Skip to main content

Interaktion von disseminierten Tumorzellen mit Stamm- und Immunzellen im prämetastatischen Knochenmarkmilieu

  • Chapter
  • First Online:
Knochenmetastasen
  • 1904 Accesses

Zusammenfassung

Hämatopoetische Stammzellen (HSC) sind im Knochenmark in einem hoch spezialisierten Mikromilieu, der sog. Nische, lokalisiert. Diese setzt sich aus zellulären Bestandteilen, wie z. B. mesenchymalen Stromazellen (MSC), Osteoblasten und Endothelzellen, sowie extrazellulärer Matrix und löslichen Faktoren zusammen. Auch für disseminierte Tumorzellen stellt die Nische eine attraktive Umgebung dar, um sich therapeutischen Ansätzen zu entziehen, zu proliferieren oder auch in einen Ruhezustand zu verfallen. Für diese Prozesse sind molekulare Interaktionen zwischen Tumorzellen und den Stamm- und Vorläuferzellen im Knochenmark von Bedeutung, die u. a. durch Integrine oder Chemokine wie stromal-derived factor-1 (SDF-1) vermittelt werden. Auch verschiedene Immunzellen können eine den Tumor unterstützenden Wirkung haben. Die Konkurrenz zwischen Tumorzellen und HSC in der Nische resultiert teilweise in der Verdrängung unreifer Vorläuferzellen in das periphere Blut der Patienten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Basu S, Ray NT, Atkinson SJ, Broxmeyer HE (2007) Protein phosphatase 2A plays an important role in stromal cell-derived factor-1/CXC chemokine ligand 12-mediated migration and adhesion of CD34+ cells. J Immunol 179: 3075–3085

    Article  CAS  PubMed  Google Scholar 

  • Bewick MA, Lafrenie RM (2006) Adhesion dependent signalling in the tumour microenvironment: the future of drug targeting. Curr Pharm Des 12: 2833–2848

    Article  CAS  PubMed  Google Scholar 

  • Broxmeyer HE (2008) Chemokines in hematopoiesis. Curr Opin Hematol 15: 49–58

    Article  CAS  PubMed  Google Scholar 

  • Broxmeyer HE, Orschell CM, Clapp DW et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201: 1307–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chabanon A, Desterke C, Rodenburger E et al (2008) A cross-talk between stromal cell-derived factor-1 and transforming growth factor-beta controls the quiescence/cycling switch of CD34(+) progenitors through FoxO3 and mammalian target of rapamycin. Stem Cells 26: 3150–3161

    Article  CAS  PubMed  Google Scholar 

  • Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12: 6243s–6249s

    Article  PubMed  Google Scholar 

  • Decker T, Fischer G, Bucke W et al (2012) Increased number of regulatory T cells (T-regs) in the peripheral blood of patients with Her-2/neu-positive early breast cancer. J Cancer Res Clin Oncol 138: 1945–1950

    Article  CAS  PubMed  Google Scholar 

  • Deguchi K, Yagi H, Inada M et al (1999) Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow. Biochem Biophys Res Commun 255: 352–359

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 208: 421–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujisaki J, Wu J, Carlson AL et al (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474: 216–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuda S, Broxmeyer HE, Pelus LM (2005) Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood 105: 3117–3126

    Article  CAS  PubMed  Google Scholar 

  • Havens AM, Jung Y, Sun YX et al (2006) The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis. BMC Cancer 6: 195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Havens AM, Pedersen EA, Shiozawa Y et al (2008) An in vivo mouse model for human prostate cancer metastasis. Neoplasia 10: 371–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin DK, Shido K, Kopp HG et al (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12: 557–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li XF, O’Donoghue JA (2008) Hypoxia in microscopic tumors. Cancer Lett 264: 172–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5: 21–28

    Article  CAS  PubMed  Google Scholar 

  • Lord BI, Testa NG, Hendry JH (1975) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46: 65–72

    CAS  PubMed  Google Scholar 

  • Melani C, Sangaletti S, Barazzetta FM et al (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67: 11438–11446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Movahedi K, Guilliams M, Van den Bossche J et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111: 4233–4244

    Article  CAS  PubMed  Google Scholar 

  • Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97: 2293–2299

    Article  CAS  PubMed  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 8: 98–101

    Google Scholar 

  • Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4: 448–456

    Article  CAS  PubMed  Google Scholar 

  • Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3: 687–694

    Article  CAS  PubMed  Google Scholar 

  • Pienta KJ, McGregor N, Axelrod R, Axelrod DE (2008) Ecological therapy for cancer: defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments. Transl Oncol 1: 158–164

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramasamy R, Lam EW, Soeiro I et al (2007) Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 21: 304–310

    Article  CAS  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4: 7–25

    CAS  PubMed  Google Scholar 

  • Shiozawa Y, Havens AM, Jung Y et al (2008) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105: 370–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiozawa Y, Pedersen EA, Havens AM et al (2011a) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121: 1298–1312

    Article  CAS  Google Scholar 

  • Shiozawa Y, Pienta KJ, Taichman RS (2011b) Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clin Cancer Res 17: 5553–5558

    Article  CAS  Google Scholar 

  • Simsek T, Kocabas F, Zheng J et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7: 380–390

    Article  CAS  PubMed  Google Scholar 

  • Sun YX, Pedersen EA, Shiozawa Y et al (2008) CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clin Exp Metastasis 25: 765–776

    Article  CAS  PubMed  Google Scholar 

  • Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105: 2631–2639

    Article  CAS  PubMed  Google Scholar 

  • Taichman RS, Emerson SG (1998) The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16: 7–15

    Article  CAS  PubMed  Google Scholar 

  • Takubo K, Goda N, Yamada W et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7: 391–402

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang J, Sun Y et al (2005) Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 17: 1578–1592

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang J, Dai J et al (2007) A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res 67: 149–159

    Article  CAS  PubMed  Google Scholar 

  • Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5: 591–602

    Article  CAS  PubMed  Google Scholar 

  • Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11: 411–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6: 93–106

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Edwards CM, Mundy GR (2010) Gr-1+CD11b+ myeloid-derived suppressor cells: formidable partners in tumor metastasis. J Bone Miner Res 25: 1701–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XF, Wang JF, Matczak E et al (2001) Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 97: 3342–3348

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Wehner R, Bornhauser M et al (2010) Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 19: 607–614

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manja Wobus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wobus, M., Bornhäuser, M. (2014). Interaktion von disseminierten Tumorzellen mit Stamm- und Immunzellen im prämetastatischen Knochenmarkmilieu. In: Stenzl, A., Fehm, T., Hofbauer, L., Jakob, F. (eds) Knochenmetastasen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43471-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43471-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43470-3

  • Online ISBN: 978-3-662-43471-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics