Skip to main content

The Ecology of Teleost Fish Visual Pigments: a Good Example of Sensory Adaptation to the Environment?

  • Conference paper
Ecology of Sensing

Abstract

The aquatic environment offers a natural laboratory for the study of visual ecology. The colour of natural bodies of water varies from the brown/reds of some freshwater lakes, through the greens of lakes and coastal waters, to the blues of the deep oceans. Teleosts have adapted the visual pigments of their rods and cones to take advantage of these different photic environments. Many shallow-living fish are probably tetrachromatic, with sensitivity extending from the near UV to the far-red and utilize the full broad daylight spectrum. Teleosts living in more green waters tend to be blue/green dichromats, having lost sensitivity to the longer and shorter wavelengths. In contrast, deep-sea teleosts generally have pure rod retinae, maximally sensitive to the dim downwelling monochromatic blue light of the ocean. In addition, their rod pigments may be spectrally tuned to be sensitive to their own bioluminescence, which in some cases may be deep red. Many fish probably modify their visual pigment complement, either during development or seasonally, as they change factors such as their feeding habits, geographical location, depth of habitat and photic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ali MA, Hârosi FI, Wagner H-J (1978) Photoreceptors and visual pigments in a cichlid fish, Nannacara anomala. Sensory Processes 2: 130–145

    PubMed  CAS  Google Scholar 

  • Archer S, Hope A, Partridge JC (1995) The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc Roy Soc Lond B 262: 289–295

    Article  CAS  Google Scholar 

  • Archer SN, Endler JA, Lythgoe JN, Partridge JC (1987) Visual pigment polymorphism in the guppy Poecilia reticulata. Vision Res 27: 1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Archer SN, Lythgoe JN (1990) The visual pigment basis for cone polymorphism in the guppy, Poecilia reticulata. Vision Res 30: 225–233

    Article  PubMed  CAS  Google Scholar 

  • Avery JA, Bowmaker JK, Djamgoz MBA, Downing JEG (1983) Ultraviolet sensitive receptors in a freshwater fish. J Physiol 334: 23 P

    Google Scholar 

  • Bayliss LE, Lythgoe RJ, Tansley K (1936) Some new forms of visual purple found in deep-sea fish, with a note on the visual cells of origin. Proc Roy Soc Lond B 816: 95–113

    Article  Google Scholar 

  • Beatty DD (1984) Visual pigments and the labile scotopic visual system of fish. Vision Res 24: 1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Beaudet L, Hawryshyn CW (1999) Ecological aspects of vertebrate visual ontogeny. In: Archer SN, Djamdoz MBA, Loew ER, Partridge JC, Vellerga S (eds) Adaptive Mechanisms in the Ecology of Vision. Kluwer, Dordrecht, pp 413–437

    Chapter  Google Scholar 

  • Boehlert GW (1978) Intraspecific evidence for the function of single and double cones in the teleost retina. Science 202: 309–311

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK (1984) Microspectrophotometry of vertebrate photoreceptors. A brief review. Vision Res 24: 1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK (1990) Visual pigments of fishes. In: Douglas RH, Djamgoz MBA (eds) The Visual System of Fish. Chapman and Hall, London, pp 81–107

    Chapter  Google Scholar 

  • Bowmaker JK (1991) Evolution of visual pigments and photoreceptors. In: Gregory RL, Cronly-Dillon JR (eds) Vision and Visual Dysfunction: Vol 2, Evolution of the Eye and Visual System. Macmillan, London, pp 63–81

    Google Scholar 

  • Bowmaker JK (1995) The visual pigments of fish. Prog Ret Eye Res 15: 1–31

    Article  Google Scholar 

  • Bowmaker JK, Dartnall HJA, Herring PJ (1988) Longwave-sensitive visual pigments in some deep-sea fishes: segregation of `paired’ rhodopsins and porphyropsins. J Comp Physiol A 163: 688–698

    Article  Google Scholar 

  • Bowmaker JK, Govardovskii VI, Shukolyukov SA, Zueva LV, Hunt DM, Sideleva VG, Smirnova OG (1994) Visual pigments and the photic environment: the cottoid fish of lake Baikal. Vision Res 34: 591–605

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK, Kunz YW (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta): age-dependent changes. Vision Res 27: 2101–2108

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK, Thorpe A, Douglas RH (1991) Ultraviolet-sensitive cones in the goldfish. Vision Res 31: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Browman HI, Hawryshyn CW (1994) The developmental trajectory of ultraviolet photosensitivity in rainbow trout is altered by thyroxine. Vision Res 34: 1397–1406

    Article  PubMed  CAS  Google Scholar 

  • Clarke GL (1936) On the depth at which fish can see. Ecology 17: 452–456

    Article  Google Scholar 

  • Dartnall HJA, Lander MR, Munz FW (1961) Periodic changes in the visual pigments of fish. In: Christensen B, Buchmann B (eds) Progress in Photobiology. Elsevier, Amsterdam, pp 203–213

    Google Scholar 

  • Denton EJ (1990) Light and vision at depths greater than 200 metres. In: Herring Pi, Campbell AK, Whitfield M, Maddock L (eds) Light and Life in the Sea. Cambridge University Press, Cambridge, pp 127–148

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB, Wright PG (1970) On the `filter’ in the photophores of mesopelagic fish and on a fish emitting red light and especially sensitive to red light. J Physiol 208: 72–73 P

    Google Scholar 

  • Denton EJ, Herring PJ, Widder EA, Latz MF, Case JF (1985) The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc Roy Soc Lond B 225: 63–97

    Article  Google Scholar 

  • Douglas RH (1991) The aquatic environment as a natural laboratory for vision research: fish as a model system. In: Covacci R, Djamgoz MBA, Vallerga S (eds) Aspects of Marine Biology with an Emphasis on the Mediterranean. IMC Publications, Oristano, pp 13–20

    Google Scholar 

  • Douglas RH, Marshall NJ (1999) A review of vertebrate and invertebrate optical filters. In: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S (eds) Adaptive Mechanisms in the Ecology of Vision. Kluwer, Dordrecht, pp 95–162

    Chapter  Google Scholar 

  • Douglas RH, Partridge JC (1997) On the visual pigments of deep-sea fish. J Fish Biol 50: 68–85

    Article  CAS  Google Scholar 

  • Douglas RH, Partridge JC, Dulai K, Hunt D, Mullineaux CW, Tauber AY, Hynninen PH (1998a) Dragon fish see using chlorophyll. Nature 393: 423–424

    Article  CAS  Google Scholar 

  • Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CW, Hynninen PH (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res 39: 2817–2832

    Article  PubMed  CAS  Google Scholar 

  • Douglas RH, Partridge JC, Hope AJ (1995) Visual and lenticular pigments in the eyes of demersal deep-sea fishes. J Comp Physiol A 177: 111–122

    Article  Google Scholar 

  • Douglas RH, Partridge JC, Marshall NJ (1998b) The eyes of deep-sea fish I: lens pigmentation, tapeta and visual pigments. Prog Ret Eye Res 17: 597–636

    Article  CAS  Google Scholar 

  • Douglas RH, Wagner H-J (1984) Action spectrum of photomechanical cone contraction in the catfish retina. Invest Ophthalmol Vis Sci 25: 534–538

    PubMed  CAS  Google Scholar 

  • Evans BI, Hârosi FI, Fernald RD (1993) Photoreceptor spectral absorbance in larval and adult winter flounder (Pseudopleuronectes americanus). Vis Neurosci 10: 1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Hârosi FI (1985) Ultraviolet-and violet-absorbing vertebrate visual pigments: dichroic and bleaching properties. In: Levine JS, Fein A (eds) The Visual System. Alan Liss, New York, pp 41–55

    Google Scholar 

  • Hârosi FI, Hashimoto Y (1983) Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science 222: 1021–1023

    Article  PubMed  Google Scholar 

  • Hawryshyn CW, Arnold MG, Chaisson DJ, Martin PC (1989) The ontogeny of ultraviolet photosensitivity in rainbow trout (Salmo gairdneri). Vis Neurosci 2: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Hawryshyn CW, Hârosi FI (1991) Ultraviolet photoreception in carp: microspectrophotometry and behaviorally determined action spectra. Vision Res 31: 567–576

    Article  PubMed  CAS  Google Scholar 

  • Hawryshyn CW, Hârosi FI (1994) Spectral characteristics of visual pigments in rainbow trout (Oncorhynchus mykiss). Vision Res 34: 1385–1392

    Article  PubMed  CAS  Google Scholar 

  • Herring PJ (1983) The spectral characteristics of luminous marine organisms. Proc Roy Soc Lond B 220: 183–217

    Article  Google Scholar 

  • Herring PJ (1996) Light, colour and vision in the ocean. In: Summerhayes CP, Thorpe SA (eds) Oceanography: an Illustrated Guide. Mason Publishing, London, pp 212–227

    Google Scholar 

  • Hobson ES, McFarland WN, Chess JR (1981) Crepuscular and nocturnal activities of Californian nearshore fishes, with consideration of their scotopic visual pigments and photic environment. Fishery Bulletin 79: 1–30

    Google Scholar 

  • Jacobs GH (1992) Ultraviolet vision in vertebrates. American Zoologist 32: 544–554

    Google Scholar 

  • Kirk JTO (1983) Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Knowles A, Dartnall HJA (1977) The Photobiology of Vision. In: Dayson H (ed) The Eye: Vol 2B, Academic Press, New York, pp 1–689

    Google Scholar 

  • Latz MI, Frank TM, Case JF (1988) Spectral composition of epipelagic organisms from the Sargasso sea. Marine Biol 98: 441–446

    Article  Google Scholar 

  • Levine JS, MacNichol EF (1979) Visual pigments in teleost fishes: effects of habitat, microhabitat and behaviour on visual system evolution. Sensory Processes 3: 95–130

    PubMed  CAS  Google Scholar 

  • Loew ER, Dartnall HJA (1976) Vitamin Al/A2-based visual pigment mixtures in cones of the rudd. Vision Res 16: 891–896

    Article  PubMed  CAS  Google Scholar 

  • Loew ER, Lythgoe JN (1978) The ecology of cone pigments in teleost fish. Vision Res 18: 715–722

    Article  PubMed  CAS  Google Scholar 

  • Loew ER, McFarland WN (1990) The underwater visual environment. In: Douglas RH, Djamgoz MBA (eds) The Visual System of Fish. Chapman and Hall, London, pp 1–43

    Chapter  Google Scholar 

  • Loew ER, Sillman AJ (1993) Age-related changes in the visual pigments of the white sturgeon (Acipenser transmontanus). Can J Zoo! 71: 1552–1557

    Article  Google Scholar 

  • Loew ER, Wahl CM (1991) A short-wavelength sensitive cone mechanism in juvenile yellow perch, Perca flavescens. Vision Res 31: 353–360

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe JN (1968) Visual pigments and visual range under water. Vision Res 8: 997–1012

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe JN (1972) The adaptation of visual pigments to photic environment. In: Dartnall HJA (ed) Handbook of Sensory Physiology: Vol VII/1, Photochemistry of Vision. Springer, Berlin, pp 566–603

    Chapter  Google Scholar 

  • Lythgoe JN (1984) Visual pigments and environmental light. Vision Res 24: 1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe JN, Muntz WRA, Partridge JC, Shand J, Williams DM (1994) The ecology of the visual pigments of snappers (Lutjanidae) on the Great Barrier Reef. J Comp Physiol A 174: 461–467

    Article  Google Scholar 

  • Lythgoe JN, Partridge JC (1991) The modelling of optimal visual pigments of dichromatic teleosts in green coastal waters. Vision Res 31: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Maier EJ, Bowmaker JK (1993) Colour vision in a passeriform bird, Leiothrix lutea: correlation of visual pigment absorbance and oil droplet transmission with spectral sensitivity. J Comp Physiol A 172: 295–301

    Article  Google Scholar 

  • Marshall NJ, Oberwinkler J (1999) The colourful world of the mantis shrimp. Nature 401: 873–874

    Article  PubMed  CAS  Google Scholar 

  • McFarland WN, Loew ER (1994) Ultraviolet visual pigments in marine fishes of the family Pomacentridae. Vision Res 34: 1393–1396

    Article  PubMed  CAS  Google Scholar 

  • McFarland WN, Munz FW (1975) The evolution of photopic visual pigments in fishes. Vision Res 15: 1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Mensinger AF, Case JF (1990) Luminescent properties of deep-sea fish. J Exptl Mar Biol Ecol 144: 1–15

    Article  Google Scholar 

  • Mensinger AF, Case JF (1997) Luminescent properties of fishes from nearshore California basins. J Exptl Mar Biol Ecol 210: 75–90

    Article  Google Scholar 

  • Muntz WR, Mouat GS (1984) Annual variations in the visual pigments of brown trout inhibiting lochs providing different light environments. Vision Res 24: 1575–1580

    Article  PubMed  CAS  Google Scholar 

  • Munz FW (1964) The visual pigments of epipelagic and rocky shore fishes. Vision Res 4: 441–454

    Article  PubMed  CAS  Google Scholar 

  • Munz FW (1965) Adaptation of visual pigments to the photic environment. In: Wolstenholme GEW, Knights J (eds) Ciba Foundation Symposium on Physiological and Environmental Psychology of Colour Vision. A. Churchill Ltd, London, pp 27–45

    Google Scholar 

  • Munz FW, McFarland WN (1973) The significance of spectral position in the rhodopsins of tropical marine fishes. Vision Res 13: 1828–1874

    Article  Google Scholar 

  • Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F (ed) Handbooh of Sensory Physiology: Vol VII/5, The Visual System of Vertebrates. Springer Verlag, New York, pp 193–274

    Chapter  Google Scholar 

  • Neumeyer C (1992) Tetrachromatic color vision in goldfish: evidence from color mixture experiments. J Comp Physiol A 171: 639–649

    Article  Google Scholar 

  • Novales-Flamarique I, Hawryshyn CW (1998) The common white sucker (Catostomus commersoni): a fish with ultraviolet sensitivity that lacks polarization sensitivity. J Comp Physiol A 182: 331–341

    Article  Google Scholar 

  • Partridge JC (1990) The colour sensitivity and vision in fishes. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and Life in the Sea. Cambridge University Press, Cambridge, pp 167–184

    Google Scholar 

  • Partridge JC, Cummings ME (1999) Adaptations of visual pigments to the aquatic environment. In: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Valerga S (eds) Adaptive Mechanisms in the Ecology of Vision. Kluwer, Dordrecht, pp 251283

    Google Scholar 

  • Partridge JC, De Grip WJ (1991) A new template for rhodopsin (Vitamin Al based) visual pigments. Vision Res 31: 619–630

    Article  PubMed  CAS  Google Scholar 

  • Partridge JC, Douglas RH (1995) Far-red sensitivity of dragon fish. Nature 375: 21–22

    Article  CAS  Google Scholar 

  • Partridge JC, Shand J, Archer SN, Lythgoe IN, van Groningen-Luyben WAHM (1989) Interspecific variation in the visual pigments of deep-sea fishes. J Comp Physiol A 164: 513–529

    Article  PubMed  CAS  Google Scholar 

  • Powers MK, Raymond PA (1990) Development of the visual system. hi: Douglas RH, Djamgoz MBA (eds) The Visual System of Fish. Chapman Hall, London, pp 419–442

    Google Scholar 

  • Schwanzara SA (1967) The visual pigments of freshwater fishes. Vision Res 7: 121–148

    Article  PubMed  CAS  Google Scholar 

  • Shand J (1993) Changes in the spectral absorption of cone visual pigments during the settlement of the goatfish Upeneus tragula: the loss of red sensitivity as a benthic existence begins. J Comp Physiol A 173: 115–121

    Article  Google Scholar 

  • Shand J, Archer MA, Collin SP (1999) Ontogenetic changes in the retinal photoreceptor mosaic in a fish, the black bream, Acanthopagrus butcheri. J Comp Neurol 412: 203–217

    Article  PubMed  CAS  Google Scholar 

  • Shand J, Partridge JC, Archer SN, Potts GW, Lythgoe JN (1988) Spectral absorbance changes in the violet/blue sensitive cones of the juvenile pollack, Pollachius pollachius. J Comp Physiol A 163: 699–703

    Article  Google Scholar 

  • Sillman AJ, O’leary CJ, Tarantino CD, Loew ER (1999) The photoreceptors and visual pigments of two species of Acipenseriformes, the shovelnose sturgeon (Scaphirhynchus platorynchus) and the paddlefish (Polyodon spathula). J Comp Physiol A 184:37;47

    Google Scholar 

  • Sillman AJ, Ronan SJ, Loew ER (1993) Scanning electron-microscopy and microspectrophotometry of the photoreceptors of ictalurid catfishes. J Comp Physiol A 173: 801–807

    Article  Google Scholar 

  • Stavenga DG, Smits RP, Hoenders BJ (1993) Simple exponential functions describing the absorbency bands of visual pigment spectra. Vision Res 33: 1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Whitmore AV, Bowmaker 1K (1989) Seasonal variation in cone sensitivity and shortwave absorbing visual pigments in the rudd, Scardinius erythrophthalmus. J Comp Physiol A 166: 103–115

    Google Scholar 

  • Widder EA (1999) Bioluminescence. In: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Valerga S (eds) Adaptive Mechanisms in the Ecology of Vision. Kluwer, Dordrecht, pp 555–581

    Chapter  Google Scholar 

  • Widder EA, Latz MI, Case JF (1983) Marine bioluminescence spectra measured with an optical multichannel detection system. Biol Bull 165: 791–810

    Article  Google Scholar 

  • Widder EA, Latz MI, Herring PJ, Case JF (1984) Far red bioluminescence from two deep-sea fishes. Science 225: 512–514

    Article  PubMed  CAS  Google Scholar 

  • Wood P, Partridge JC (1993) Opsin substitution induced in retinal rods of the eel (Anguilla anguilla L.): a model for G-protein-linked receptors. Proc Roy Soc Lond B 254: 227–232

    Article  CAS  Google Scholar 

  • Wood P, Partridge JC, de Grip WJ (1992) Rod visual pigment changes in the elver of the eel Anguilla anguilla ( L.) measured by microspectrophotometry. J Fish Biol 41: 601–611

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Douglas, R.H. (2001). The Ecology of Teleost Fish Visual Pigments: a Good Example of Sensory Adaptation to the Environment?. In: Barth, F.G., Schmid, A. (eds) Ecology of Sensing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22644-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22644-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08619-9

  • Online ISBN: 978-3-662-22644-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics