path from the RNA world. J. Mol. Evol., 46, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D.L. and Joyce, G.F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves singlestranded DNA. Nature 344, 467–468.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J.A. (1992) Natural genetic engineering in evolution. Genetica 86: 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Silver, L.M. (1997) Remaking Eden. Cloning and Beyond in a Brave New World. Avon, New York, NY.

    Google Scholar 

  • Steele, E.J., Lindley, R.A. and Blanden, R.V. (1998) Lamarck’s Signature: How retrogenes are Changing Darwin’s Natural Selection Paradigm. Perseus, Cambridge, MA.

    Google Scholar 

  • Stephens, S.G. (1951) Possible significance of duplication in evolution. Adv. Genet., 4, 247–265.

    Article  PubMed  CAS  Google Scholar 

  • Storz, U. (2002) Counting all genes: how many other RNAs exist and what do they do? Science, 296, 1260–1263.

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant, A.H. (1925) The effects of unequal crossing over at the Bar locus in Drosophila. Genetics, 10, 117–147.

    PubMed  CAS  Google Scholar 

  • Sutcliffe, J.G., Milner, R.J., Bloom, F.E. and Lerner, R.A. (1982) Common 82-nucleotide sequence unique to brain RNA. Proc. Natl. Acad. Sci. USA, 79, 4942–4946.

    Article  PubMed  CAS  Google Scholar 

  • Sverdlov, E.D. (2000) Retroviruses and primate evolution. BioEssays, 22, 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Szathmáry, E. (1990) Towards the evolution of ribozymes. Nature, 344, 115.

    Article  PubMed  Google Scholar 

  • Szathmáry, E. (1997) Origins of life. The first two billion years. Nature, 387, 662–663.

    Article  PubMed  Google Scholar 

  • Szathmäry, E. (1999a) The first replicators. In Levels of Selection (Ed. Keller, L.). Princeton University Press, Princeton, NJ, pp. 31–52.

    Google Scholar 

  • Szathmáry, E. (1999b) The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet., 15, 223–229.

    Article  PubMed  Google Scholar 

  • Szathmáry, E. and Smith, J.M. (1995) The major evolutionary transitions. Nature, 374, 227–232.

    Article  PubMed  Google Scholar 

  • Szostak, J.W., Bartel, D.P. and Luisi, PL. (2001) Synthesizing life. Nature, 409, 387–390.

    Article  PubMed  CAS  Google Scholar 

  • Temin, H.M. (1970) Viral RNA-depentent DNA polymerase. Nature, 226, 1211–1213.

    Article  PubMed  CAS  Google Scholar 

  • Tiedge, H., Chen, W. and Brosius, J. (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J. Neurosci., 13, 2382–2390.

    PubMed  CAS  Google Scholar 

  • Tiedge, H., Fremeau, R.T., Weinstock, PH., Arancio, O. and Brosius, J. (1991) Dendritic location of neural BC1 RNA. Proc. Natl. Acad. Sci. USA, 88, 2093–2097.

    Article  PubMed  CAS  Google Scholar 

  • Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  • Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, CA., Holt, R.A., Gocayne, J.D., Amanatides, P., Bailew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, CD., Zheng, X.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J., Gabor Miklos, G.L., Nelson, C, Broder, S., Clark, A.G., Nadeau, J., McKusick, V.A., Zinder, N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C, Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V, Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V, Dunn, P., Eilbeck, K., Evangelista, C, Gabrielian, A.E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z., Ketchum, K.A., Lai, Z., Lei, Y, Li, Z., Li, J., Liang, Y, Lin, X., Lu, F, Merkulov, G.V, Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M, Wides, R., Xiao, C, Yan, C, et al. (2001) The sequence of the human genome. Science, 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Wächtershauser, G. (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog. Biophys. Mol. Biol, 58, 85–201.

    Article  PubMed  Google Scholar 

  • Walbot, V. (1996) Sources and consequences of phenotypic and genotypic plasticity in flowering plants. Trends Plant Sci., 1, 27–32.

    Article  Google Scholar 

  • Wang, W., Brunet, F.G., Nevo, E. and Long, M. (2002) Origin of sphinx, a young chimeric RNA gene in Drosophilamelano-gaster. Proc. Natl. Acad. Sci. USA, 99, 4448–4453.

    Article  PubMed  CAS  Google Scholar 

  • Watson, J.B. and Sutcliffe, J.G. (1987) Primate brain-specific cytoplasmic transcript of the Alu repeat family. Mol. Cell. Biol., 1, 3324–3327.

    Google Scholar 

  • Weiner, A.M., Deininger, P.L. and Efstratiadis, A. (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem., 55, 631–661.

    Article  PubMed  CAS  Google Scholar 

  • Weismann, A. (1892) Das Keimplasma: Eine Theorie der Vererbung. Gustav Fischer, Jena, Germany.

    Google Scholar 

  • Weismann, A. (1893) The Germplasm: a Theory of Heredity. Walter Scott, London, UK.

    Google Scholar 

  • Weismann, A. (1902) Vorträge über Descendenztheorie gehalten an der Universität zu Freiburg im Breisgau. Gustav Fischer, Jena, Germany.

    Book  Google Scholar 

  • Westheimer, F.H. (1986) Polyribonucleic acids as enzymes. Nature, 319, 534–535.

    Article  PubMed  CAS  Google Scholar 

  • Williams, G.C. (1966) Adaptation and Natural Selection. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Wills, C. and Bada, J. (2000) The Spark of Life: Darwin and the Primeval Soup. Perseus Publishing, Cambridge, MA.

    Google Scholar 

  • Wilson, D.S. and Szostak, J.W. (1999) In vitro selection of functional nucleic acids. Annu. Rev. Biochem., 68, 611–647.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. (1967) The Genetic Code: The Molecular Basis for Genetic Expression. Harper and Row, New York, NY.

    Google Scholar 

  • Woese, C.R. (1980) Just So Stories and Rube Goldberg machines: Speculations on the origin of the protein synthetic machinery. In Ribosomes: Structure, Function, and Genetics (Eds. Chambliss, G., Craven, G.R., Davies, J., Davis, K., Kahan, L. and Nomura, M.). University Park Press, Baltimore, MD, pp. 357–373.

    Google Scholar 

  • Woese, C.R. (2001) Translation: in retrospect and prospect. RNA, 1, 1055–1067.

    Article  Google Scholar 

  • Woese, C.R. (2002) On the evolution of cells. Proc. Natl. Acad. Sci. USA, 99, 8742–8747.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brosius, J. (2003). Gene duplication and other evolutionary strategies: from the RNA world to the future. In: Meyer, A., Van de Peer, Y. (eds) Genome Evolution. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0263-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0263-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3957-4

  • Online ISBN: 978-94-010-0263-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics