Skip to main content

Algal Plastids: Their Fine Structure and Properties

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

The origin of plastids was by endosymbiosis of a cyanobacterium or an ancestor of cyanobacteria but the exact origin is still an area of contention. The three groups of primary plastid bearing algae (chlorophytes, rhodophytes and glaucocystophytes) arose at about the same time. The other algae arose by secondary endosymbiosis of a plastid-containing primary host by a second host (euglenophytes, cryptophytes, chloroarachniophytes, chromophytes and apicomplexans). The origin of Chl b is at the prokaryotic stage. However, the route from a prochlorophyte chlorophyll a/b binding (pcb) protein to an algal/higher plant CAB/ CAC protein is not clear evolutionarily. The origin of Chl c 1 + Chl c 2 is probably from MgDVP, which occurs in prochlorophyte cyanobacteria, but there is no clear evidence on how it, and its association with characteristic xanthophylls, arose. Thylakoid membrane appression arose along with CAB/CAC proteins but true grana arose somewhere near the base of streptophytes, which are the forebears of land plants (embryophytes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdallah F, Salamini F and Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5: 141–142

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM (1999) Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: A personal perspective. Aust J Plant Physiol 26: 625–639

    Article  CAS  Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 426–440

    Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815

    Article  Google Scholar 

  • Barbrook A and Howe CJ (2000) Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol Gen Genet 263: 152–158

    Article  PubMed  CAS  Google Scholar 

  • Bertos NR and Gibbs SP (1998) Evidence for a lack of photosystem segregation in Chlamydomonas reinhardtii (Chlorophyceae). JPhycol 34: 1009–1016

    Article  Google Scholar 

  • Bhattacharya D (1997) An introduction to algal phylogeny and phylogenetic methods. Plant System Evoln Suppl 11: 1–11.

    Article  Google Scholar 

  • Bhattacharya D, Helmchen TA, Bibeau C and Melkonian M (1995) Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. Mol Biol Evol 12: 415–420

    PubMed  CAS  Google Scholar 

  • Beukes NJ and Klein C (1992) Proterozoic atmosphere and ocean: Models for iron-formation deposition. In: Schopf W and Klein C (eds) The Proterozoic Biosphere, pp 147–151. Cambridge University Press, Cambridge

    Google Scholar 

  • Blankenship RE (2001) Molecular evidence for the evolution of photosynthesis. Trends Plant Sci 6: 4–6

    Article  PubMed  CAS  Google Scholar 

  • Bryant D (1992) Puzzles of chloroplast ancestry. Curr Biol 2: 240–242

    Article  PubMed  CAS  Google Scholar 

  • Büchel C and Wilhelm C (1993) Isolation and characterization of a Photosystem-I-associated antenna (LHC-I) and a Photosystem-I core complex from the chlorophyll-c-containing alga Pleurochloris meiringensis (Xanthophyceae). J Photochem Photobiol B 23: 87–93

    Article  Google Scholar 

  • Castenholz RW and Waterbury JB (1989) Oxygcnic photosynthetic bacteria, group 1, Cyanobacteria, Preface. In: Staley JT (ed) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1710–1727. Williams and Wilkins, Baltimore

    Google Scholar 

  • Cavalier-Smith T (1992) The number of symbiotic origins of organelles. Biosystems 28: 91–108

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1996) Oikomonas, a distinctive zooflagellate related to chrysomonads. Archiv f Protistkunde 146: 273–279

    Article  Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73: 203–266

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5: 174–182

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T and Chao FE (1996) rRNA sequence of Heterosigma carterae (Raphidophyceae) and the phylogeny of heterokont algae. Phycologia 35: 500–510

    Article  Google Scholar 

  • Chesnick JM, Kooistra WHC, Wellbrock U and Medlin IK (1997) Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbiont of the dinoflagellate Peridinium folicaceum and Peridinium balticum (Pyrrophyta). J Eukarot Micobiol 44: 314–320

    CAS  Google Scholar 

  • Deane JA, Fraunholz M, Su V, Maier UG, Martin W, Durnford DG and McFadden GI (2000) Evidence for nucleomorph to host nucleus gene transfer: Light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist 151: 239–252

    Article  PubMed  CAS  Google Scholar 

  • Denny P, Preiser P, Williamson D and Wilson I. (1998) Evidence for a single origin of the 35 kb plastid DNA in apicomplexans. Protist 149: 51–59

    Article  Google Scholar 

  • Des Marais, DJ (2000) When did photosynthesis emerge on Earth? Science 289: 1703–1705

    Google Scholar 

  • Dodge JD (1973) The Fine Structure of Algal Cells. Academic Press, London

    Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2128

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE (1998) Plastid evolution: Origins, diversity, trends. Curr Opin Genet Dev 8: 655–661

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE and Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: Complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–244

    Article  PubMed  CAS  Google Scholar 

  • Douglas S Zauber S, Fraunhotz M, Beaton M, Penny S, Deng L-T, Wu X, Reith M, Cavalier-Smith T and Maier U (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Dwarte DM and Vesk, M 1982. Freeze-fracture thylakoid ultrastructure of representative numbers of ‘chlorophyll c’ algae. Micron 13, 325–326

    Google Scholar 

  • Dwarte DM and Vesk M (1983) A freeze-fracture study of cryptomonad thylakoids. Protoplasma 117: 130–141

    Article  Google Scholar 

  • Gibbs SP (1978) The chloroplast of Euglena may have evolved from symbiotic green algae. Can J Bot 56: 2883–2889

    Article  Google Scholar 

  • Gray MT (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141: 233–357

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES and Schwartz OM (1999) Confocal microscopy of thylakoid autofluorescence in relation to origin of grana and phylogeny in the green algae. Austr J Plant Physiol 26: 695–710

    Article  CAS  Google Scholar 

  • Hallick RB, Hong, L, Drager RG, Favreau MR, Monfirt A, Orsat B, Spielmann A and Stutz E (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucl Acid Res 21: 337–3544

    Article  Google Scholar 

  • Hankamer B, Barber J and Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Ann Rev Plant Physiol Plant Mol Biol 48: 641–671

    Article  CAS  Google Scholar 

  • Hill DRA (1991) Diversity of heterotrophic cryptomonads. In: Patterson DJ and Larsen J (eds) The Biology of Free living Hetertrophic Flagellates. Systematics Association, Vol 45, pp 235–240. Clarendon Press, Oxford

    Google Scholar 

  • Jeffrey SW (1989) Chlorophyll c pigments and their distribution in chromophyte algae. In: Green JC, Leadbetter BSC and Diver WL (eds) The Chromophyte Algae: Problems and Perspectives, pp 13–36. Systematics Association, Vol 38. Clarendon Press, Oxford

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 ångstrom resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kump LR Kastin, JF and Barley ME (2001) Rise of atmospheric oxygen and the ‘upside down’ Archean mantle. Geochem Geophys Geosyst 2: 1–10

    Article  Google Scholar 

  • Larkum AWD (1998) The evolution of plastids. In: Seckbach J (ed) Enigmatic Organisms, pp 29–48. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Larkum AWD and Howe CJ (1997) Molecular aspects of light harvesting processes in algae. Adv Bot Res 27: 257–330

    Article  CAS  Google Scholar 

  • Lemieux C, Otis C and Turmel M 2000. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403: 649–652

    Google Scholar 

  • Linton E, Hittner D, Lewandowski C, Auld T and Triemer RE (1999) A molecular study of euglenoid phylogeny using small subunit rDNA. J Euk Microbiol 46: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Lockhart PJ, Howe CJ, Barbrook AC, Larkum AWD and Penny D (1999) Spectral analysis, systematic bias, and the evolution of chloroplasts. Mol Biol Evol 16: 573–576

    Article  CAS  Google Scholar 

  • Marin B, Klingberg M and Melkonian M (1998) Phylogenetic relationships among the Cryptophyta—analyses of nuclearencoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist 149: 265–276

    Article  Google Scholar 

  • McFadden GI, Gilson PR and Hofmann CJB (1997a) Division Chlorarachniophyta. Plant System Evol 11: 175–185

    Article  CAS  Google Scholar 

  • McFadden GI, Waller RE, Reith ME and Langunnasch N (1997b) Plastids in Apicomplexan parasites. Plant System Evol 11: 261–287

    Article  CAS  Google Scholar 

  • Menke W (1962) Structure and chemistry of plastids. Ann Rev Pl Physiol 13: 27–44

    Article  Google Scholar 

  • Moreira D, Le Guyader H and Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 406: 69–72

    Article  Google Scholar 

  • Patterson DJ (1989) Strameopiles: Chromophytes from a protistan perspective. In: Green JC, Leadbetter BSC and Diver WL (eds) The Chromophyte Algae: Problems and Perspectives, pp 357–379. Systematics Association, Vol 38. Clarendon Press, Oxford

    Google Scholar 

  • Perasso R, Baroin A, Qu LH, Bachellcrie JP and Adoutte A (1989) Origin of the algae. Nature 339: 142–144

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Walker DI, Jensen KR, Handley LL, Scrimgeour CM and Mcinroy SG (2001) What fraction of the organic carbon in sacoglossans is obtained from photosynthesis by kleptoplastids? An investigation using the natural abundance of stable carbon isotopes. Marine Biology 138: 537–545

    Article  CAS  Google Scholar 

  • Reith M (1995) Molecular Biology of Rhodophyte and Chromophyte plastids. Ann Rev Plant Physiol Plant Mol Biol 46: 549–575

    Article  CAS  Google Scholar 

  • Reith M and Mulholland J (1993) A high resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 465–475

    PubMed  CAS  Google Scholar 

  • Rhee K-H, Morris, EP, Kühlbrandt W and Barber J (1998) Two dimensional structure of plant Photosystem II reaction centre at 8 Ångstrom resolution. Nature 396: 522–526

    Article  Google Scholar 

  • Saunders GW, Hill DRA, Sexton JP and Andersen RA (1997) Small-subunit ribosomal RNA sequences from selected dinoflagellates—testing classical evolutionary hypotheses with molecular systematic methods. Plant Syst Evol 11: 237–259

    Article  CAS  Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science 260: 640–646

    Article  PubMed  CAS  Google Scholar 

  • Schidlowski M, Hayes JM. and Kaplan IR (1983) Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen. In: Schopf JW (ed) Earth’s Earliest Biosphere, pp 149–186. Princeton University Press, Princeton

    Google Scholar 

  • Shen Y, Buick R and Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Elwood HJ and Gunderson JH (1986) Evolutionary diversity of eukaryotic small-sub-unit rRNA genes. Proc Natl Acad Sci USA 83: 81–87

    Article  Google Scholar 

  • Song XZ and Gibbs SP 1995. Photosystem I is not segregated from Photosystem II in the green alga Tetraselmis subcordiformis—an immunogold and cytochemical study. Protoplasma 189: 267–280

    Google Scholar 

  • Staehelin LA (1986) Chloroplast structure and supramolecular organization of photosynthetic membranes. In: Staehelin LA and Arntzcn CJ (eds) Encyclopedia of Plant Physiology: Photosynthetic Membranes and Light Harvesting Systems, pp 1–84. Springer Verlag, Berlin

    Google Scholar 

  • Stewart KD and Mattox KR (1975) Comparative cytology, evolution and classification of green algae with some considerations of the origin of other organisms with chlorophyll a and b. Bot Rev 41: 104–135

    Article  Google Scholar 

  • Stiller JW, Reel DC and Johnson JC (2003) A single origin of plastids revisited: Convergent evolution of organelle genome content. J Phycol 39: 95–105

    Article  CAS  Google Scholar 

  • Stirewalt VL, Michalowski CB, Loffelhardt W, Bohnert HJ and Bryant DA (1995) Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Reporter 13: 327–332

    Article  CAS  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM and Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554–557

    Article  PubMed  CAS  Google Scholar 

  • Taylor FJR(1990) Dinoflagellata (Dinomastigota). In: Margulis L, Corliss CC, Melkonian M and Chapman DJ (eds) Handbook of Protoctista, pp 419–437. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • Thornber JP, Morishige DT, Ananden S and Peter GF (1991) Chlorophyll-carotenoid proteins of higher plant thylaloids. In: Scheer H (ed) Chlorophylls, pp 549–585. CRC Press, Boca Raton

    Google Scholar 

  • Turmel M, Otis C and Lemieux C (2002) The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol Biol Evol 19: 24–38

    Article  PubMed  CAS  Google Scholar 

  • Turner S 1997. Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol 11: 13–52

    Google Scholar 

  • Van de Peer Y, Rensing SA, Maier U-G and De Wachter R (1996) Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Nat Acad Sci USA 93: 7732–36

    Article  PubMed  Google Scholar 

  • Waller RE (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 98: 12352–12357

    Article  Google Scholar 

  • Whatley J (1993) Chloroplast ultrastructure. In: Berner T (ed) Ultrastructure of Microalgae, pp 35-204. CRC Press, Boca Raton

    Google Scholar 

  • Wilcox LW and Wedemayer GE (1984) Gymnodinium acidotum Nygaard (Pyrrhophyta), a dinoflagellate with an endosymbioic cryptomonad. J Phycol 20: 236–242

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandier O and Whellis ML (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Nat Acad Sci USA 87: 4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Inoue,K and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Green BT and Cavalier-Smith T (1999) Single gene circles in dinofiagellate chloroplast genomes. Nature 400: 155–159

    Article  PubMed  CAS  Google Scholar 

  • Zappata M and Garrido JL (1997) Occurrence of phytylated chlorophyll c in Isochrysis galbana and Isochrysis sp (Clone T-ISSO) (Prymnesiophyta). J Phycol 33: 209–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. D. Larkum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Larkum, A.W.D., Vesk, M. (2003). Algal Plastids: Their Fine Structure and Properties. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics