Skip to main content

Subcellular targeting of proteins in vivo and in vitro

  • Chapter
Plant Molecular Biology Manual
  • 666 Accesses

Abstract

Many of the proteins in chloroplasts are encoded by the nuclear genome. The most extensively studied of these is the small subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase that is encoded by a small gene family. The translation product of cytoplasmic ribosomes is a precursor protein with an NH2-terminal extension. This precursor is transported into the chloroplasts post-translationally in an energy-dependent process (for reviews, see [4, 25]). During or shortly after translocation the transit peptide is cleaved off to yield the mature small subunit. In vitro experiments indicate that the maturation occurs via a processing intermediate [22]. The mature polypeptide is directed to the stroma where it assembles with the chloroplast-encoded large subunit to form a functional holoenzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

APS:

ammoniumperoxodisulfate

TEMED:

N,N,N’, N’-tetramethylethylene-diamine

TPCK:

L-l-tosylamide-2-phenylethylchlormethylketone

BSA:

bovine serum albumin

DEPC:

diethyl-pyrocarbonate

DTT:

dithiothreitol

EtBr:

ethidium bromide

PEG:

polyethyleneglycol

RNasin:

placental RNase inhibitor

SAM:

S-adenosyl-methionine

TCA:

trichloracetic acid

PMSF:

phenylmethylsulfonyl fluoride

BAM:

benzamidine

ACA:

E-amino-n-caproic acid

References

  1. Arnon DJ (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1–15.

    Article  PubMed  CAS  Google Scholar 

  2. Bartlett SG, Grossman AR, Chua N-H (1982) In vitro synthesis and uptake of cytoplasmically-synthesized chloroplast proteins. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in Chloroplast Molecular Biology, pp 1081–1102. Elsevier Biomedical Press.

    Google Scholar 

  3. Cashmore A (1983) Nuclear genes encoding the small subunit of ribulose-l,5-bisphosphate carboxylase. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic Engineering of Plants: An Agricultural Perspective, pp 29–38. New York: Plenum Press.

    Google Scholar 

  4. Cashmore A, Timko M, Van den Broeck G, Schreier PH, Bohnert H, Herrera-Estrella L, Van Montagu M, Schell J (1985) Import of polypeptides into chloroplasts. Bio/Technology 3: 803–808.

    Article  CAS  Google Scholar 

  5. Chamberlain JP (1979) Fluorographic detection of radioactivity in Polyacrylamide gels with a water-soluble fluor sodium salicylate. Anal Biochem 98: 132–135.

    Article  PubMed  CAS  Google Scholar 

  6. Chua N-H, Schmidt GW (1978) Post-translational transport into intact chloroplasts of a precursor to the small subunit of ribulose-l,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 75: 6110–6114.

    Article  PubMed  CAS  Google Scholar 

  7. Cline K, Andrews J, Mersey B, Newcomb BH, Keegstra K (1981) Separation and characterisation of inner and outer envelope membranes of pea chloroplasts. Proc Natl Acad Sci USA 78: 3595–3599.

    Article  PubMed  CAS  Google Scholar 

  8. Cline K, Werner-Washburne M, Lubben TH, Keegstra K (1985) Precursors to two nuclear-coded chloroplast proteins bind to the outer envelope membrane before being imported into chloroplasts. J Biol Chem 260: 3691–3696.

    PubMed  CAS  Google Scholar 

  9. Coleman A, Robinson C (1986) Protein import into organelles: Hierarchical targeting signals. Cell 46: 321–322.

    Article  Google Scholar 

  10. Gruissem W, Greenberg BM, Zurawski G, Prescott DM, Hallick RB (1983) Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system. Cell 35: 815–828.

    Article  PubMed  CAS  Google Scholar 

  11. Hay R, Böhni P, Gasser S (1984) How mitochondria import proteins. Biochim Biophys Acta 779: 65–87.

    PubMed  CAS  Google Scholar 

  12. Harmey MA, Neupert W (1985) Intracellular transfer of mitochondrial membrane proteins. In: Martonosi A (ed.) The Enzymes of Biological Membrane Proteins, Vol 4, pp 431–464. New York: Plenum.

    Google Scholar 

  13. Hurt EC, Soltanifar N, Goldschmidt-Clermont M, Rochaix J-D, Schatz G (1986) The cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria. EMBO J 5: 1343–1350.

    PubMed  CAS  Google Scholar 

  14. Hurt EC, Pesold-Hurt B, Suda K, Oppliger W, Schatz G (1985) The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. EMBO J 4: 2961–2968.

    Google Scholar 

  15. Krieg PA, Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 12: 7057–7070.

    Article  PubMed  CAS  Google Scholar 

  16. Kuntz M, Simons A, Schell J, Schreier PH (1986) Targeting of protein to chloroplasts in transgenic tobacco by fusion to mutated transit peptide. Molec Gen Genet 205: 454–460.

    Article  CAS  Google Scholar 

  17. Laemmli UK (1970) Cleavage of the structural proteins during the assembly of the head of the bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  18. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  19. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridisation probes from plasmids containing a bacteriophage SP6 promotor. Nucleic Acids Res 12: 7035–7056.

    Article  PubMed  CAS  Google Scholar 

  20. Reiss B, Sprengel R, Will H, Schaller H (1984) Nucleotide sequence and exact localisation of neomycin phosphotransferase gene from transposon Tn5. Gene 30: 211–218.

    Article  PubMed  CAS  Google Scholar 

  21. Reiss B, Sprengel R, Schaller H (1984) Protein fusions with the kanamycin resistance gene from transposon Tn5. EMBO J 3: 3317–3322.

    PubMed  CAS  Google Scholar 

  22. Robinson C, Ellis RJ (1984) Transport of proteins into chloroplasts. The precursor of small subunit of ribulose bisphosphate carboxylase is processed to the mature size in two steps. Eur J Biochem 142: 343–346.

    Article  PubMed  CAS  Google Scholar 

  23. Roman R, Brooker JD, Seal SN, Marcus A (1976) Inhibition of the transition of a 40S ribosome-Met-tRNAiMet complex to an 80S ribosome-Met-tRNAiMet complex by 7-methyl-guanosine -5’-phosphate. Nature 260: 359–360.

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt GW, Bartlett S, Grossman AR, Cashmore AR, Chua N-H (1980) In vitro synthesis, transport, and assembly of the constituent polypeptides of the light harvesting chlorophyll a/b binding protein complex. In: Leaver C (ed) Genome Organisation and Expression in Plants, pp 337–351. New York: Plenum Press.

    Google Scholar 

  25. Schmidt GW, Mishkind ML (1986) The transport of proteins into chloroplasts. Ann Rev Biochem 55: 879–912.

    Article  PubMed  CAS  Google Scholar 

  26. Schreier PH, Seftor EA, Schell J, Bohnert HJ (1985) The use of nuclear encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts. EMBO J 4: 25–32.

    PubMed  CAS  Google Scholar 

  27. Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P (1986) The role of the transit peptide in the routing of precursors towards different chloroplast compartments. Cell 46: 365–375.

    Article  PubMed  CAS  Google Scholar 

  28. Stueber D, Ibrahimi I, Cutler D, Dobberstein B, Bujard H (1984) A novel in vitro transcription-translation system: accurate and efficient synthesis of single proteins from cloned DNA sequences. EMBO J 3: 3143–3148.

    PubMed  CAS  Google Scholar 

  29. Van den Broeck G, Timko M, Kausch AP, Cashmore AR, Van Montagu M, Herrera-Estrella L (1985) Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose-1,5-bisphosphate carboxylase. Nature 313: 358–363.

    Article  PubMed  Google Scholar 

  30. Wasmann CC, Reiss B, Bartlett SG, Bohnert HJ (1986) The importance of the transit peptide and the transported protein for protein import into chloroplasts. Molec Gen Genet 205: 446–453.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Schreier, P.H., Reiss, B., Kuntz, M. (1989). Subcellular targeting of proteins in vivo and in vitro . In: Gelvin, S.B., Schilperoort, R.A., Verma, D.P.S. (eds) Plant Molecular Biology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0951-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0951-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6918-2

  • Online ISBN: 978-94-009-0951-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics