Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 329))

Abstract

We review current knowledge of the giant, long-lived eddies observed in the atmospheres of the Major Planets. Particular emphasis is placed on determining the dynamical processes which may be at work, and we discuss a range of both theoretical and laboratory models which have been suggested as analogues of these features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stephenson, D. J.: Interiors of the giant planets, Ann. Rev. Earth Plan. Sci, 10 (1982), 257–295.

    Article  ADS  MathSciNet  Google Scholar 

  2. Gierasch, P. J. & Conrath, B. J.: Vertical temperature gradients on Uranus: implications for layered convection, J. Geophys. Res., 92 (1987), 15019–15029.

    Article  ADS  Google Scholar 

  3. Conrath, B. J. & Gierasch, P.: Global variation of the para hydrogen fraction in Jupiter’s atmosphere and implications for dynamics on the outer planets, Icarus, 57 (1984), 184–204.

    Article  ADS  Google Scholar 

  4. Read, P. L.: Stable, baroclinic eddies on Jupiter and Saturn: a laboratory analog and some observational tests, Icarus, 65 (1986), 304–334.*

    Article  ADS  Google Scholar 

  5. Achterberg, R. K. & Ingersoll, A. P.: A normal-mode approach to Jovian atmospheric dynamics, J. Atmos. Sci., 46 (1989), 2448–2462.

    Article  ADS  Google Scholar 

  6. Ingersoll, A. P.: Atmospheric dynamics of the Outer Planets, Science, 248 (1990), 308–315.*

    Article  ADS  Google Scholar 

  7. Polvani, L. M., Wisdom, J., DeJong, E. & Ingersoll, A. P.: Simple models of Neptune’s Great Dark Spot, Science, 249 (1990), 1393–1398.

    Article  ADS  Google Scholar 

  8. Hide, R.: Origin of Jupiter’s Great red Spot, Nature, 190 (1961), 895–896.

    Article  ADS  Google Scholar 

  9. Ingersoll, A. P.: Jupiter’s Great Red Spot: a free atmospheric vortex?, Science, 312 (1973), 1346–1348.

    Article  ADS  Google Scholar 

  10. Ingersoll, A. P. & Cuong,: Numerical model of long-lived Jovian vortices, J. Atmos. Sci, 38 (1981), 2067–2076.

    Article  ADS  Google Scholar 

  11. Marcus, P. S.: Numerical simulation of Jupiter’s Great Red Spot, Nature, 331 (1988), 693–696.

    Article  ADS  Google Scholar 

  12. Sommeria, J., Myers, S. D. & Swinney, H. L.: Laboratory simulation of Jupiter’s Great Red Spot, Nature, 331 (1988), 689–693;

    Article  ADS  Google Scholar 

  13. Meyers, S. D., Sommeria, J. & Swinney, H. L.: Laboratory study of the dynamics of Jovian-type vortices, Physica, 37D (1989), 515–530.

    Google Scholar 

  14. Niino, H. & Misawa, N.: An experimental and theoretical study of barotropic instability, J. Atmos. Sci.., 41 (1984), 1992–2011.

    Article  ADS  Google Scholar 

  15. Read, P. L.: Dynamics and instabilities of Ekman and Stewarston boundary layers, in: this volume (1992).

    Google Scholar 

  16. Williams, G. P. & Yamagata, T., Geostrophic regimes, intermediate solitary vortices and Jovian eddies, J., Atmos. Sci., 41 (1984), 453–478;

    Article  ADS  Google Scholar 

  17. Williams, G. P. & Wilson, R. J., The stability and genesis of Rossby vortices, J. Atmos. Sci., 45 (1988), 207–241.

    Article  ADS  Google Scholar 

  18. Antipov et al. 1981–85 — for review see Nezlin, M. V.: Rossby solitons (experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type), Sov. Phys. Usp., 29 (1986), 807–842.

    Google Scholar 

  19. Dowling, T. E. & Ingersoll, A. P.: Potential vorticity and layer thickness variations in the flow around Jupiter’s Great Red Spot and White Oval BC, J. Atmos. Sci., 45 (1988), 1380–1396;

    Article  ADS  Google Scholar 

  20. Dowling, T. E. & Ingersoll, A. P.: Jupiter’s Great Red Spot as a shallow water system, J. Atmos. Sci., 46 (1989), 3256–3278.

    Article  ADS  Google Scholar 

  21. Read, P. L.:Soliton theory and Jupiter’s Great Red Spot, Nature, 326 (1987), 337–338.

    Article  ADS  Google Scholar 

  22. Williams, G. P.: Planetary circulations: 2. The Jovian quasi-geostrophic regime, J. Atmos. Scl, 36 (1979), 932–968; Ultra-long baroclinic waves and Jupiter’s Great Red Spot, J. Met. Soc. Japan, 57 (1979), 196–198.

    Google Scholar 

  23. Read, P. L. & Hide, R.: Long-lived eddies in the laboratory and in the atmospheres of Jupiter and Saturn, Nature, 302 (1983), 126–129;

    Article  ADS  Google Scholar 

  24. Read, P. L. & Hide, R.: An isolated baroclinic eddy as a laboratory analogue of the Great Red Spot on Jupiter?, Nature, 308 (1984), 45–49.

    Article  ADS  Google Scholar 

  25. Read, P. L.: Rotating annulus flows and baroclinic waves, in: this volume (1992).

    Google Scholar 

  26. Read, P. L.: Coherent baroclinic waves in a rotating, stably-stratified fluid and transitions to disordered flow, in: Proceedings of IMA Conference “Waves & Turbulence in Stably-Stratified Flows” (ed. King, J. C. & Mobbs, S. D.). Oxford University Press 1991. (in press).

    Google Scholar 

  27. Lewis, S. R.: Long-lived eddies in the atmosphere of Jupiter, D. Phil. Thesis, University of Oxford 1988.

    Google Scholar 

  28. Kuiper G. P.: Lunar and Planetary Laboratory studies of Jupiter — II., Sky & Telescope, 43 (1972), 75–81.

    ADS  Google Scholar 

  29. Maxworthy, T. & Redekopp, L. G.: A solitary wave theory of the Great Red Spot and other observed features in the Jovian atmosphere, Icarus, 29 (1976), 261–271.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Read, P.L. (1992). Long-Lived Eddies in the Atmospheres of the Major Planets. In: Hopfinger, E.J. (eds) Rotating Fluids in Geophysical and Industrial Applications. International Centre for Mechanical Sciences, vol 329. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2602-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2602-8_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82393-4

  • Online ISBN: 978-3-7091-2602-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics