Skip to main content

Sensorisch afferente Stimulation

  • Chapter
  • First Online:
Funktionelle Elektrostimulation in der Neurorehabilitation
  • 1676 Accesses

Zusammenfassung

Zunehmend wird die Bedeutung der Neuromodulation mit nichtinvasiver Hirnstimulation (NIBS) zur Outcome-Verbesserung in der Neurorehabilitation klar. Sensorisch-afferente Elektrostimulation (SAES) als ein Verfahren der NIBS induziert im sensorimotorischen Kortex Neuromodulation auf synaptischer Ebene mit Induktion von Kurzzeit-, Langzeit- und struktureller Plastizität. Es kommen gepulste elektrische Stimuli zur Anwendung, wodurch Aktionspotenziale in afferenten Nervenfasern ausgelöst werden, die zu einem erhöhten sensorisch-afferenten Input des Gehirns führen. Diskutiert werden die der SAES zugrunde liegenden neurobiologischen Mechanismen, biophysikalische Mechanismen der Auslösung von Aktionspotenzialen in afferenten Nervenfasern und technische Stimulationsparameter. Hinsichtlich der Evidenz für SAES bei der sensorimotorischen Parese und beim Neglekt wird die Literatur reviewt, evidenzbasierte Empfehlungen werden gegeben und Möglichkeiten zur Verbesserung der Therapieeffekte diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Aimonetti JM, Nielsen JB (2001) Changes in intracortical excitability induced by stimulation of wrist afferents in man. J Physiol 534:891–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodegard A, Geyer S, Herath P, Grefkes C, Zilles K, Roland PE (2003) Somatosensory areas engaged during discrimination of steady pressure, spring strength, and kinesthesia. Hum Brain Mapp 20:103–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Burne JA, Lippold OC (1996) Reflex inhibition following electrical stimulation over muscle tendons in man. Brain 119(Pt 4):1107–1114

    Article  PubMed  Google Scholar 

  • Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470–481

    Article  PubMed  Google Scholar 

  • Chipchase LS, Schabrun SM, Hodges PW (2011) Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol 122:456–463

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Kim DJ, Yang YA (2019) The effect of a complex intervention program for unilateral neglect in patients with acute-phase stroke: a randomized controlled trial. Osong Public Health Res Perspect 10:265–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Christova M, Rafolt D, Golaszewski S, Gallasch E. (2011) Outlasting corticomotor excitability changes induced by 25 Hz whole-hand mechanical stimulation. Eur J Appl Physiol. 111:3051–3059.

    Google Scholar 

  • Christova M, Golaszewski S, Ischebeck A, Kunz A, Rafolt D, Nardone R, Gallasch E (2013) Mechanical flutter stimulation induces a lasting response in the sensorimotor cortex as revealed with BOLD fMRI. Hum Brain Mapp 34:2767–2774

    Article  PubMed  Google Scholar 

  • Christova M, Rafolt D, Golaszewski S, Nardone R, Gallasch E (2014) Electrical stimulation during skill training with a therapeutic glove enhances the induction of cortical plasticity and has a positive effect on motor memory. Behav Brain Res 270:171–178

    Article  PubMed  Google Scholar 

  • Conforto AB, Ferreiro KN, Tomasi C, Dos Santos RL, Moreira VL, Marie SK, Baltieri SC, Scaff M, Cohen LG (2010) Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil Neural Repair 24:263–272

    Article  PubMed  Google Scholar 

  • Dimitrijevic MM, Soroker N (1994) Mesh-glove. 2. Modulation of residual upper limb motor control after stroke with whole-hand electric stimulation. Scand J Rehabil Med 26:187–190

    CAS  PubMed  Google Scholar 

  • Dimitrijevic MM, Stokic DS, Wawro AW, Wun CC (1996) Modification of motor control of wrist extension by mesh-glove electrical afferent stimulation in stroke patients. Arch Phys Med Rehabil 77:252–258

    Article  CAS  PubMed  Google Scholar 

  • Donoghue JP (1995) Plasticity of adult sensorimotor representations. Curr Opin Neurobiol 5:749–754

    Article  CAS  PubMed  Google Scholar 

  • Fleming MK, Sorinola IO, Roberts-Lewis SF, Wolfe CD, Wellwood I, Newham DJ (2014) The effect of combined somatosensory stimulation and task-specific training on upper limb function in chronic stroke: a double-blind randomized controlled trial. Neurorehabil Neural Repair 29:143–152

    Google Scholar 

  • Gallasch E, Christova M, Kunz A, Rafolt D, Golaszewski S (2015) Modulation of sensorimotor cortex by repetitive peripheral magnetic stimulation. Front Hum Neurosci 9:407

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandevia SC (1996) Kinesthesia: roles for afferent signals and motor commands. In: Handbook of physiology. American Physiological Society, New York, S 128–172

    Google Scholar 

  • Ghirardi M, Montarolo PG, Kandel ER (1995) A novel intermediate stage in the transition between short- and long-term facilitation in the sensory to motor neuron synapse of aplysia. Neuron. 14(2):413–420.

    Google Scholar 

  • Golaszewski S (2015) Whole hand afferent electrical stimulation to improve motor hand function in subacute poststroke patients. EJN

    Google Scholar 

  • Golaszewski S, Kremser C, Wagner M, Felber S, Aichner F, Dimitrijevic MM (1999) Functional magnetic resonance imaging of the human motor cortex before and after whole-hand afferent electrical stimulation. Scand J Rehabil Med. 31(3):165–173.

    Google Scholar 

  • Golaszewski SM, Siedentopf CM, Koppelstaetter F, Rhomberg P, Guendisch GM, Schlager A, Gallasch E, Eisner W, Felber SR, Mottaghy FM (2004) Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology 62:2262–2269

    Article  CAS  PubMed  Google Scholar 

  • Golaszewski SM, Bergmann J, Christova M, Nardone R, Kronbichler M, Rafolt D, Gallasch E, Staffen W, Ladurner G, Beisteiner R (2010) Increased motor cortical excitability after whole-hand electrical stimulation: a TMS study. Clin Neurophysiol 121:248–254

    Article  PubMed  Google Scholar 

  • Golaszewski SM, Bergmann J, Christova M, Kunz AB, Kronbichler M, Rafolt D, Gallasch E, Staffen W, Trinka E, Nardone R (2012) Modulation of motor cortex excitability by different levels of whole-hand afferent electrical stimulation. Clin Neurophysiol 123:193–199

    Article  PubMed  Google Scholar 

  • Goldman H (1966) Improvement of double simultaneous stimulation perception in hemiplegic patients. Arch Phys Med Rehabil 47:681–687

    CAS  PubMed  Google Scholar 

  • Jacobs KM, Donoghue JP (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251:944–947

    Article  CAS  Google Scholar 

  • Jami L (1992) Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev 72:623–666

    Article  CAS  PubMed  Google Scholar 

  • Keller A, Pavlides C, Asanuma H (1990) Long-term potentiation in the cat somatosensory cortex. Neuroreport. 1(1):49–52.

    Google Scholar 

  • Kerkhoff G (2003) Modulation and rehabilitation of spatial neglect by sensory stimulation. Prog Brain Res 142:257–271

    Article  PubMed  Google Scholar 

  • Kerkhoff G, Heldmann B, Struppler A, Havel P, Jahn T (2001) The effects of magnetic stimulation and attentional cueing on tactile extinction. Cortex 37:719–723

    Article  CAS  PubMed  Google Scholar 

  • Lafleur J, Zytnicki D, Horcholle-Bossavit G, Jami L (1992) Depolarization of Ib afferent axons in the cat spinal cord during homonymous muscle contraction. J Physiol 445:345–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin MF, Hui-Chan CW (1992) Relief of hemiparetic spasticity by TENS is associated with improvement in reflex and voluntary motor functions. Electroencephalogr Clin Neurophysiol 85:131–142

    Article  CAS  PubMed  Google Scholar 

  • Liepert J, Hamzei F, Weiller C (2000) Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve 23:1761–1763

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807–810

    Article  CAS  PubMed  Google Scholar 

  • McDonnell MN, Hillier SL, Miles TS, Thompson PD, Ridding MC (2007) Influence of combined afferent stimulation and task-specific training following stroke: a pilot randomized controlled trial. Neurorehabil Neural Repair. 21(5):435–443.

    Google Scholar 

  • Mcintyre AK, Proske U, Rawson JA (1984) Cortical projection of afferent information from tendon organs in the cat. J Physiol 354:395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peurala SH, Pitkanen K, Sivenius J, Tarkka IM (2002) Cutaneous electrical stimulation may enhance sensorimotor recovery in chronic stroke. Clin Rehabil 16:709–716

    Article  CAS  PubMed  Google Scholar 

  • Porter R, Lemon R (1993) Corticospinal function and voluntary movement. Clarendon Press, Oxford

    Google Scholar 

  • Prochazka A (1996) Proprioceptive feedback and movement regulation. American Physiological Society, New York

    Google Scholar 

  • Ridding MC, Mckay DR, Thompson PD, Miles TS (2001) Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol 112:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (1997) Parietal cortex: from sight to action. Curr Opin Neurobiol 7:562–567

    Article  CAS  PubMed  Google Scholar 

  • Rossmüller J (2007) Mein Rollstuhl ist ein Einrad. Neurologische Rehabilitation, 06 Dez–07 Jän, S 2

    Google Scholar 

  • Rothwell J (1994) Control of human voluntary movement. Chapman & Hall, London

    Book  Google Scholar 

  • Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio G, Villringer K, Kurth R, Villringer A (2001) Somatotopic organization of human secondary somatosensory cortex. Cereb Cortex 11:463–473

    Article  CAS  PubMed  Google Scholar 

  • Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The TINS Lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357

    Article  CAS  PubMed  Google Scholar 

  • Sharififar S, Shuster JJ, Bishop MD (2018) Adding electrical stimulation during standard rehabilitation after stroke to improve motor function. A systematic review and meta-analysis. Ann Phys Rehabil Med Sep;61(5):339–344.

    Google Scholar 

  • Wiesendanger M, Miles TS (1982) Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev 62:1234–1270

    Article  CAS  PubMed  Google Scholar 

  • Yozbatiran N, Donmez B, Kayak N, Bozan O (2006) Electrical stimulation of wrist and fingers for sensory and functional recovery in acute hemiplegia. Clin Rehabil 20:4–11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golaszewski, S.M. (2021). Sensorisch afferente Stimulation. In: Schick, T. (eds) Funktionelle Elektrostimulation in der Neurorehabilitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61705-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61705-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61704-5

  • Online ISBN: 978-3-662-61705-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics