Skip to main content

Die Bedeutung von Matrixproteinen für die Einnistung und das Wachstum von Tumorzellen

  • Chapter
  • First Online:
Knochenmetastasen
  • 1930 Accesses

Zusammenfassung

Die Zellen befinden sich im Körper eingebettet in der extrazellulären Matrix, die ihnen erlaubt, zu interagieren. Experimentell wurde bewiesen, dass die Matrix mehrere Funktionen bei Tumorzelleinnistung und Tumorwachstum ausübt. Sie wirkt u. a. durch ihre Steifheit krebsfördernd, stimuliert die Proliferation der Krebszellen und moduliert die Angiogenese. Ein Beispiel zur Rolle der Matrix sind klinische Untersuchungen, bei denen die Fibronektin-Färbungsintensität im primären Tumorgewebe mit prognostischen Faktoren in Zusammenhang gebracht wurde. Sowohl bei Brustkrebspatientinnen als auch bei Prostatakrebspatienten war eine hohe Färbungsintensität mit einer deutlich kürzeren Überlebensdauer assoziiert. Bei Patienten mit Prostatakrebs war die Fibronektin-Färbungsintensität sogar ein besserer Prädiktor für das Gesamtüberleben als die Tumorgröße, der Lymphknotenstatus und der Gleason-Score. Erkenntnisse aus dem Feld der Matrixforschung können somit neue Impulse für die Onkologie geben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Astrof S, Crowley D, George EL et al (2004) Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol Cell Biol 24(19): 8662–8670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barcellos-Hoff MH, Ravani SA (2000) Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60(5): 1254–1260

    CAS  PubMed  Google Scholar 

  • Benoy IH, Elst H, Philips M et al (2006) Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br J Cancer 94(5): 672–680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bentmann A, Kawelke N, Moss D et al (2010) Circulating fibronectin affects bone matrix, whereas osteoblast fibronectin modulates osteoblast function. J Bone Miner Res 25(4): 706–715

    CAS  PubMed  Google Scholar 

  • Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27(1): 41–55

    Article  PubMed  Google Scholar 

  • Dallas SL, Sivakumar P, Jones CJ et al (2005) Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. J Biol Chem 280(19): 18871–18880

    Article  CAS  PubMed  Google Scholar 

  • Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97(11): 1093–1107

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6): 1163–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goerges AL, Nugent MA (2004) pH regulates vascular endothelial growth factor binding to fibronectin: a mechanism for control of extracellular matrix storage and release. J Biol Chem 279(3): 2307–2315

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069): 820–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawelke N, Bentmann A, Hackl N et al (2008) Isoform of fibronectin mediates bone loss in patients with primary biliary cirrhosis by suppressing bone formation. J Bone Miner Res 23(8): 1278–1286

    Article  CAS  PubMed  Google Scholar 

  • Kawelke N, Vasel M, Sens C et al (2011) Fibronectin protects from excessive liver fibrosis by modulating the availability of and responsiveness of stellate cells to active TGF-beta. PLoS One 6(11): e28181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kocaturk B, Van den Berg YW, Tieken C et al (2013) Alternatively spliced tissue factor promotes breast cancer growth in a beta1 integrin-dependent manner. Proc Natl Acad Sci USA 110(28): 11517–11522

    Article  PubMed Central  PubMed  Google Scholar 

  • Leight JL, Wozniak MA, Chen S et al (2012) Matrix rigidity regulates a switch between TGF-beta1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell 23(5): 781–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5): 891–906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4): 395–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manabe R, Ohe N, Sekiguchi K (1999) Alternatively spliced EDA segment regulates fibronectin-dependent cell cycle progression and mitogenic signal transduction. J Biol Chem 274(9): 5919–5924

    Article  CAS  PubMed  Google Scholar 

  • Morgan TM, Lange PH, Porter MP et al (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15(2): 677–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I et al (2011) Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell 19(5): 640–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oskarsson T, Acharyya S, Zhang XH et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7): 867–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robey PG, Boskey AL (1996) The biochemistry of bone. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, CA, pp 95–183

    Google Scholar 

  • Sakai T, Johnson KJ, Murozono M et al (2001) Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nat Med 7(3): 324–330

    Article  CAS  PubMed  Google Scholar 

  • Udagawa T, Fernandez A, Achilles EG et al (2002) Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 1611): 1361–1370

    Google Scholar 

  • von Au A, Vasel M, Kraft S et al (2013) Circulating fibronectin controls tumor growth. Neoplasia 15(8): 925–938

    PubMed Central  PubMed  Google Scholar 

  • Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6): 411–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wijelath ES, Rahman S, Namekata M et al (2006) Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res 99(8): 853–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin JJ, Selander K, Chirgwin JM et al (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103(2): 197–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inaam A. Nakchbandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakchbandi, I. (2014). Die Bedeutung von Matrixproteinen für die Einnistung und das Wachstum von Tumorzellen. In: Stenzl, A., Fehm, T., Hofbauer, L., Jakob, F. (eds) Knochenmetastasen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43471-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43471-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43470-3

  • Online ISBN: 978-3-662-43471-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics