Skip to main content

The Ecology of Avian Acoustical Signals

  • Conference paper
Ecology of Sensing

Abstract

The acoustical communication of birds is reviewed with an emphasis on ecological aspects. Sound propagation in the environment has specific consequences for signal transmission. The intensively studied ground effect and other influences offer good prediction for signal design in the frequency domain. The particular transmission properties observed in bird sounds are, in fact, at least as much governed by their temporal structure. Some principles of signal design are illustrated using woodpeckers as examples. They show how intimate and longdistance signals are structured, and how they relate to behavior and habitat use. The analysis of a set of species of antbirds of a rainforest community demonstrates that the temporal structure of the song is most important for explaining the transmission properties at singing post height. A review of the hypotheses proposed to explain the dawn chorus serves to point out the role of the receiver’s demand for information played in the shaping of bird song. It is suggested that researchers should pay more attention to acoustical signals other than song, because these may offer better models for testing specific hypotheses about functional aspects. More and more evidence from different fields of research indicates that temporal characteristics of vocalizations need more attention. Finally, viewing acoustical communication more from the receiver’s end may foster our understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Attenborough K (1985) Acoustical impedance models for outdoor ground surfaces. J Sound Vibr 99: 521–544

    Google Scholar 

  • Aylor D (1971) Noise reduction by vegetation and ground. J Acoust Soc Am 51: 197–205

    Google Scholar 

  • Ball GF, Gentner TQ (1998) They’re playing our song: gene expression and birdsong perception. Neuron 21: 271–274

    PubMed  CAS  Google Scholar 

  • Birkhead T, Moller AP (1992) Sperm Competition in Birds. Academic Press, London, 282 p

    Google Scholar 

  • Bowman RI (1979) Adaptive morphology of song dialects. J Ornithol 120: 353–380

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of Animal Communication. Sinauer, Sunderland MS

    Google Scholar 

  • Brenowitz EA (1982) The active space of red-winged blackbird song. J Comp Physiol A 147: 511–522

    Google Scholar 

  • Brenowitz EA (1986) Environmental influences on acoustic and electric animal communication. Brain Behav Evol 28: 32–42

    PubMed  CAS  Google Scholar 

  • Brown CH (1982) Ventriloquial and locatable vocalizations in birds. Z Tierpsychol 59: 338–350

    Google Scholar 

  • Catchpole CK, Slater PJB (1995) Bird Song: Biological Themes and Variations. Cambridge University Press, Cambridge, 248 p

    Google Scholar 

  • Chappuis C (1971) Un exemple de l’influence du milieu sur les émissions vocales des oiseaux: L’évolution des chants en forêt équatoriale. Terre et Vie 2: 183–202

    Google Scholar 

  • Cheng MF, Peng JP, Johnson P (1998) Hypothalamic neurons preferentially respond to female nest coo stimulation: demonstration of direct acoustic stimulation of luteinizing hormone release. J Neurosci 18: 5477–5489

    PubMed  CAS  Google Scholar 

  • Chessell CI (1977) Propagation of noise along a finite impedance boundary. J Acoust Soc Am 62: 825–834

    Google Scholar 

  • Coles RB, Lewis DB, Hill KG, Hutchings ME, Gower DM (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). II. Cochlear physiology. J Exp Biol 86: 153–170

    Google Scholar 

  • Dabelsteen T, Larsen ON, Pedersen SB (1993) Habitat-induced degradationof sound signals: Quantifying the effects of communication sounds and bird location on blur ratio, excess attenuation, and signal-to-noise ratio in blackbird song. J Acoust Soc Am 93: 2206–2220

    Google Scholar 

  • Daigle GA, Embleton TFW, Piercy JE (1986) Propagation of sound in the presence of gradients and turbulence near the ground. J Acoust Soc Am 79: 613–627

    Google Scholar 

  • Dooling R (1982) Auditory perception in birds. In: Kroodsma DE, Miller EH (eds) Acoustic Communication in Birds, Vol 1. Academic Press, New York, pp 95–130

    Google Scholar 

  • Dooling RJ, Brown SD, Klump GM, Okanoya K (1992) Auditory perception of conspecific and heterospecific vocalizations in birds: evidence for special processes. J Comp Psychol 106: 20–28

    PubMed  CAS  Google Scholar 

  • Embleton TFW (1963) Sound propagation in homogeneous deciduous and evergreen woods. J Acoust Soc Am 35: 1119–1125

    Google Scholar 

  • Embleton TFW (1996) Tutorial on sound propagation outdoors. J Acoust Soc Am 100: 31–48

    Google Scholar 

  • Embleton TFW, Piercy JE, Daigle GA (1983) Effective flow resistivity of ground surfaces determined by acoustical measurements. J Acoust Soc Am 74: 1239–1244

    Google Scholar 

  • Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Phil Trans R Soc Lond B 340: 215–225

    CAS  Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. Springer-Verlag, New York, pp 229–263

    Google Scholar 

  • Fay RR (1997) Hearing and sound perception among vertebrate animals. In: Crocker MJ (ed) Encyclopedia of Acoustics, Vol 4. Wiley, New York, pp 1789–1797

    Google Scholar 

  • Fitzjarrald DR, Moore KE, Cabral O, Scolar J, Manzi AO, de Abreu Sd LD (1990) Day-time turbulent exchange between the Amazon forest and the atmosphere. J Geophys Res 95: 16825–16838

    Google Scholar 

  • Fotheringham FR, Martin PR, Ratcliffe L (1997) Song transmission and auditory perception of distance in wood warblers ( Parulinae ). Anim Behav 53: 1271–1285

    Google Scholar 

  • Gao W, Li, BL (1993) Wavelet analysis of coherent structures at the atmosphereforest interface. J Appl Meteorol 32: 1717–1725

    Google Scholar 

  • Garland T Jr, Adolph SC (1994) Why not do two-species comparative studies?: limitations on inferring adaptation. Physiol Zool 67: 797–828

    Google Scholar 

  • Gil D, Graves JA, Slater PJB (1999) Seasonal patterns of singing in the willow warbler: evidence against the fertility announcement hypothesis. Anim Behav 58: 995–1000

    PubMed  Google Scholar 

  • Glutz von Blotzheim UN, Bauer KM (1985) Handbuch der Vögel Mitteleuropas, Vol. 10/I. Aula-Verlag, Wiesbaden, 507 p

    Google Scholar 

  • Grafen A (1990) Biological signals as handicaps. J Theor Biol 144: 517–546

    PubMed  CAS  Google Scholar 

  • Greenewalt CH (1968) Bird Song: Acoustics and Physiology. Washington DC, Smithsonian Press, 194 p

    Google Scholar 

  • Handford P (1981) Vegetational correlates of variation in the song of Zonotrichia capensis. Behav Ecol Sociobiol 8: 203–206

    Google Scholar 

  • Heuwinkel H (1982) Schalldruckpegel and Frequenzspektren der Gesänge von Acrocephalus arundinaceus, A. scirpaceus, A. schoenobaenus and A. palustris and ihre Beziehungen zur Biotopakustik. Ökol Vögel (Ecol Birds) 4: 85–174

    Google Scholar 

  • Heuwinkel H (1990) The effect of vegetation on the transmission of songs of selected European Passeriformes. Acta Biol Benrodis 2: 133–150

    Google Scholar 

  • Hill KG, Lewis DB, Hutchings ME, Coles RB (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). I. Acoustic properties of the auditory system. J Exp Biol 86: 153–170

    Google Scholar 

  • Houston A, McNamara J (1999) Models of Adaptive Behaviour. Cambridge University Press, Cambridge, 378 p

    Google Scholar 

  • Hunter ML (1980) Microhabitat selection for singing and other behaviour in great tits, Parus major: some visual and acoustical considerations. Anim Behav 28: 468–475

    Google Scholar 

  • Hunter ML, Krebs JR (1979) Geographical variation in the song of the great tit (Parus major) in relation to ecological factors. J Anim Ecol 48: 759–785

    Google Scholar 

  • Hutchinson JMC, McNamara JM, Cuthill IC (1993) Song, sexual selection, starvation and strategic handicaps. Anim Behav 45: 1153–1177

    Google Scholar 

  • Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F (1998) For whom the birds sing: context-dependent gene expression. Neuron 21: 775–788

    PubMed  CAS  Google Scholar 

  • Jilka A, Leisler B (1974) Die Einpassung dreier Rohrsängerarten (Acrocephalus schoenobaenus, A. scirpaceus, A. arundinaceus) in ihre Lebensräume in Bezug auf das Frequenzspektrum ihrer Reviergesänge. J. Ornithol. 115: 192–212

    Google Scholar 

  • Johnsrude IS, Weary DM, Ratcliffe LM, Weisman RG (1994) Effect of motivational context on conspecific song discrimination by brown-headed cowbirds (Molothrus ater). J Comp Psychol 108: 172–178

    PubMed  CAS  Google Scholar 

  • Kacelnik A (1979) The foraging efficiency of great tits (Parus major L.) in relation to light intensity. Anim Behav 27: 237–241

    Google Scholar 

  • Klump GM (1996) Bird communication in the noisy world. In: Kroodsma DE, Miller EH (eds) Ecology and Evolution of Acoustic Communication in Birds. Cornell Univ. Press, Ithaca, NY, pp 321–338

    Google Scholar 

  • Klump GM, Maier EH (1990) Temporal summation in the European starling (Sturnus vulgaris). J Comp Psychol 104: 94–100

    Google Scholar 

  • Klump GM, Shalter MD (1984) Acoustic behaviour of birds and mammals in the predator context. Z Tierpsychol 66: 189–226

    Google Scholar 

  • Klump GM, Kretzschmar E, Curio E (1986) The hearing of an avian predator and its avian prey. Behav Ecol Sociobiol 18: 317–323

    Google Scholar 

  • Konishi M, Knudsen EI (1979) The oilbird: hearing and echolocation. Science 204: 425–427

    PubMed  CAS  Google Scholar 

  • Kreutzer, ML, Dooling RJ, Brown SD, Okanoya K (1991) A comparison of song syllable perception by five species of birds. Int J Comp Psychol 4: 141–155

    Google Scholar 

  • Kroodsma DE, Konishi M (1991) A suboscine bird (Eastern Phoebe, Sayornis phoebe) develops normal song without auditory feedback. Anim Behav 42: 477–487

    Google Scholar 

  • Kroodsma DE, Miller EH (eds 1996 ) Ecology and Evolution of Acoustic Communication in Birds. Cornell Univ. Press, Ithaca, NY, 587 p

    Google Scholar 

  • Lambrechts MM (1996) Organization of birdsong and constraints on performance. In: Kroodsma DE, Miller EH (eds) Ecology and Evolution of Acoustic Communication in Birds. Cornell Univ. Press, Ithaca, NY, pp 305–320

    Google Scholar 

  • Langemann U, Gauger B, Klump GM (1998) Auditory sensitivity in the great tit: perception of signals in the presence and absence of noise. Anim Behav 56: 763–769

    PubMed  Google Scholar 

  • Larsen ON, Dabelsteen T (1990) Directionality of blackbird vocalization. Implications for vocal communication and its further study. Ornis Scand 21: 37–45

    Google Scholar 

  • Lemon RE, Struger J, Lechowicz MJ, Norman RF (1981) Song features and singing heights of American warblers: Maximization or optimization of distance? J Acoust Soc Am 69: 1169–1176

    Google Scholar 

  • Lewis B, Coles R (1980) Sound localization in birds. Trends Neurosci 3: 102–105

    Google Scholar 

  • Linskens HF, Martens MJM, Hendriksen HJGM, Roestenberg-Sinnige AM, Brouwers WAJM, van der Staak ALHC, Strik-Jansen AMJ (1976) The acoustic climate of plant communities. Oecologia 23: 165–177

    Google Scholar 

  • Loesche P, Beecher MD, Stoddard PK (1992) Perception of cliff swallow calls by birds (Hirundo pyrrhonota and Sturnus vulgaris) and humans (Homo sapiens). J Comp Psychol 106: 239–247

    PubMed  CAS  Google Scholar 

  • Marler P (1955) Characteristics of some animal calls. Nature 176: 6–8

    Google Scholar 

  • Marier P (1956) Über die Eigenschaften einiger tierlicher Rufe. J Ornithol 97: 220–227

    Google Scholar 

  • Marten K, Marier P (1977) Sound transmission and its significance for animal vocalization I, Temperate habitats. Behav Ecol Sociobiol 2: 271–290

    Google Scholar 

  • Marten K, Quine D, Marler P (1977) Sound transmission and its significance for animal vocalization II. Tropical forest habitats. Behav Ecol Sociobiol 2: 291–302

    Google Scholar 

  • Martens J, Geduldig G (1990) Acoustic adaptations of birds living close to Himalayan torrents. Proc. Int. 100. DO-G Meeting: 123–131

    Google Scholar 

  • Mathevon N, Aubin T, Dabelsteen T (1996) Song degradation during propagation: importance of song post for the wren Troglodytes troglodytes. Ethology 102: 397–412

    Google Scholar 

  • Matthysen E, Grubb TC, Cimprich D (1991) Social control of sex-specific foraging behaviour in Downy Woodpeckers, Picoides pubescens. Anim Behav 42: 515–517

    Google Scholar 

  • Maynard Smith J (1994) Must reliable signals always be costly? Anim Behav 47: 1115–1120

    Google Scholar 

  • McBride WE, Bass HE, Raspet R, Gilbert KE (1992) Scattering of sound by atmospheric turbulence: Predictions in a refractive shadow zone. J Acoust Soc Am 91: 1336–1340

    Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Amer Nat 109: 17–34

    Google Scholar 

  • Morton ES (1977) On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Amer Nat 111: 855–869

    Google Scholar 

  • Morton ES (1980) The ecological background for the evolution of vocal sounds used at close range. Acta XVII Congr Int Ornithol: 737–741

    Google Scholar 

  • Morton ES (1982) Grading, discreteness, redundancy and motivation-structural rules.. In: Kroodsma DE, Miller EH (eds) Acoustic Communication in Birds, Vol 1. Academic Press, New York, pp 183–212

    Google Scholar 

  • Morton ES (1986) Prediction from the ranging hypothesis for the evolution of long distance signals in birds. Behaviour 99: 65–86

    Google Scholar 

  • Morton ES (1998) Degradation and signal ranging in birds: memory matters. Behav Ecol Sociobiol 42: 135–137

    Google Scholar 

  • Morton ES, Derrickson KC (1996) Song ranging by the dusky antbird, Cercomacra tyrannina: ranging without song learning. Behav Ecol Sociobiol 39: 195–201

    Google Scholar 

  • Morton ES, Gish SL, van der Voort M (1986) On the learning of degraded and undegraded songs in the Carolina Wren. Anim Behav 34: 815–820

    Google Scholar 

  • Naguib M (1997a) Ranging of songs with the song type on use of different cues in Carolina wrens: effects of familiarity. Behav Ecol Sociobiol 40: 385–393

    Google Scholar 

  • Naguib M (1997b) Use of song amplitude for ranging in Carolina Wrens, Thryothorus ludovicianus. Ethology 103: 723–731

    Google Scholar 

  • Naguib M (1998) Perception of degradation in acoustic signals and its implications for ranging. Behav Ecol Sociobiol 42: 139–142

    Google Scholar 

  • Nelson BS, Stoddard PK (1998) Accuracy of auditory distance and azimuth perception by a passerine bird in natural habitat. Anim Behav 56: 467–477

    PubMed  Google Scholar 

  • Nemeth E, Winkler H, Dabelsteen T (1997) Adaptations in bird songs in a neotropical rainforest. Advances in Ethology 32, 119

    Google Scholar 

  • Nottebohm F (1975a) Vocal behavior in birds. In: Farner DS, King JR, Parkes KC (eds) Avian Biology, Vol 5, New York, Academic Press, pp 287–332

    Google Scholar 

  • Nottebohm F (1975b) Continental patterns of song variability in Zonotrichia capensis: some possible ecological correlates. Amer Nat 109: 605–624

    Google Scholar 

  • Okanoya K, Dooling RJ (1988) Hearing in the swamp sparrow, Melospiza georgiana, and the song sparrow, Melospiza melodia. Anim Behav 36: 726–732

    Google Scholar 

  • Owens IPF, Benett PM, Harvey PH (1999) Species-richness among birds: body size, life history, sexual selection or ecology? Proc R Soc Lond B 266: 933–939

    Google Scholar 

  • Peters WD, Grubb TC (1983) An experimental analysis of sex-specific foraging in the Downy Woodpecker, Picoides pubescens. Ecology 64: 1437–1443

    Google Scholar 

  • Piercy JE, Embleton TFW, Sutherland LC (1977) Review of noise propagation in the atmosphere. J Acoust Soc Am 61: 1403–1418

    PubMed  CAS  Google Scholar 

  • Pirinchieva RK (1991) Model study of sound propagation over ground of finite impedance. J Acoust Soc Am 90: 2678–2682

    Google Scholar 

  • Price MA, Attenborough K, Heap NW (1988) Sound attenuation through trees: Measurements and models. J Acoust Soc Am 84: 1836–1844

    Google Scholar 

  • Redondo T, Arias de Reyna L (1988) Locatability of begging calls in nestling atricial birds. Anim Behav 36: 653–661

    Google Scholar 

  • Richards DG (1981a) Alerting and message components in songs of rufous-sided towhees. Behaviour 76: 223–249

    Google Scholar 

  • Richards DG (1981b) Estimation of distance of singing conspecifics by the Carolina wren. Auk 98: 127–133

    Google Scholar 

  • Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest. Implications for animal communication. Am Nat 108: 17–34

    Google Scholar 

  • Riede K (1996) Diversity of sound-producing insects in a Bornean lowland rain forest. In: Edwards DS et al. (eds), Tropical Rainforest Research–Current Issues. Kluwer Academic Publisher pp. 77–84

    Google Scholar 

  • Ryan MJ, Brenowitz EA (1985) The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am Nat 126: 87–100

    Google Scholar 

  • Rieke F, Bodnar DA, Bialek W (1995) Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc R Soc Lond B 262: 259–265

    CAS  Google Scholar 

  • Saunders SS, Salvi RJ (1993) Psychoacoustics of normal adult chickens: thresholds and temporal integration. J Acoust Soc Am 94: 83–90

    PubMed  CAS  Google Scholar 

  • Schubert M (1971) Untersuchungen über die reaktionsauslösenden Signalstrukturen des Fitis-Gesanges, Phylloscopus t. trochilus (L.), and das Verhalten gegenüber arteigenen Rufen. Behaviour 38: 250–288

    Google Scholar 

  • Sheldon BC, Burke T (1994) Copulation behaviour and paternity in the chaffinch. Behav Ecol Sociobiol 34: 149–156

    Google Scholar 

  • Shy E (1983) The relation of geographic variation in song to habitat characteristics and body size in North American tanagers (Thraupinae: Piranga). Behav Ecol Sociobiol 12: 71–76

    Google Scholar 

  • Shy E (1984) The structure of song and its geographical variation in the scarlet tanager (Piranga olivacea). Am Midl Nat 112: 119–130

    Google Scholar 

  • Shy E, Morton ES (1986). Adaptation of amplitude structure of songs to propagation in field habitat in song sparrows. Ethology 72: 177–184

    Google Scholar 

  • Smith JI, Yu H-T (1992) The association between vocal characteristics and habitat type in Taiwanese passerines. Zool Sci 9: 659–664

    Google Scholar 

  • Sorjonen J (1983) Transmission of the two most characteristic phrases of the song of the thrush nightingale Luscinia luscinia in different environmental conditions. Ornis Scandinavica 14: 278–288

    Google Scholar 

  • Sorjonen J (1986) Factors affecting the structure of song and the singing behaviour of some northern European passerine birds. Behaviour 98: 286–304

    Google Scholar 

  • Staicer CA, Spector DA, Horn AG (1996) The dawn chorus and other diel patterns in acoustic signaling In: Kroodsma DE, Miller EH (eds) Ecology and Evolution of Acoustic Communication in Birds. Cornell Univ Press, Ithaca, NewYork, pp 426–453

    Google Scholar 

  • Sutherland LC, Daigle GA (1997) Atmospheric sound propagation. In: Crocker MJ (ed) Encyclopedia of Acoustics. John Wiley Sons, NewYork, pp 341–365

    Google Scholar 

  • Waide RB, Narins PM (1988) Tropical forest bird counts and the effect of sound attenuation. Auk 105: 296–302

    Google Scholar 

  • Wallace RA (1974) Ecological and social implications of sexual dimorphism in five melanerpine woodpeckers. Condor 76: 238–248

    Google Scholar 

  • Wasserman FE (1979) The relationship between habitat and song in the white-throated sparrow. Condor 81: 424–426

    Google Scholar 

  • Weary DM, Lemon RE, Date EM (1986) Acoustic features used in song discrimination by the veery. Ethology 72: 199–213

    Google Scholar 

  • Wempen J (1991) Schallausbreitung über Erdboden. Bibliotheks-and Informationssystem der Universität Oldenburg, Oldenburg, 102 p

    Google Scholar 

  • Wilczynski W, Ryan MJ, Brenowitz EA (1989) The display of the blue-black grassquit: the acoustic advantage of getting high. Ethology 80: 218–222

    Google Scholar 

  • Wiley RH (1991) Association of song properties with habitats for territorial oscine birds of eastern North America. Am Nat 138: 973–993

    Google Scholar 

  • Wiley RH, Godard R (1996) Ranging of conspecific songs by Kentucky warblers and its implications for interactions of territorial males. Behaviour 133: 81–102

    Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3: 69–94

    Google Scholar 

  • Wiley RH, Richards DG (1981) Adaptations for acoustic communication in birds: sound transmission and signal detection. In: Kroodsma DE, Miller EH (eds) Acoustic Communication in Birds, Vol 1. Academic Press, New York, pp 131–181

    Google Scholar 

  • Wingfield JC, Farner DS (1993) Endocrinology of reproduction in wild species. In: Farner DS, King JR, Parkes KC (eds) Avian Biology, Vol 9. Academic Press, London, pp 163–327

    Google Scholar 

  • Winkler H (1971) Die artliche Isolation des Blutspechts Picoides (Dendrocopos) syriacus. Egretta 14: 1–20

    CAS  Google Scholar 

  • Winkler H (1979) Foraging ecology of Strickland’s Woodpecker in Arizona. Wilson Bull 91: 244–254

    Google Scholar 

  • Winkler H, Christie DA (1995) Woodpeckers. A Guide to the Woodpeckers, Piculets and Wrynecks of the World. Pica Press, Sussex, 406 p

    Google Scholar 

  • Winkler H, Newton AV, Newton SF (1996) On the ecology and behaviour of the Arabian woodpecker Picoides dorae. Zool Middle East 12: 33–45

    Google Scholar 

  • Winkler H, Short LL (1978) A comparative analysis of acoustical signals in pied woodpeckers (Ayes, Picoides ). Bull Am Mus Nat Hist 160: 1–109

    Google Scholar 

  • Witkin SR (1977) The importance of directional sound radiation in avian vocalization. Condor 79: 490–493

    Google Scholar 

  • Zahavai A (1977) The cost of honesty (further remarks on the handicap principle). J Theor Biol 67: 603–605

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Winkler, H. (2001). The Ecology of Avian Acoustical Signals. In: Barth, F.G., Schmid, A. (eds) Ecology of Sensing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22644-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22644-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08619-9

  • Online ISBN: 978-3-662-22644-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics