Skip to main content
  • 2009 Accesses

Abstract

Large structures, the failure of which would cause considerable economic losses and, most likely, the loss of many human lives, have to be built fracture safe. Examples of such structures are ships, airplanes, bridges, pipelines, storage tanks, (nuclear reactor) pressure vessels and rocket motor casings. Although the number of failures is low relative to the number of structures in operation, the absolute number is still too high. The service failure of one single airplane or reactor vessel is already a major catastrophe. The financial losses due to failure of one storage tank, or due to the down time of a power plant after a major failure, are expressed in millions of dollars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nichols, R. W., Some applications of fracture mechanics in power engineering, 3rd ICF Conference I (1973) VIII-412.

    Google Scholar 

  2. Dunegan, H. L., Harris, D. O. and Tatro, C. A., Fracture analysis by use of acoustic emission, Eng. Fracture Mech., 1 (1968) pp. 105–122.

    Article  Google Scholar 

  3. Pellini, W. S. et al., Review of concepts and status of procedures for fracture safe design of complex welded structures involving metals of low to ultra-high strength levels, Naval Res. Lab., Washington, Rept. 6300 (1965).

    Google Scholar 

  4. Van Elst, H. C., The intermittant propagation of brittle fracture in steel, AIME Trans. 230, (1964) pp. 460–469.

    Google Scholar 

  5. Pellini, W. S. and Loss, F. J., Integration of metallurgical and fracture mechanics concepts of transition temperature factors relating to fracture-safe design for structural steels, Naval, Res. Lab., Washington, Rept. 6900 (1969).

    Google Scholar 

  6. Boyd, G. M., Fracture design practice for ship structures, Fracture V, pp. 383–470, Liebowitz, Ed., Academic Press (1969).

    Google Scholar 

  7. Nichols, R. W. and Cowan, A., Selection of material and other aspects of design against brittle fracture and large steel structures, Fracture V, pp. 233–284. Liebowitz, Ed., Academic Press (1969).

    Google Scholar 

  8. Hall, W. J., Evaluation of fracture tests and specimen preparation, Fracture IV, pp. 2–44, Liebowitz, Ed., Academic Press (1969).

    Google Scholar 

  9. Tetelman, A. S. and McEvily, A. J., Fracture of structural materials, Wiley (1967).

    Google Scholar 

  10. Folias, E. S., A finite line crack in a pressured cylindrical shell, Int. J. Fracture Mech., 1 (1965) pp. 104–113.

    Google Scholar 

  11. Peters, R. W. and Kuhn, P., Bursting strength of unstiffened pressure cylinder with slits, NACA TN 3393 (1957).

    Google Scholar 

  12. Pierce, W. S., Flawed single- and multilayer AISI 301 pressure vessels at cryogenic temperatures, NASA TN D-2946 (1965).

    Google Scholar 

  13. Kihara, H., Ikeda, K. and Iwanga, H., Brittle fracture initiation of fine pipe, I.I.W. Doc X-371-66 (1966).

    Google Scholar 

  14. Crichlow, W. J. and Wells, R. H., Crack propagation and residual static strength of fatigue cracked titanium and steel cylinders, ASTM STP, 415 (1967) p. 25.

    Google Scholar 

  15. Maxey, W. A., Kiefner, J. F., Eiber, R. J. and Duffy, A. R., Ductile fracture initiation, propagation and arrest in cylindrical vessels, ASTM STP, 518 (1972) pp. 70–81.

    Google Scholar 

  16. Maxey, W. A. et al., Experimental investigation of ductile fractures in piping, Battelle Columbus rept., undated.

    Google Scholar 

  17. Kiefner, J. F. et al., Recela research on flaw behaviour during hydrostatic testing, AGA Operating Sect. Transm. Conf., Houston (1971).

    Google Scholar 

  18. Eiber, R. J. et al., Further work on flaw behaviour in pressure vessels, Conf. on practical applications of fracture mechanics to pressure vessel technology (1971).

    Google Scholar 

  19. Kiefner, J. F. et al., The failure stress levels of flaws in pressurized cylinders, ASTM 6th Nat. Symp. fracture mechanics (1972).

    Google Scholar 

  20. Duffy, A. R. et al., Fracture design practices for pressure piping, Fracture V, pp. 159–232, Liebowitz, Ed., Academic Press (1969).

    Google Scholar 

  21. Dugdale, D. S., Yielding of steel plates containing slits, J. Mech. Phys. Solids, 8 (1960) pp. 100–108.

    Article  ADS  Google Scholar 

  22. Hahn, G. T., Sarrate, M. and Rosenfield, A. R., Criteria for crack extension in cylindrical pressure vessels, Int. J. Fract. Mech., 5 (1969) pp. 187–210.

    Google Scholar 

  23. Anderson, R. B. and Sullivan, T. L., Fracture mechanics of through-cracked cylindrical pressure vessels, NASA TN D-3252 (1966).

    Google Scholar 

  24. Getz, D. L., Pierce, W. S. and Calvert, H., Correlation of uniaxial notch tensile data with pressure vessel fracture characteristics, ASME paper 63 WA-187 (1963).

    Google Scholar 

  25. Rudinger, G., Wave diagrams for nonsteady flow in ducts, Van Nostrand (1955).

    Google Scholar 

  26. ASTM committee, The slow growth and rapid propagation of cracks, Materials Res. and Standards, 1 (1961) pp. 389–394.

    Google Scholar 

  27. Irwin, G. R., Fracture of pressure vessels, Materials for missiles and spacecraft, pp. 204–229, McGraw-Hill (1963).

    Google Scholar 

  28. Irwin, G. R. and Srawley, J. E., Progress in the development of crack toughness fracture tests, Materialprüfung, 4 (1962) pp. 1–11.

    Google Scholar 

  29. Kobayashi, A. S., Zii, M. and Hall, L. R., Approximate stress intensity factor for an embedded elliptical crack near two parallel free surfaces, Int. J. Fract. Mech., 1 (1965) pp. 81–95.

    Google Scholar 

  30. Hardrath, H. F. A., A unified technology plan for fatigue and fracture design, NASA paper presented to ICAF (1973).

    Google Scholar 

  31. Schra et al., Private communication.

    Google Scholar 

  32. Zahoor, A. and Abou-Sayed, I. S., Prediction of stable crack growth in type 304 stainless steel, Symp. on computational methods in non-linear structural and solid mechanics (1980) Arlinton, VA.

    Google Scholar 

  33. Zahoor, A. and Kanninen, M. F., A plastic fracture mechanics prediction of fracture instability in a circumferentially cracked pipe in bending. ASME publication 80-WA/PVP-3 (1980).

    Google Scholar 

  34. Shih, C. F., An engineering approach for examining growth and stability in flawed structures, Nuclear Regulatory Comm. Report NUREG/CP-0010 (1980), pp. 144–193.

    Google Scholar 

  35. Kanninen, M. F. et al., Mechanical fracture predictions for sensitized stainless steel piping with circumferential cracks, EPRI NP-192 (1976).

    Google Scholar 

  36. Kanninen, M. F. et al., Towards an elastic-plastic fracture mechanics capability for reactor piping, Nuclear Eng. and Design (48), p. 117.

    Google Scholar 

  37. Chell, G. G., A procedure for incorporating thermal and residual stresses into the concept of a failure assessment diagram, ASTM STP 668, (1979).

    Google Scholar 

  38. Millne, I. and Chell, G. G., A simple practical method for determining the ductile instability of cracked structures, Nuclear Regulatory Comm. Report NUREG/CP-0010 (1980), pp. 100–114.

    Google Scholar 

Additional bibliography on pressure vessels

  1. Adams, N. J. I., The influence of curvature on K of a circumferential crack in a cylindrical shell, to be published.

    Google Scholar 

  2. Bluhm, J. I. and Marderosam, M. M., Fracture arrest capabilities of annularly reinforced cylindrical pressure vessels, Exp. Mechanics, 3 (1963) pp. 57–66.

    Article  Google Scholar 

  3. Edmondson, B., Formby, C. L., Jurevics, R. and Stagg, M. S., Aspects of failures of large steel pressure vessels, Fracture 1969, pp. 192–204, Chapman and Hall (1969).

    Google Scholar 

  4. Folias, E. S., A finite line crack in a pressurized spherical shell, Int. J. Fracture Mech., 1 (1965) pp. 20–46.

    Article  Google Scholar 

  5. Folias, E. S., On the theory of fracture of curved sheets, Eng. Fracture Mech., 2 (1970) pp. 151–164.

    Article  Google Scholar 

  6. Garg, S. K. and Siekman, J., On the fracture of a thin spherical shell under blast loading, Exp. Mechanics, 6 (1966) pp. 39–44.

    Article  Google Scholar 

  7. Irwin, G. R., Fracture of pressure vessels, Materials for missiles and spacecraft, Parker, Ed., pp. 204–209, McGraw-Hill (1963).

    Google Scholar 

  8. Mayer, T. R. and Yanichko, S. E., Use of fracture mechanics in reactor vessel surveillance, J. Basic Eng., (1971) pp. 259–264.

    Google Scholar 

  9. Merkle, J. G., Fracture safety analysis concepts of nuclear pressure vessels considering the effects of irradiation, J. Basic Eng., (1971) pp. 265–273.

    Google Scholar 

  10. Parry, G. W. and Lazzeri, L., Fracture mechanics and pressure vessels under yielding conditions, Eng. Fracture Mech., 1 (1969) pp. 519–537.

    Article  Google Scholar 

  11. Pierce, W. S., Effects of surface and through cracks on failure of pressurized thin-walled cylinders of 2014-T4 aluminium, NASA-TN D-6099 (1970).

    Google Scholar 

  12. Singer, E., Fracture mechanics in design of pressure vessels, Eng. Fracture Mech., 1 (1969) pp. 507–517.

    Article  Google Scholar 

  13. Sowerley, R. and Johnson, W., Use of slip line field theory for the plastic design of pressure uessels, Exp. Stress Analysis and its Influence on Design, paper 9, Cambridge (1970).

    Google Scholar 

  14. Swift, T. and Wang, D. Y., Analysis method and test verification of a cracked fuselage structure, Douglas paper 5684 (1969).

    Google Scholar 

  15. Tielsch, H., Defects and failures in pressure vessels and piping, Reinhold—Chapman and Hall (1965).

    Google Scholar 

  16. Tiffany, C. F., On the prevention of delayed time failures of aerospace pressure vessels, J. Franklin Inst., 290 (1970) pp. 567–582.

    Article  Google Scholar 

  17. Wessel, E. T., Correlation of laboratory fracture toughness data with performance of large steel pressure vessels, Welding Journal, 43 (1964) pp. 415s-424s.

    Google Scholar 

  18. Hahn, G. T., Sarrate, M., Kanninen, M. F. and Rosenfield, A. R., A model for unstable shear crack propagation in pipes containing gas pressure, Int. J. of Fracture, 9 (1973) pp. 209–222.

    Article  Google Scholar 

  19. Ricardella, P. C. and Mager, T. R., Fatigue crack growth of pressurized water reactor pressure vessels, ASTM STP 513, (1972) pp. 260–279.

    Google Scholar 

  20. Moore, R. L., Nordmark, G. E. and Kaufman, J. G., Fatigue and fracture Characteristics of aluminum alloy cylinders under internat pressure, Eng. Fracture Mech., 4 (1972) pp. 51–63.

    Article  Google Scholar 

  21. Bartholomé, G., Miksch, M., Neubrech, G. and Vasoukis, G., Fracture and safety analysis of nuclear pressure vessels, Eng. Fracture Mech., 5 (1973) pp. 431–446.

    Article  Google Scholar 

  22. Murthy, M. V. V., Rao, K. P. and Rao, A. K., Stresses around an axial crack in a pressurized cylindrical shell, Int. J. Fracture Mech., 8 (1972) pp. 287–297.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Broek, D. (1982). Fracture of structures. In: Elementary engineering fracture mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4333-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4333-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8425-3

  • Online ISBN: 978-94-009-4333-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics