Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 185))

Abstract

Chemical routes for the preparation of selected non-oxide ceramic powders, namely silicon carbide, silicon nitride, aluminium nitride, titanium diboride, boron carbide and boron nitride have been reviewed. Although these techniques include conventional ones such as powder mixing, this article is primarily concerned with non-conventional ceramic syntheses, that is, polymer pyrolysis, non-aqueous liquid phase reactions, gas phase reactions and sol-gel processing. Powder properties such as particle size, corresponding to different synthetic techniques are described. This review concludes that chemical synthesis can make a significant contribution to the development of ceramic precursors for non-oxide powders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Segal, D. (1989) Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  2. Hoekstra, H.R. and Katz, J.J. (1949) ‘The preparation and properties of the group IV-B metal borohydrides’, J. American Chemical Society 71, 2488–2492.

    Article  CAS  Google Scholar 

  3. Reid, W.E., Bish, J.M. and Brenner, A. (1957) ‘Electrodeposition of metals from organic solutions. III. Preparation and electrolysis of titanium and zirconium compounds in non-aqueous media’, J. Electrochemical Society 104, 21–29.

    Article  CAS  Google Scholar 

  4. Gallagher, M.K., Rhine, W.E. and Bowen, H.K. (1988) ‘Low-temperature route to high-purity titanium, zirconium and hafnium diboride powders and films’, in J.D. Mackenzie and D.R. Ulrich (eds.), Ultrastructure Processing of Advanced Ceramics,WileyInterscience, New York, pp. 901–906.

    Google Scholar 

  5. Ingles, T.A. and Popper, P. (1960) ‘The preparation and properties of boron nitride’, in P. Popper (ed.), Special Ceramics, Heywood, London, pp. 144–167.

    Google Scholar 

  6. Smith, H.D. (1978) ‘Organic boron-nitrogen compounds’, in R.E. Kirk and D.F. Othmer (eds.), Encyclopaedia of Chemical Technology, Wiley-Interscience, New York, 3rd edition, vol. 4, pp. 188–201.

    Google Scholar 

  7. Narula, C.K., Paine, R.T. and Schaeffer, R. (1986) ‘Precursors to boron-nitrogen macromolecules and ceramics’, Materials Research Society Symposium Proceedings 73, 383–388.

    Article  CAS  Google Scholar 

  8. Maya, L. (1988) ‘Aminoborane polymers as precursors of ceramic materials’, Materials Research Society Symposium Proceedings 121, 455–460.

    Article  CAS  Google Scholar 

  9. Pouskouleli, G. (1989) ‘Metallorganic compounds as preceramic materials. I. Non-oxide ceramics’, Ceramics International 15, 213–229.

    Article  CAS  Google Scholar 

  10. Iwai, T., Kawahito. T. and Yamada, T. (1980) ‘Process for producing metallic nitride powder’, United States Patent 4,196, 178.

    Google Scholar 

  11. Seyferth, D. and Wiseman, G.H. (1984) ‘Silazane precursors to silicon nitride’, in L.L. Hench and D.R. Ulrich (eds.), Ultrastructure Processing of Ceramics, Glasses and Composites, Wiley-Interscience, New York, pp. 265–271.

    Google Scholar 

  12. Wynne, K.J. and Rice, R.W. (1984) ‘Ceramics via polymer pyrolysis’, Annual Reviews of Materials Science 14, 297–334.

    Article  CAS  Google Scholar 

  13. Szweda, A., Hendry, A. and Jack, K.H. (1981) ‘The preparation of silicon nitride from silica by sol-gel processing’, Proceedings of the British Ceramic Society 31, 107–118.

    CAS  Google Scholar 

  14. Cannon, W.R., Danforth, S.C., Haggerty, J.S. and Marra, R.A. (1982) ‘Sinterable ceramic_ powders from laser-driven reactions. II. Powder characteristics and process variables’, J. American Ceramic Society 65, 330–335.

    Article  CAS  Google Scholar 

  15. Canteloup, J. and Mocellin, A. (1975) ‘Synthesis of ultrafine nitrides and oxynitrides in an rf plasma’, Proceedings of the British Ceramic Society 6, 209–221.

    CAS  Google Scholar 

  16. Vogt, G.J., Hollabaugh, C.M., Hull, D.E., Newkirk, L.R. and Petrovic, J.J. (1984) ‘Novel rf plasma system for the synthesis of ultrafine ultrapure SiC and Si3N4’, United States Department of Energy Report DE 84–003774, Los Alamos.

    Google Scholar 

  17. Seyferth, D., Rees, W.S., Haggerty, J.S. and Lightfoot, A. (1989) ‘Preparation of boron-containing ceramic materials by pyrolysis of the decaborane (14)-derived [B10H12Ph2P0PPh2]x polymer’, Chemistry of Materials 1, 45–52.

    Article  CAS  Google Scholar 

  18. Seyferth, D. and Smith-Rees, W. (1988) ‘The synthesis of boron-containing ceramics by pyrolysis of polymeric Lewis base adducts of decaborane (14)’, Materials Research Society Symposium Proceedings 121, 449–454.

    Article  CAS  Google Scholar 

  19. Seyferth, D. (1988) ‘Polycarbosilanes. An overview’, in M. Zeldin, K.J. Wynne and H.R. Alicock (eds.), Inorganic and Organometallic Polymers, American Chemical Society, Washington, pp. 23–42.

    Google Scholar 

  20. Ritter, J.J. (1986) ‘A low temperature chemical route to precursors of boride and carbide ceramic powders’, Materials Research Society Symposium Proceedings 73, 367–372.

    Article  CAS  Google Scholar 

  21. Kong, P.O and Pfender, E. (1987) ‘Formation of ultrafine 8-silicon carbide powder in an argon thermal plasma jet’, Langmuir 3, 259–265.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Segal, D.L. (1990). Chemical Routes for the Preparation of Powders. In: Freer, R. (eds) The Physics and Chemistry of Carbides, Nitrides and Borides. NATO ASI Series, vol 185. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2101-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2101-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7444-5

  • Online ISBN: 978-94-009-2101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics