Skip to main content

The Lyophilic Structure-Mechanical Barrier as a Factor of Dispersion Strong Stabilization

  • Conference paper
Role of Interfaces in Environmental Protection

Part of the book series: NATO Science Series ((NAIV,volume 24))

Abstract

The lyophilic structure-mechanical barrier formed by the interfacial adsorption layer is considered as a factor of strong stabilization of disperse systems with respect to high concentrations of disperse phase and electrolyte. Such barrier must possess two principal features: intrinsic mechanical strength of the layer — preventing coalescence, and high affinity of the external side of the layer and dispersion medium — opposing coagulation; independent experimental approaches for their quantitative characterization are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rehbinder, P.A. (1978) Selected Works: Colloid Chemistry, Nauka, Moscow; (1979) Selected Works: Physical-Chemical Mechanics, Nauka, Moscow.

    Google Scholar 

  2. Shchukin, E.D. (1990) Development of teaching of P.A.Rehbinder on surface phenomena in disperse systems, Bullet. Acad. Sci. USSR, Ser. Chem., No. 10, 2424–2445.

    Google Scholar 

  3. Derjaguin, B.V. (1996) Theory of the Stability of Colloids and Thin Films, Nauka, Moscow.

    Google Scholar 

  4. Rehbinder, P.A. and Venstrem, E.K. (1931) On the physics of foams and emulsions, Zh. Fiz. Khim., 2, 754–762.

    Google Scholar 

  5. Izmailova, V.N. and Rehbinder, P.A. (1976) Structure Formation in Protein Systems, Nauka, Moscow.

    Google Scholar 

  6. Shchukin, E.D. (1997) Development of Rehbinder’s doctrine on strong stabilization factors in disperse systems, Colloid J., 59, 248–261.

    CAS  Google Scholar 

  7. Derjaguin, B.V. and Churaev, N.V. (1984) Wetting Films, Nauka, Moscow.

    Google Scholar 

  8. Pertsov, A.V., Simonov, A.E., Porodenko, E.V. (1992) Syneresis in foams. Computer simulation. Colloid J., 54, 103–107.

    Google Scholar 

  9. Lyklema, J. (1991) Fundamentals of Interface and Colloid Science, vol. 1, Academic Press, London; 1995, ibid., vol. 2.

    Google Scholar 

  10. Zsigmondy, R. (1901) Die hochrothe Goldloesung als Reagent auf Colloide, Z. Anal Chem., 40, 697–719.

    Google Scholar 

  11. Freundlich, G. (1932) Kapillarchemie, Akademische Verlag, Berlin.

    Google Scholar 

  12. Van Voorst Vader, F., Erkens, Th.F., and van den Tempel, M. (1964) Measurement of dilatational surface properties, Trans. Faraday Soc., 60, 1170–1177.

    Article  Google Scholar 

  13. Lucassen, J. and Lucassen-Reynders, E.H. (1967) Wave damping and Gibbs elasticity for nonideal surface behavior, J. Colloid Interface Sci., 25, 496–502.

    Article  CAS  Google Scholar 

  14. Tambe, D.E. and Sharma, M.M. (1993) Factors controlling the stability of colloid-stabilized emulsions. I. An experimental investigation, J. Colloid Interface Sci., 157, 244–253; (1994) II. A model for the rheological properties of colloid-laden interfaces, ibid., 162, 1-10.

    Article  Google Scholar 

  15. Izmailova, V.N., Alekseeva, LG., Shchukin, E.D. and Rehbinder, P.A. (1973) Rheological properties of interfacial adsorption layers of aqueous gelatin solutions at a boundary with benzene, Colloid J., 35, 799–804.

    Google Scholar 

  16. Amelina, E.A., Shchukin, E.D., Parfenova, A.M. et al. (1984) Dispersion and stability of individual of nonpolar liquids in aqueous solutions of nonionogenic surfactants, Colloid J., 46, 1245–1246; 1247-1248.

    Google Scholar 

  17. Shchukin, E.D., Amelina, E.A., Parfenova, A.M. (2001) Influence of the nature of non-polar phase on the mechanical stability of adsorption layers of hydrocarbon and fluorocarbon surfactants at the interface between their aqueous solutions and non-polar media, Colloids Surfaces, A176, 35–51.

    Google Scholar 

  18. Graham, D.E. and Philips, M.C. (1976) The conformation of proteins at interfaces and their role in stabilizing emulsions, in A.L. Smith (ed.), Theory and practice of Emulsion Technology, Academic, London, pp. 75–98.

    Chapter  Google Scholar 

  19. Dussand, A. and Vignes-Adler, M. (1994) Surface properties of proteins alcoholic solutions. Surface dilatational rheology, J. Colloid Interface Sci., 167, 256–265.

    Article  Google Scholar 

  20. Pefferkorn, E. (1995) The role of polyelectrolytes in the stabilization and destabilization of colloids, Adv. Colloid Interface Sci., 56, 33–104.

    Article  CAS  Google Scholar 

  21. Lankveld, J.M.G. and Lyklema, J. (1972) Adsorption of polyvinil alcohol on the paraffin-water interface, J. Colloid Interface Sci., 41, 454–465, 466-474, 475-483.

    Article  CAS  Google Scholar 

  22. Adam, N.K. (1942) Physics and Chemistry of Surfaces, 3rd ed., Oxford Univ. Press, New York.

    Google Scholar 

  23. Adamson, A.W. (1967) Physical Chemistry of Surfaces, 2nd ed., Interscience, New York.

    Google Scholar 

  24. Mysels, K.J., Shinoda, K. and Frankel, S. (1959) Soap Films, Pergamon Press, London.

    Google Scholar 

  25. Sheludko, A.D. (1984) Colloid Chemistry, Mir, Moscow.

    Google Scholar 

  26. Roeseler, A, (1993) Surface characterization by spectroscopic infrared ellipsometry, Fresenius’ J. Anal. Chem., 346, 358–361.

    Article  CAS  Google Scholar 

  27. Thiessen, D. and Schwarz, P. (1967) Static cylindrical waves on liquid surfaces, Z. Phys. Chem. (Leipzig), 236, 363–368.

    CAS  Google Scholar 

  28. Shchukin, E.D. and Amelina, E.A. (1979) Contact interactions in disperse systems, Adv. Colloid Interface Sci., 11, 235–287.

    Article  CAS  Google Scholar 

  29. Shchukin, E.D. (1976) Mechanisms of surfactant effects at various interfaces, Proc. 7th Int. Congr. on Surfactants, Moscow, Part B2, pp. 15–53.

    Google Scholar 

  30. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A. (1992) Colloid Chemistry, Vysshaya Shkola, Moscow; Shchukin, E.D., Pertsov, A.V., Amelina, E.A., and Zelenev, A.S. (2001) Colloid and Surface Chemistry, Elsevier.

    Google Scholar 

  31. Shchukin, E.D. (2002) Surfactants effects on the cohesive strength of particle contacts: measurements by the cohesive force apparatus, J. Colloid Interface Sci., 246

    Google Scholar 

  32. Derjaguin, B.V. (1976) Main factors affecting the stability of colloids, Pure Appl. Chem., 48, 387–392.

    Article  CAS  Google Scholar 

  33. Derjaguin, B.V., Churaev, N.V., Muller, V.M. (1987) Surface Forces, Consultants Bureau, New York.

    Google Scholar 

  34. Rabinovich, Ya.I., Derjaguin, B.V., and Churaev, N.V. (1982) Direct measurements of long-range surface forces in gas and liquid media, Adv. Colloid Interface Sci., 16, 63–78.

    Article  CAS  Google Scholar 

  35. Israelachvili, J. and Pashley, R. (1982) The long range hydrophobic interaction decaying exponentially with distance, Nature (London), 300, 341; (1983) Molecular layering of water at surfaces and origin of repulsive hydration forces, ibid., 306, 249-250.

    Article  CAS  Google Scholar 

  36. Claesson, P. and Christensen, H. (1988) Very long range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water, J. Phys. Chem., 92, 1650–1655.

    Article  CAS  Google Scholar 

  37. Yaminsky, V.V., Pchelin, V.A., Amelina, E.A., and Shchukin, E.D. (1982) Coagulation Contacts in Disperse Systems, Khimiya, Moscow.

    Google Scholar 

  38. Shchukin, E.D. (1996) Some colloid-chemical aspects of the small particles contact interactions, in E. Pelizetti (ed.), Fine Particles Science and Technology, Kluwer Acad. Press, The Netherlands, pp. 239–253.

    Chapter  Google Scholar 

  39. Shchukin, E.D., Amelina, E.A., and Yaminsky, V.V. (1983) On the thermodynamics of transition from stability to coagulation, in B.V. Derjaguin (ed.), Surface Forces and Boundary Layers in Liquids, Nauka, Moscow, pp. 23–29.

    Google Scholar 

  40. Shchukin, E.D. and Yaminsky, V.V. (1988) Thermodynamic factors of the sol-gel transition, Colloids Surfaces, 32, 19–32, 33-55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Shchukin, E.D., Amelina, E.A., Izmailova, V.N. (2003). The Lyophilic Structure-Mechanical Barrier as a Factor of Dispersion Strong Stabilization. In: Barany, S. (eds) Role of Interfaces in Environmental Protection. NATO Science Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0183-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0183-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1479-6

  • Online ISBN: 978-94-010-0183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics