Skip to main content

Triticum × Aegilops Hybrids Through Embryo Culture

  • Chapter
Wheat

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 13))

Abstract

Genetic diversity in cultivated bread wheat (Triticum aestivum L.) which could be explored for breeding modern, high-yielding varieties resistant to various biotic and abiotic stresses, may be insufficient in some cases. The introduction of new useful genes by wide hybridization is one of the most effective means for enrichment of the gene pool of the cultivated hexaploid wheat (Plucknett et al. 1987). The current status and results of wide crosses in wheat have been recently discussed by several authors (Feldman and Sears 1981; Sharma and Gill 1983; Mujeeb-Kazi and Kimber 1985; Kimber and Feldman 1987) (see also Pienaar, Chap. II.4, this Vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alonso LC, Kimber G (1984) Use of restitution nuclei to introduce alien genetic variation into hexaploid wheat. Z Pflanzenzücht 92: 185–189

    Google Scholar 

  • Dyck PL, Kerber ER (1970) Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa. Can J Genet Cytol 12: 175–180

    Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244: 102–112

    Article  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct genetic transfers from A egilops squarrosa L. to hexaploid wheat. Crop Sci 27: 445–450

    Article  Google Scholar 

  • Gill BS, Raupp WJ, Sharma HC, Browder LE, Hatchett JH, Harvey TJ, Moseman JG, Waines JG (1986) Resistance in A egilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly. Plant Dis 70: 553–556

    Article  Google Scholar 

  • Harvey TL, Martin TJ, Livers RW (1980) Resistance to biotype C greenbug in synthetic hexaploid wheats derived from Triticum tauschii. J Econ Entomol 73: 387–389

    Google Scholar 

  • Hatchett JH, Gill BS (1981) D-genome sources of resistance in Triticum tauschii to Hessian fly. J Hered 72: 126–127

    Google Scholar 

  • Hermsen JGT (1966) Hybrid necrosis and red hybrid chlorosis in wheat. In: MacKey J (ed) Proc 2nd Int Wheat genetics Symp, Univ Lund 1963. Hereditas Suppl 2: 439–452

    Google Scholar 

  • Joppa LR (1980) Inheritance of resistance to greenbug toxicity in an amphiploid of Triticum turgidum/T. tauschii. Crop Sci 20: 343–345

    Article  Google Scholar 

  • Kerber ER (1987) Resistance to leaf rust in hexaploid wheat: L32, a third gene derived from Triticum tauschii. Crop Sci 27: 204–206

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from A egilops squarrosa. Can J Genet Cytol l 1, 639–647

    Google Scholar 

  • Kerber ER, Dyck PL (1973) Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can J Genet Cytol 15: 397–409

    Google Scholar 

  • Kerber ER, Dyck PL (1978) Resistance to stem and leaf rust of wheat in A egilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanujam S (ed) Proc 5th Int Wheat genetics Symp, New Delhi. Soc Genet Plant Breed, New Delhi, pp 358–364

    Google Scholar 

  • Kihara K (1924) Cytologische and genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen and die Sterilität in den Bastarden. Mem Coll Sci Kyoto Imp Univ Ser B 1: 1–200

    Google Scholar 

  • Kihara K (1944) Die Entdeckung der DD-Analysatoren beim Weizen. Agric Hortic (Tokyo) 19: 889–890

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat: an introduction. Coll Agric, Univ Missouri. Col Spec Rep 353

    Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic factor requirements of tobacco tissue cultures. Physiol Plant 18: 100–127

    Article  CAS  Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Rec Genet Soc Am 13: 26–27

    Google Scholar 

  • McIntosh RA, Dyck PL, The TT, Cusick J, Milne DL (1984) Cytogenetical studies in wheat XIII, Sr 35 — a third graminis tritici. Z Pflanzenzücht 92: 1–14

    Google Scholar 

  • Mujeeb-Kazi A, Kimber G (1985) The production, cytology and practicality of wide hybrids in the Triticeae. Cereal Res Commun 13: 111–124

    Google Scholar 

  • Pasquini M (1980) Disease resistance in wheat: II. Behaviour ofAegilops species with respect to Puccinia recondita f. sp. tritici. Genet Agric 34: 133–148

    Google Scholar 

  • Plucknett DL, Smith NJH, Williams JT, Anishetty NM (1987) Gene banks and the worlds’ food. Univ Press, Princeton, NJ

    Google Scholar 

  • Raupp WJ, Browder LE, Gill BS (1983) Leaf rust resistance in Aegilops squarrosa, its transfer and expression in common wheat (Triticum aestivum L.) Phytopathology 73:818 (Abstr)

    Google Scholar 

  • Riley R, Chapman V (1960) The D genome of hexaploid wheat. Wheat Inf Sery 11: 18–19

    Google Scholar 

  • Sears ER, Kimber G, Loegering WQ, Sears LM, Abubakar MB, Worstel JV, Alonso LC, Espinaso A, Dajin Liu (1981) Cytogenetic studies. Annu Wheat Newslett 23: 118–119

    Google Scholar 

  • Sharma HC, Gill BS (1983) Wide hybridization in wheat. Euphytica 32: 17–31

    Article  Google Scholar 

  • Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiological races of Puccinia graminis f. sp. tritici. Minn Agric Exp Sci J Ser Pap 4691

    Google Scholar 

  • Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30: 227–238

    Article  Google Scholar 

  • The TT, Baker EP (1975) Basic studies relating to the transferrence of genetic characters from Triticum monococcum L. to hexaploid wheat. Aust J Biol Sci 28: 189–199

    Google Scholar 

  • Valkoun J, Kučerová D, Bartoš P (1982) Genetics of resistance of cultivated einkorn wheat to stripe rust and powdery mildew. Ann Res Inst Crop Prod Prague 22: 6–16

    Google Scholar 

  • Valkoun J, Hammer K, Kučerová D, Bartoš P (1985a) Disease resistance in the genusAegilops L. —stem rust, leaf rust, stripe rust, and powdery mildew. Kulturpflanze 33: 133–153

    Article  Google Scholar 

  • Valkoun J, Kučerová D. Bartoš P (1985b) The third independent transfer of the Sr35 gene from Triticum monococcum to T. aeslivum. Cereal Rusts Bull 13: 37–39

    Google Scholar 

  • Valkoun J, Kučerová D, Barto P (1986) Transfer of leaf rust resistance from Triticum monococcum to hexaploid wheat. Z Pflanzenzucht 96: 271–278

    Google Scholar 

  • Winkle ME, Kimber G (1976) Colchicine treatment hybrids in the Triticinae. Cereal Res Commun 4: 317–320

    CAS  Google Scholar 

  • Zhao Y, Kimber G (1984) New hybrids with D-genome wheat relatives. Genetics 106: 509–515

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valkoun, J., Dostál, J., Kučerová, D. (1990). Triticum × Aegilops Hybrids Through Embryo Culture. In: Bajaj, Y.P.S. (eds) Wheat. Biotechnology in Agriculture and Forestry, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10933-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10933-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08081-4

  • Online ISBN: 978-3-662-10933-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics