Skip to main content

Planetary Evaporation Through Evolution

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Atmosphere escape is observed in the solar system for a variety of objects, including the sun all the way down to Pluto. It should, therefore, come as no surprise that planets orbiting other stars may exhibit similar phenomena, providing an opportunity to explore the effects of atmosphere escape across a range of conditions not encountered in the solar system. Improvements in understanding the upper atmospheres of exoplanets and the time evolution of stellar X-ray to ultraviolet fluxes for a range of stellar masses have, together, enabled careful models of planet evolution that include the impact of atmospheric escape. A clear picture is emerging where some planets are left relatively unscathed, while others may experience substantial planetary evaporation that completely determines their bulk properties and ultimate fate. This chapter introduces some of the basic concepts for understanding the role of atmospheric escape and large-scale planetary evaporation in the long-term evolution of Jupiter-mass down to super-Earth-mass exoplanets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Baraffe I, Chabrier G, Allard F, Hauschildt PH (2002) Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages. A&A 382:563–572. doi:10.1051/0004-6361:20011638, astro-ph/0111385

  • Baraffe I, Chabrier G, Barman TS, Allard F, Hauschildt PH (2003) Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. A&A 402:701–712. doi:10.1051/0004-6361:20030252, astro-ph/0302293

  • Baraffe I, Selsis F, Chabrier G et al (2004) The effect of evaporation on the evolution of close-in giant planets. A&A 419:L13–L16. doi:10.1051/0004-6361:20040129, astro-ph/0404101

  • Baraffe I, Chabrier G, Barman TS et al (2005) Hot-Jupiters and hot-Neptunes: a common origin? A&A 436:L47–L51. doi:10.1051/0004-6361:200500123, astro-ph/0505054

  • Baraffe I, Alibert Y, Chabrier G, Benz W (2006) Birth and fate of hot-Neptune planets. A&A 450:1221–1229. doi:10.1051/0004-6361:20054040, astro-ph/0512091

  • Barman TS, Hauschildt PH, Allard F (2005) Phase-dependent properties of extrasolar planet atmospheres. ApJ 632:1132–1139. doi:10.1086/444349, astro-ph/0507136

  • Burrows A, Marley M, Hubbard WB et al (1997) A nongray theory of extrasolar giant planets and brown dwarfs. ApJ 491:856–875. doi:10.1086/305002, astro-ph/9705201

  • Burrows A, Sudarsky D, Hubbard WB (2003) A theory for the radius of the transiting giant planet HD 209458b. ApJ 594:545–551. doi:10.1086/376897, astro-ph/0305277

  • Chabrier G, Baraffe I (1997) Structure and evolution of low-mass stars. A&A 327:1039–1053, astro-ph/9704118

    Google Scholar 

  • Chen H, Rogers LA (2016) Evolutionary analysis of gaseous sub-Neptune-mass planets with MESA. ApJ 831:180. doi:10.3847/0004-637X/831/2/180, 1603.06596

  • Ehrenreich D, Bourrier V, Wheatley PJ et al (2015) A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522:459–461. doi:10.1038/nature14501, 1506.07541

  • Erkaev NV, Kulikov YN, Lammer H et al (2007) Roche lobe effects on the atmospheric loss from “Hot Jupiters”. A&A 472:329–334. doi:10.1051/0004-6361:20066929, astro-ph/0612729

  • Findeisen K, Hillenbrand L (2010) Ultraviolet-selected field and pre-main-sequence stars toward taurus and upper scorpius. AJ 139:1338–1359. doi:10.1088/0004-6256/139/4/1338, 1001.3684

  • Forget F, Leconte J (2014) Possible climates on terrestrial exoplanets. Philos Trans R Soc Lond A 372:20130,084–20130,084. doi:10.1098/rsta.2013.0084, 1311.3101

  • Fortney JJ, Nettelmann N (2010) The interior structure, composition, and evolution of giant planets. Space Sci Rev 152:423–447. doi:10.1007/s11214-009-9582-x, 0912.0533

  • France K, Froning CS, Linsky JL et al (2013) The ultraviolet radiation environment around M dwarf exoplanet host stars. ApJ 763:149. doi:10.1088/0004-637X/763/2/149, 1212.4833

  • Gondoin P (2012) Dynamo regime transition among Sun-like stars in M 34. A time evolution model of X-ray activity on the main sequence. A&A 546:A117. doi:10.1051/0004-6361/201219823

  • Gondoin P, Gandolfi D, Fridlund M et al (2012) From CoRoT 102899501 to the Sun. A time evolution model of chromospheric activity on the main sequence. A&A 548:A15. doi:10.1051/0004-6361/201219101, 1210.3221

  • Güdel M (2004) X-ray astronomy of stellar coronae. A&A Rev 12:71–237. doi:10.1007/s00159-004-0023-2, astro-ph/0406661

  • Guillot T, Burrows A, Hubbard WB, Lunine JI, Saumon D (1996) Giant planets at small orbital distances. ApJ 459:L35. doi:10.1086/309935, astro-ph/9511109

  • Hansen BMS, Barman T (2007) Two classes of hot Jupiters. ApJ 671:861–871. doi:10.1086/523038, 0706.3052

  • Howe AR, Burrows A (2015) Evolutionary models of super-earths and mini-Neptunes incorporating cooling and mass loss. ApJ 808:150. doi:10.1088/0004-637X/808/2/150, 1505.02784

  • Hubbard WB, Burrows A, Lunine JI (2002) Theory of giant planets. ARA&A 40:103–136. doi:10.1146/annurev.astro.40.060401.093917

    Article  ADS  Google Scholar 

  • Hubbard WB, Hattori MF, Burrows A, Hubeny I (2007a) A mass function constraint on extrasolar giant planet evaporation rates. ApJ 658:L59–L62. doi:10.1086/513422, astro-ph/0702276

  • Hubbard WB, Hattori MF, Burrows A, Hubeny I, Sudarsky D (2007b) Effects of mass loss for highly-irradiated giant planets. Icarus 187:358–364. doi:10.1016/j.icarus.2006.10.019

    Article  ADS  Google Scholar 

  • Hunten DM (1982) Thermal and nonthermal escape mechanisms for terrestrial bodies. Planet Space Sci 30:773–783. doi:10.1016/0032-0633(82)90110-6

    Article  ADS  Google Scholar 

  • Inamdar NK, Schlichting HE (2016) Stealing the gas: giant impacts and the large diversity in exoplanet densities. ApJ 817:L13. doi:10.3847/2041-8205/817/2/L13, 1510.02090

  • Jin S, Mordasini C, Parmentier V et al (2014) Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation. ApJ 795:65. doi:10.1088/0004-637X/795/1/65, 1409.2879

  • Koskinen TT, Harris MJ, Yelle RV, Lavvas P (2013a) The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical-dynamical model of the thermosphere. Icarus 226:1678–1694. doi:10.1016/j.icarus.2012.09.027, 1210.1536

  • Koskinen TT, Yelle RV, Harris MJ, Lavvas P (2013b) The escape of heavy atoms from the ionosphere of HD209458b. II. Interpretation of the observations. Icarus 226:1695–1708. doi:10.1016/j.icarus.2012.09.026, 1210.1543

  • Koskinen TT, Lavvas P, Harris MJ, Yelle RV (2014a) Thermal escape from extrasolar giant planets. Philos Trans R Soc Lond A 372:20130,089–20130,089. doi:10.1098/rsta.2013.0089, 1312.1947

  • Koskinen TT, Yelle RV, Lavvas P, Y-K Cho J (2014b) Electrodynamics on extrasolar giant planets. ApJ 796:16. doi:10.1088/0004-637X/796/1/16, 1409.7027

  • Kulow JR, France K, Linsky J, Loyd ROP (2014) Lyα Transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. ApJ 786:132. doi:10.1088/0004-637X/786/2/132, 1403.6834

  • Lammer H, Selsis F, Ribas I et al (2003) Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. ApJ 598:L121–L124. doi:10.1086/380815

    Article  ADS  Google Scholar 

  • Lammer H, Erkaev NV, Fossati L et al (2016) Identifying the ‘true’ radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. MNRAS 461:L62–L66. doi:10.1093/mnrasl/slw095, 1605.03595

  • Lecavelier Des Etangs A (2007) A diagram to determine the evaporation status of extrasolar planets. A&A 461:1185–1193. doi:10.1051/0004-6361:20065014, astro-ph/0609744

  • Lecavelier des Etangs A, Vidal-Madjar A, McConnell JC, Hébrard G (2004) Atmospheric escape from hot Jupiters. A&A 418:L1–L4. doi:10.1051/0004-6361:20040106, astro-ph/0403369

  • Linsky JL, France K, Ayres T (2013) Computing intrinsic LYα fluxes of F5 V to M5 V stars. ApJ 766:69. doi:10.1088/0004-637X/766/2/69, 1301.5711

  • Linsky JL, Fontenla J, France K (2014) The intrinsic extreme ultraviolet fluxes of F5 V TO M5 V stars. ApJ 780:61. doi:10.1088/0004-637X/780/1/61, 1310.1360

  • Lissauer JJ, Jontof-Hutter D, Rowe JF et al (2013) All six planets known to orbit kepler-11 have low densities. ApJ 770:131. doi:10.1088/0004-637X/770/2/131, 1303.0227

  • Lopez ED (2016) Born dry in the photo-evaporation desert: Kepler’s ultra-short-period planets formed water-poor. ArXiv e-prints 1610.01170

    Google Scholar 

  • Lopez ED, Fortney JJ (2013) The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. ApJ 776:2. doi:10.1088/0004-637X/776/1/2, 1305.0269

  • Lopez ED, Fortney JJ (2014) Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. ApJ 792:1. doi:10.1088/0004-637X/792/1/1, 1311.0329

  • Lopez ED, Fortney JJ, Miller N (2012) How thermal evolution and mass-loss sculpt populations of super-earths and sub-Neptunes: application to the Kepler-11 system and beyond. ApJ 761:59. doi:10.1088/0004-637X/761/1/59, 1205.0010

  • Murray-Clay RA, Chiang EI, Murray N (2009) Atmospheric escape from hot Jupiters. ApJ 693:23–42. doi:10.1088/0004-637X/693/1/23, 0811.0006

  • Noyes RW, Hartmann LW, Baliunas SL, Duncan DK, Vaughan AH (1984) Rotation, convection, and magnetic activity in lower main-sequence stars. ApJ 279:763–777. doi:10.1086/161945

    Article  ADS  Google Scholar 

  • Núñez A, Agüeros MA (2016) The X-ray luminosity function of M37 and the evolution of coronal activity in low-mass stars. ApJ 830:44. doi:10.3847/0004-637X/830/1/44, 1607.05789

  • Owen JE, Jackson AP (2012) Planetary evaporation by UV – X-ray radiation: basic hydrodynamics. MNRAS 425:2931–2947. doi:10.1111/j.1365-2966.2012.21481.x, 1206.2367

  • Parke Loyd RO, Koskinen TT, France K, Schneider C, Redfield S (2017) Ultraviolet C II and Si III transit spectroscopy and modeling of the evaporating atmosphere of GJ436b. ApJ 834:L17. doi:10.3847/2041-8213/834/2/L17, 1612.08962

  • Poppenhaeger K, Czesla S, Schröter S et al (2012) The high-energy environment in the super-earth system CoRoT-7. A&A 541:A26. doi:10.1051/0004-6361/201118507, 1203.4080

  • Reiners A, Mohanty S (2012) Radius-dependent angular momentum evolution in low-mass stars. I. ApJ 746:43. doi:10.1088/0004-637X/746/1/43, 1111.7071

  • Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). ApJ 622:680–694. doi:10.1086/427977, astro-ph/0412253

  • Ribas I, Porto de Mello GF, Ferreira LD et al (2010) Evolution of the solar activity over time and effects on planetary atmospheres. II. κ 1 Ceti, an analog of the sun when life arose on earth. ApJ 714:384-395. doi:10.1088/0004-637X/714/1/384, 1003.3561

  • Seiff A, Kirk DB, Knight TCD et al (1998) Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. J Geophys Res 103:22,857–22,890. doi:10.1029/98JE01766

    Article  ADS  Google Scholar 

  • Shkolnik EL, Barman TS (2014) HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars. AJ 148:64. doi:10.1088/0004-6256/148/4/64, 1407.1344

  • Shkolnik EL, Rolph KA, Peacock S, Barman TS (2014) Predicting Lyα and Mg II fluxes from K and M dwarfs using galaxy evolution explorer ultraviolet photometry. ApJ 796:L20. doi:10.1088/2041-8205/796/1/L20, 1410.4263

  • Stelzer B, Marino A, Micela G, López-Santiago J, Liefke C (2013) The UV and X-ray activity of the M dwarfs within 10 pc of the Sun. MNRAS 431:2063–2079. doi:10.1093/mnras/stt225, 1302.1061

  • Tian F (2015) Atmospheric escape from solar system terrestrial planets and exoplanets. Annu Rev Earth Planet Sci 43:459–476. doi:10.1146/annurev-earth-060313-054834

    Article  ADS  Google Scholar 

  • Tian F, Ida S (2015) Water contents of Earth-mass planets around M dwarfs. Nat Geosci 8:177–180. doi:10.1038/ngeo2372

    Article  ADS  Google Scholar 

  • Tian F, Toon OB, Pavlov AA, De Sterck H (2005) Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. ApJ 621:1049–1060. doi:10.1086/427204

    Article  ADS  Google Scholar 

  • Tian F, Chassefière E, Leblanc F, Brain D (2013) Atmospheric escape and climate evolution of terrestrial planets, pp 567–581. doi:10.2458/azu_uapress_9780816530595-ch23

  • Valencia D, O’Connell RJ, Sasselov D (2006) Internal structure of massive terrestrial planets. Icarus 181:545–554. doi:10.1016/j.icarus.2005.11.021, astro-ph/0511150

  • Vidal-Madjar A, Lecavelier des Etangs A, Désert JM et al (2003) An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422:143–146. doi:10.1038/nature01448

  • Yelle RV (2004) Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170:167–179. doi:10.1016/j.icarus.2004.02.008

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the National Science Foundation (AAG-1614492) and NASA (14-HW14_2-0113, 16-XRP16_2-0112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis S. Barman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Barman, T. (2017). Planetary Evaporation Through Evolution. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics