Skip to main content

Biotransformation, Biodegradation, and Bioremediation of Polycyclic Aromatic Hydrocarbons

  • Chapter
Biodegradation and Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 2))

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have been the subject of scientific study for many years, and a number of excellent reviews have been published on PAH biodegradation. The purpose of this chapter is to review those characteristics of PAH-contaminated systems and PAH-degrading microorganisms that can influence the fate of PAHs in impacted soil and sediment systems. The identification of these characteristics can be approached either from a reductionist perspective — in an effort to elucidate relevant mechanisms that can be extrapolated to more complex systems — or from an appreciation for the complexity of real PAH-contaminated environments. A perspective somewhere between these views, flexible enough to look in either direction for insights, may be required to advance our understanding of PAH biodegradation in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Accardi-Dey A, Gschwend PM (2003) Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environ Sci Technol 37: 99–106

    Article  CAS  Google Scholar 

  • Aitken MD, Nitz DC, Roy DV, Kazunga C (1998a) Slurry-phase Bioremediation of Contaminated Soil from a Former Manufactured-Gas Plant Site, Report No 320. University of North Carolina Water Resources Research Institute, Raleigh, NC

    Google Scholar 

  • Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen S-H (1998b) Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with poly-cyclic aromatic hydrocarbons. Can J Microbiol 44: 743–752

    Article  CAS  Google Scholar 

  • Andersson BE, Welinder L, Olsson PA, Olsson S, Henrysson T (2000) Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresour Technol 73: 29–36

    Article  CAS  Google Scholar 

  • Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU (2000) Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66: 5329–5333

    Article  CAS  Google Scholar 

  • Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68: 852–858

    Article  CAS  Google Scholar 

  • Arino S, Marchal R, Vandecasteele JP (1998) Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. J Appl Microbiol 84: 769–776

    Article  CAS  Google Scholar 

  • Auger RL, Jacobson AM, Domach MM (1995) Effect of nonionic surfactant addition on bacterial metabolism of naphthalene: Assessment of toxicity and overflow metabolism potential. J Hazard Mater 43: 263–272

    Article  CAS  Google Scholar 

  • Banerjee DK, Gray MR, Dudas MJ, Pickard MA (1997) Protocol to enhance the extent of biodegradation of contamination in soil. In: Alleman BC, Leeson A (eds) In Situ and On-site Bioremediation. Battelle Press, Columbus, OH, pp 163–168

    Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R,Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon ( PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66: 1834–1843

    Article  CAS  Google Scholar 

  • Baud-Grasset S, Baud-Grasset F, Bifulco J, Meier JR, Ma T-H (1993) Reduction of genotoxicity of a creosote-contaminated soil after fungal treatment determined by the Tredescantia-micronucleus test. Mutat Res 303: 77–82

    Article  CAS  Google Scholar 

  • Beckles DM, Ward CH, Hughes JB (1998) Effect of mixtures of polycyclic aromatic hydrocarbons and sediments on fluoranthene biodegradation patterns. Environ Toxicol Chem 17: 1246–1251

    Article  CAS  Google Scholar 

  • Belkin S, Steiber M, Tiehm A, Frimmel F, Abeliovich A, Werner P, Ulitzur S (1994) Toxicity and genotoxicity enhancement during polycyclic aromatic hydrocarbons’ degradation. Environ Toxicol Water Qual 9: 303–309

    Article  CAS  Google Scholar 

  • Bengtsson G, Zerhouni P (2003) Effects of carbon substrate enrichment and DOC concentration on biodegradation of PAHs in soil. J Appl Microbiol 94: 608–617

    Article  CAS  Google Scholar 

  • Berardesco G, Dyhrman S, Gallagher E, Shiaris MP (1998) Spatial and temporal variation of phenanthrene-degrading bacteria in intertidal sediments. Appl Environ Microbiol 64: 2560–2565

    CAS  Google Scholar 

  • Boldrin B, Tiehm A, Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoran- thene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59: 1927–1930

    CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (1998) Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnol Bioeng 59: 482–494

    Article  CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of highmolecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66: 1007–1019

    Article  CAS  Google Scholar 

  • Bosch R, García-Valdés E, Moore ERB (1999) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236: 149–157

    Article  CAS  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: Inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43: 156–164

    Google Scholar 

  • Bouchez M, Blanchet D, Bardin V, Haeseler F, Vandecasteele JP (1999) Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon ( PAH) mixtures. Biodegradation 10: 429–435

    Google Scholar 

  • Breedveld GD, Karlsen DA (2000) Estimating the availability of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soils. Appl Microbiol Biotechnol 54: 255–261

    Article  CAS  Google Scholar 

  • Brenner RC, Magar VS, Ickes JA, Abbott JE, Stout SA, Crecelius EA, Bingler LS (2002) Characterization and FATE of PAH-contaminated sediments at the Wyckoff/Eagle Harbor Superfund site. Environ Sci Technol 36: 2605–2613

    Article  CAS  Google Scholar 

  • Brezna B, Khan AA, Cerniglia CE (2003) Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol Lett 223: 177–183

    Article  CAS  Google Scholar 

  • Brodkorb TS, Legge RL (1992) Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl Environ Microbiol 58: 3117–3121

    CAS  Google Scholar 

  • Bucheli TD, Gustafsson 0 (2000) Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ Sci Technol 34: 5144–5151

    CAS  Google Scholar 

  • Burd G, Ward OP (1996) Involvement of a surface-active high molecular weight factor in degradation of polycyclic aromatic hydrocarbons by Pseudomonas marginalis. Can J Microbiol 42: 791–797

    Article  CAS  Google Scholar 

  • Caldini G, Cenci G, Manenti R, Morozzi G (1995) The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Appl Microbiol Biotechnol 44: 225–229

    Article  CAS  Google Scholar 

  • Canet R, Birnstingl JG, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons ( PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76: 113–117

    Google Scholar 

  • Carmichael LM, Pfaender FK (1997) Polynuclear aromatic hydrocarbon metabolism in soils: relationship to soil characteristics and preexposure. Environ Toxicol Chem 16: 666–675

    Article  CAS  Google Scholar 

  • Carmichael LM, Christman RF, Pfaender FK (1997) Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils. Environ Sci Technol 31: 126–132

    Article  CAS  Google Scholar 

  • Casellas M, Grifoll M, Sabaté J, Solanas AM (1998) Isolation and characterization of a 9-fluorenone-degrading bacterial strain and its role in synergistic degradation of fluorene by a consortium. Can J Microbiol 44: 734–742

    CAS  Google Scholar 

  • Chang BV, Shiung LC, Yuan SY (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48: 717–724

    Article  CAS  Google Scholar 

  • Chen S-H, Aitken MD (1999) Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33: 435–439

    Article  CAS  Google Scholar 

  • Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterization of a Mycobacterium species capable of degrading three-and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65: 549–552

    CAS  Google Scholar 

  • Coates JD, Anderson RT, Lovley DR (1996) Oxidation of polycyclic aromatic hydrocar- bons under sulfate-reducing conditions. Appl Environ Microbiol 62: 1099–1101

    CAS  Google Scholar 

  • Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63: 3589–3593

    CAS  Google Scholar 

  • Colbert SF, Hendson M, Ferri M, Schroth MN (1993a) Enhanced growth and activity of a biocontrol bacterium genetically engineered to utilize salicylate. Appl Environ Microbiol 59: 2071–2076

    CAS  Google Scholar 

  • Colbert SF, Schroth MN, Weinhold AR, Hendson M (1993b) Enhancement of population densities of Pseudomonas putida PpG7 in agricultural ecosystems by selective feeding with the carbon source salicylate. Appl Environ Microbiol 59: 2064–2070

    CAS  Google Scholar 

  • Colbert S, Isakeit T, Ferri M, Weinhold AR, Hendson M, Schroth M (1993c) Use of an exotic carbon source to selectively increase metabolic activity and growth of Pseudomonas putida in soil. Appl Environ Microbiol 59: 2056–2063

    CAS  Google Scholar 

  • Cornelissen G, Rigterink H, Ferdinandy MMA, Van Noort PCM (1998) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32: 966–970

    Article  CAS  Google Scholar 

  • Cuypers C, Grotenhuis T, Joziasse J, Rulkens W (2000) Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ Sci Technol 34: 2057–2063

    Article  CAS  Google Scholar 

  • Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-ß-cyclodextrin and Triton X-100 extraction techniques. Water Res 36: 1235–1245

    Google Scholar 

  • Daane LL, Harjono I, Zylstra GJ, Haggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67: 2683–2691

    Article  CAS  Google Scholar 

  • Dagher F, Déziel E, Lirette P, Paquette G, Bisaillon J-G, Villemur R (1997) Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can J Microbiol 43: 368–377

    Article  CAS  Google Scholar 

  • Davies JI, Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudo-monads. Biochem J 91: 251–261

    CAS  Google Scholar 

  • Davis MW, Glaser JA, Evans JW, Lamar RT (1993) Field evaluation of the lignin-degrading fungus Phanerochaete sordida to treat creosote-contaminated soil. Environ Sci Technol 27: 2572–2576

    Article  CAS  Google Scholar 

  • de Maagd PGJ, ten Hulscher ThEM, van den Heuvel H, Opperhuizen A, Sijm DTHM (1998) Physicochemical properties of polycyclic aromatic hydrocarbons: aqueous solubilities, n-octanol/water partition coefficients, and Henry’s law constants. Environ Toxicol Chem 17: 251–257

    Google Scholar 

  • Dean-Ross D, Cerniglia CE (1996) Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 46: 307–312

    Article  CAS  Google Scholar 

  • Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204: 205–211

    Article  CAS  Google Scholar 

  • Dean-Ross D, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41: 1–7

    Article  CAS  Google Scholar 

  • Denome SA, Stanley DC, Olson ES, Young KD (1993) Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 175: 6890–6901

    CAS  Google Scholar 

  • Deschênes L, Lafrance P, Villeneuve J-P, Samson R (1996) Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 46: 638–646

    Article  Google Scholar 

  • Di Gennaro P, Sello G, Bianchi D, D’Amico P (1997) Specificity of substrate recognition by Pseudomonas fluorescens N3 dioxygenase. J Biol Chem 272: 30254–30260

    Article  Google Scholar 

  • Eberhardt C, Grathwohl P (2002) Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs. J Contam Hydrol 59: 45–66

    Article  CAS  Google Scholar 

  • Ensley BD, Gibson DT, Laborde AL (1982) Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J Bacteriol 149: 948–954

    CAS  Google Scholar 

  • Erickson DC, Loehr RC, Neuhauser EF (1993) PAH loss during bioremediation of manufactured gas plant site soils. Water Res 27: 911–919

    Article  CAS  Google Scholar 

  • Eriksson M, Dalhammar G, Mohn WW (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40: 21–27

    Article  CAS  Google Scholar 

  • Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69: 275–284

    Article  CAS  Google Scholar 

  • Eschenbach A, Wienberg R, Mahro B (1998) Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions. Environ Sci Technol 32: 2585–2590

    Article  CAS  Google Scholar 

  • Evans WC, Fernley HN, Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. Biochem J 95: 819–831

    CAS  Google Scholar 

  • Fernandez P, Grifoll M, Solanas AM, Bayona JM, Albaigés J (1992) Bioassay-directed chemical analysis of genotoxic components in coastal sediments. Environ Sci Technol 26: 817–829

    Article  CAS  Google Scholar 

  • Ferrero M, Llobet-Brossa E, Lalucat J, Garcia-Valdes E, Rossello-Mora R, Bosch R (2002) Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl Environ Microbiol 68: 957–962

    Article  CAS  Google Scholar 

  • Foght JM, Westlake DWS (1988) Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can J Microbiol 34: 1135–1141

    Article  CAS  Google Scholar 

  • Foght JM, Westlake DWS (1991) Cross hybridization of plasmid and genomic DNA from aromatic and polycyclic aromatic hydrocarbon degrading bacteria. Can J Microbiol 37: 924–932

    Article  CAS  Google Scholar 

  • Foght JM, Westlake DWS (1996) Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens. Biodegradation 7: 353–366

    Article  CAS  Google Scholar 

  • Fritzsche C (1994) Degradation of pyrene at low defined oxygen concentrations by a Mycobacterium sp. Appl Environ Microbiol 60: 1687–1689

    CAS  Google Scholar 

  • Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT (1998) Isolation of marine polycyclic aromatic hydrocarbon ( PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl Environ Microbiol 64: 4703–4710

    Google Scholar 

  • Ghosh U, Gillette JS, Luthy RG, Zare RN (2000) Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles. Environ Sci Technol 34: 1729–1736

    Article  CAS  Google Scholar 

  • Ghosh U, Zimmerman JR, Luthy RG (2003) PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environ Sci Technol 37: 2209–2217

    Article  CAS  Google Scholar 

  • Ghoshal S, Luthy RG (1998) Biodegradation kinetics of naphthalene in nonaqueous phase liquid-water mixed batch systems: comparison of model predictions and experimental results. Biotechnol. Bioeng. 57: 356–366

    Google Scholar 

  • Gibson D, Mahadevan V, Jerina D, Yagi H, Yeh HJC (1975) Oxidation of the carcinogens benzo[a]pyrene and benzo[a]anthracene to dihydrodiols by a bacterium. Science 189: 295–297

    Article  CAS  Google Scholar 

  • Gieg LM, Suflita JM (2002) Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol 36: 3755–3762

    Article  CAS  Google Scholar 

  • Goldstein LS, Weyand EH, Safe S, Steinberg M, Culp SJ, Gaylor DW, Beland FA, Rodriguez LV (1998) Tumors and DNA adducts in mice exposed to benzo[a]pyrene and coal tars: implications for risk assessment. Environ Health Perspect 106 (Supplement 6): 1325–1330

    Article  CAS  Google Scholar 

  • Goyal AK, Zylstra GJ (1996) Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl Environ Microbiol 62: 230–236

    CAS  Google Scholar 

  • Grifoll M, Selifonov SA, Gatlin CV, Chapman PJ (1995) Actions of a versatile fluorenedegrading bacterial isolate on polycyclic aromatic compounds. Appl Environ Microbiol 61: 3711–3723

    CAS  Google Scholar 

  • Grimberg SJ, Stringfellow WT, Aitken MD (1996) Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl Environ Microbiol 62: 2387–2392

    CAS  Google Scholar 

  • Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57: 3462–3469

    CAS  Google Scholar 

  • Grosser RJ, Warshawsky D, Vestal JR (1995) Mineralization of polycyclic and N-heterocyclic aromatic compounds in hydrocarbon-contaminated soils. Environ Toxicol Chem 14: 375–382

    CAS  Google Scholar 

  • Guha S, Peters CA, Jaffé PR (1999) Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures. Biotechnol Bioeng 65: 491–499

    Article  CAS  Google Scholar 

  • Guthrie EA, Pfaender FK (1998) Reduced pyrene bioavailability in microbially active soils. Environ Sci Technol 32: 501–508

    Article  CAS  Google Scholar 

  • Guthrie EA, Bortiatynski JM, Van Heemst JDH, Richman JE, Hardy KS, Kovach EM, Hatcher PG (1999) Determination of [13C]pyrene sequestration in sediment microcosms using flash pyrolysis-GC-MS and 13C NMR. Environ Sci Technol 33: 119–125

    Article  CAS  Google Scholar 

  • Guthrie-Nichols E, Grasham A, Kazunga C, Sangaiah R, Gold A, Bortiatynski J, Salloum M, Hatcher P (2003) The effect of aging on pyrene transformation in sediments. Environ Toxicol Chem 22: 40–49

    Article  CAS  Google Scholar 

  • Haeseler F, Blanchet D, Druelle V, Werner P, Vandecasteele J-P (1999a) Analytical characterization of contaminated soils from former manufactured gas plants. Environ Sci Technol 33: 825–830

    Article  CAS  Google Scholar 

  • Haeseler F, Blanchet D, Druelle V, Werner P, Vandecasteele J-P (1999b) Ecotoxicological assessment of soils of former manufactured gas plant sites: bioremediation potential and pollutant mobility. Environ Sci Technol 33: 4379–4384

    Article  CAS  Google Scholar 

  • Harkins SM, Truesdale RS, Hill R, Hoffman P, Winters S (1988) U.S. Production of Manufactured Gases: Assessment of Past Disposal Practices, EPA/600/2–88/012. US Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29: 537–545

    Article  CAS  Google Scholar 

  • Haught RC, Neogy R, Vonderhaar SS, Krishnan ER, Safferman SI, Ryan J (1995) Land treatment alternatives for bioremediating wood preserving wastes. Hazard Waste Hazard Mater 12: 329–344

    Article  CAS  Google Scholar 

  • Hawthorne SB, Grabanski CB (2000) Correlating selective supercritical fluid extraction with bioremediation behavior of PAHs in a field treatment plot. Environ Sci Technol 34: 4103–4110

    Article  CAS  Google Scholar 

  • Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2001) PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation. Environ Sci Technol 35: 4577–4583

    Article  CAS  Google Scholar 

  • Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2002) Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction. Environ Sci Technol 36: 4795–4803

    Google Scholar 

  • Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55: 1968–1973

    CAS  Google Scholar 

  • Heitkamp MA, Franklin W, Cerniglia CE (1988) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol 54: 2549–2555

    CAS  Google Scholar 

  • Herbes SE, Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl Environ Microbiol 35: 306–316

    CAS  Google Scholar 

  • Holman H-YN, Nieman K, Sorensen DL, Miller CD, Martin MC, Borch T, McKinney WR, Sims RC (2002) Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environ Sci Technol 36: 1276–1280

    Article  CAS  Google Scholar 

  • Huang W, Weber Jr WJ (1998) A distributed reactivity model for sorption by soils and sediments. 11. Slow concentration-dependent sorption rates. Environ Sci Technol 32: 3549–3555

    Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ (2002) Microbial factors rather than bioavailability limit the rate and extent of PAH biodegradation in aged crude oil contaminated model soils. Bioremed J 6: 321–336

    Article  CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ (2003) Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environ Toxicol Chem 22: 2853–2860

    Article  CAS  Google Scholar 

  • Hughes TJ, Claxton LD, Brooks L, Warren S, Brenner R, Kremer F (1998) Genotoxicity of bioremediated soils from the Reilly Tar Site, St. Louis Park, Minnesota. Environ Health Perspect 106, (Supp6): 1427–1433

    Article  CAS  Google Scholar 

  • Hussain M, Rae J, Gilman A, Kauss P (1998) Lifetime health risk assessment from exposure of recreational users to polycyclic aromatic hydrocarbons. Arch Environ Contam Toxicol 35: 527–531

    Article  CAS  Google Scholar 

  • Jerina DM, van Bladeren PJ, Yagi H, Gibson DT, Mahadeven V, Neese AS, Koreeda M, Sharma ND, Boyd D (1984) Synthesis and absolute configuration of cis-1,2-, 8,9-and 10,11-dihydrodiol metabolites of benz[a]anthracene formed by a strain of Beijerinckia. J Org Chem 49: 1075–1082

    Article  Google Scholar 

  • Ji P, Wilson M (2003) Enhancement of population size of a biological control agent and efficacy in control of bacterial speck of tomato through salicylate and ammonium sulfate amendments. Appl Environ Microbiol 69: 1290–1294

    Article  CAS  Google Scholar 

  • Johnsen AR, Bendixen K, Karlson U (2002) Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68: 2683–2689

    Article  CAS  Google Scholar 

  • Johnson MD, Weber WJ Jr (2001) Rapid prediction of long-term rates of contaminant desorption from soils and sediments. Environ Sci Technol 35: 427–433

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2003) Rhizosphere gradients of polycyclic aromatic hydrocarbon ( PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environ Sci Technol 37: 2371–2375

    Google Scholar 

  • Joner EJ, Johansen A, Loibner AP, dela Cruz MA, Szolar OHJ, Portal J-M, Leyval C (2001) Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons ( PAHs) in spiked soil. Environ Sci Technol 35: 2773–2777

    Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodeg 45: 57–88

    Article  CAS  Google Scholar 

  • Juhasz AL, Britz ML, Stanley GA (1997) Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkholderia cepacia. J Appl Microbiol 83: 189–198

    Article  CAS  Google Scholar 

  • Juhasz AL, Stanley GA, Britz ML (2000) Degradation of high molecular weight PAHs in contaminated soil by a bacterial consortium: effects on Microtox and mutagenicity assays. Bioremed J 4: 271–283

    Article  CAS  Google Scholar 

  • Juhasz AL, Stanley GA, Britz ML (2002) Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a,h]anthracene by Stenotrophomonas maltophilia VUN 10,003. J Ind Microbiol Biotechnol 8: 88–96

    Google Scholar 

  • Kacker T, Haupt ETK, Garms C, Francke W, Steinhart H (2002) Structural characterisation of humic acid-bound PAH residues in soil by 13C-CPMAS-NMR-spectroscopy: evidence of covalent bonds. Chemosphere 48: 117–131

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182: 2059–2067

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S, Watanabe K (2002) Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl Environ Microbiol 68: 5826–5833

    Article  CAS  Google Scholar 

  • Karimi-Lotfabad S, Gray MR (2000) Characterization of contaminated soils using confocal laser scanning microscopy and cryogenic-scanning electron microscopy. Environ Sci Technol 34: 3408–3414

    Article  CAS  Google Scholar 

  • Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons ( PAH ). Appl Microbiol Biotechnol 41: 267–273

    Google Scholar 

  • Kästner M, Streibich S, Beyrer M, Richnow HH, Fritsche W (1999) Formation of bound residues during microbial degradation of [14C]anthracene in soil. Appl Environ Microbiol 65: 1834–1842

    Google Scholar 

  • Kazunga C, Aitken MD (2000) Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 66: 1917–1922

    Article  CAS  Google Scholar 

  • Kazunga C, Aitken MD, Gold A, Sangaiah R (2001) Fluoranthene-2,3- and -1,5-diones are novel products from the bacterial transformation of fluoranthene. Environ Sci Technol 35: 917–922

    Article  CAS  Google Scholar 

  • Keck J, Sims R, Coover M, Park K, Symons B (1989) Evidence for cooxidation of polynuclear aromatic hydrocarbons in soil. Water Res 23: 1467–1476

    Article  CAS  Google Scholar 

  • Kelley I, Cerniglia CE (1995) Degradation of a mixture of high-molecular-weight polycyclic aromatic hydrocarbons by a Mycobacterium strain PYR-1. J Soil Contam 4: 77–91

    Article  CAS  Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31: 214–217

    Article  CAS  Google Scholar 

  • Khan AA, Wang R-F, Cao W-W, Franklin W, Cerniglia CE (1996) Reclassification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Beijerinckia sp. Strain B1, as Sphingomonas yanoikuyae by fatty acid analysis, protein pattern analysis, DNA-DNA hybridization, and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46: 466–499

    Article  CAS  Google Scholar 

  • Khan AA, Wang R-F, Cao W-W, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67: 3577–3585

    Article  CAS  Google Scholar 

  • Khan AA, Kim S-J, Paine DD, Cerniglia CE (2002) Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp. strain PYR-1, as Mycobacterium vanbaalenii sp. nov. Int J Syst Evol Microbiol 52: 1997–2002

    Article  CAS  Google Scholar 

  • Kiyohara H, Nagao K (1978) The catabolism of phenanthrene and naphthalene by bacteria. J Gen Microbiol 105: 69–75

    Article  CAS  Google Scholar 

  • Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 176: 2439–2443

    CAS  Google Scholar 

  • Knightes CD, Peters CA (2003) Aqueous phase biodegradation kinetics of 10 PAH compounds. Environ Eng Sci 20: 207–218

    Article  CAS  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185: 3828–3841

    Article  CAS  Google Scholar 

  • Lane WF, Loehr RC (1992) Estimating the equilibrium aqueous concentrations of polynuclear aromatic hydrocarbons in complex mixtures. Environ Sci Technol 26: 983–990

    Article  CAS  Google Scholar 

  • Langbehn A, Steinhart H (1995) Biodegradation studies of hydrocarbons in soils by analyzing metabolites formed. Chemosphere 30: 855–868

    Article  CAS  Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181: 531–540

    CAS  Google Scholar 

  • Laurie AD, Lloyd-Jones G (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66: 1814–1817

    Article  CAS  Google Scholar 

  • Lee LS, Rao PSC, Okuda I (1992) Equilibrium partitioning of polycyclic aromatic hydrocarbons from coal tar into water. Environ Sci Technol 26: 2110–2115

    Article  CAS  Google Scholar 

  • Li X-F, Cullen WR, Reimer KJ, Le X-C (1996a) Microbial degradation of pyrene and characterization of a metabolite. Sci Total Environ 177: 17–29

    Article  CAS  Google Scholar 

  • Li X-F, Le X-C, Simpson CD, Cullen WR, Reimer KJ (1996b) Bacterial transformation of pyrene in a marine environment. Environ Sci Technol 30: 1115–1119

    Article  CAS  Google Scholar 

  • Lotfabad SK, Gray MR (2002) Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 60: 361–366

    Article  CAS  Google Scholar 

  • Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer K-H, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68: 5064–5081

    Article  CAS  Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber Jr WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31: 3341–3347

    Article  CAS  Google Scholar 

  • MacGillivray AR, Shiaris MP (1994) Relative role of eukaryotic and prokaryotic microorganisms in phenanthrene transformation in coastal sediments. Appl Environ Microbiol 60: 1154–1159

    CAS  Google Scholar 

  • Mackay AA, Gschwend PM (2001) Enhanced concentrations of PAHs in groundwater at a coal tar site. Environ Sci Technol 35: 1320–1328

    Article  CAS  Google Scholar 

  • Mackay D, Shia YW, Ma KC (1992) Illustrated Handbook of Physical and Environmental Fate for Organic Chemicals, Vol. 2: Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans. Lewis, Chelsea, MI

    Google Scholar 

  • Madsen EL, Mann CL, Bilotta S (1996) Oxygen limitations and aging as explanation for the persistence of naphthalene in coal-tar contaminated surface sediments. Environ Toxicol Chem 15: 1876–1882

    Article  CAS  Google Scholar 

  • Mahaffey WR, Gibson DT, Cerniglia CE (1988) Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl Environ Microbiol 54: 2415–2423

    CAS  Google Scholar 

  • Mahro B, Rode K, Kasche V (1995) Non-selective precultivation of bacteria able to degrade different polycyclic aromatic hydrocarbons ( PAH ). Acta Biotechnologia 15: 337–345

    Google Scholar 

  • May R, Schröder P, Sandermann Jr H (1997) Ex-situ process for treating PAH-contam- inated soil with Phanerochaete chrysosporium. Environ Sci Technol 31: 2626–2633

    Article  CAS  Google Scholar 

  • Mayer LM, Chen Z, Findlay RH, Fang J, Sampson S, Self RFL, Jumars PA, Quetel C, Donard OFX (1996) Bioavailability of sedimentary contaminants subject to deposit-feeder digestion. Environ Sci Technol 30: 2641–2645

    Article  CAS  Google Scholar 

  • McNally DL, Mihelcic JR, Lueking DR (1998) Biodegradation of three-and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ Sci Technol 32: 2633–2639

    Article  CAS  Google Scholar 

  • Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66: 2743–2747

    Article  CAS  Google Scholar 

  • Melcher RJ, Apitz SE, Hemmingsen BB (2002) Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Appl Environ Microbiol 68: 2858–2868

    Article  CAS  Google Scholar 

  • Menn F-M, Applegate BM, Sayler GS (1993) NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl Environ Microbiol 59: 1938–1942

    CAS  Google Scholar 

  • Meyer S, Cartellieri S, Steinhart H (1999a) Simultaneous determination of PAHs, hetero-PAHs (N, S, 0), and their degradation products in creosote-contaminated soils. Method development, validation, and application to hazardous waste sites. Analyt Chem 71: 4023–4029

    Google Scholar 

  • Meyer S, Steinhart H (2001) Fate of PAHs and hetero-PAHs during biodegradation in a model soil/compost-system: formation of extractable metabolites. Water Air Soil Pollut 132: 215–231

    Article  CAS  Google Scholar 

  • Meyer S, Moser R, Neef A, Stahl U, Kampfer P (1999b) Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology 145: 1731–1741

    Article  CAS  Google Scholar 

  • Millette D, Barker JF, Comeau Y, Butler BJ, Frind EO, Clement B, Samson R (1995) Substrate interaction during aerobic biodegradation of creosote-related compounds: a factorial batch experiment. Environ Sci Technol 29: 1944–1952

    Article  CAS  Google Scholar 

  • Millette D, Butler BJ, Frind EO, Comeau Y, Samon R (1998) Substrate interaction during aerobic biodegradation of creosote-related compounds in columns of sandy aquifer material. J Contam Hydrol 29: 165–183

    Article  CAS  Google Scholar 

  • Molina M, Araujo R, Hodson RE (1999) Cross-induction of pyrene and phenanthrene in a Mycobacterium sp isolated from polycyclic aromatic hydrocarbon contaminated river sediments. Can J Microbiol 45: 520–529

    CAS  Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67: 1476–1483

    Article  CAS  Google Scholar 

  • Moser R, Stahl U (2001) Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl Microbiol Biotechnol 55: 609–618

    Article  CAS  Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56: 1079–1086

    CAS  Google Scholar 

  • Mueller JG, Devereux R, Santavy DL et al. (1997) Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 71: 329–343

    Article  CAS  Google Scholar 

  • National Toxicology Program (2001) Ninth Report on Carcinogens. US Department of Health and Human Services, Washington, DC

    Google Scholar 

  • Nieman JKC, Sims RC, Sims JL, Sorensen DL, McLean JE, Rice JA (1999) [14C]Pyrene bound residue evaluation using MIBK fractionation method for creosote-contaminated soil. Environ Sci Technol 33: 776–781

    Google Scholar 

  • Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons ( PAHs ). Regulatory Toxicol Pharmacol 16: 290–300

    Google Scholar 

  • Northcott GL, Jones KC (2001) Partitioning, extractability, and formation of nonextractable PAH residues in soil 1. Compound differences in aging and sequestration. Environ Sci Technol 35: 1103–1110

    Google Scholar 

  • Ogunseitan A, Delgado I, Tsai Y-L, Olson B (1991) Effect of 2-hydroxybenzoate on the maintenance of naphthalene-degrading pseudomonads in seeded and unseeded soil. Appl Environ Microbiol 57: 2873–2879

    CAS  Google Scholar 

  • Ogunseitan O, Olson B (1993) Effect of 2-hydroxybenzoate on the rate of naphthalene mineralization in soil. Appl Microbiol Biotechnol 38: 799–807

    Article  CAS  Google Scholar 

  • Padma TV, Hale RC, Roberts Jr MH (1998) Toxicity of water-soluble fractions derived from whole creosote and creosote-contaminated sediments. Environ Toxicol Chem 17: 1606–1610

    Article  CAS  Google Scholar 

  • Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, Snape JR, Tsai CS, Park W, Jeon C, Madsen EL (2003) Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69: 1614–1622

    Article  CAS  Google Scholar 

  • Park KS, Sims RC, Doucette WJ, Matthews JE (1988) Biological transformation and detoxification of 7,12-dimethylbenz(a)anthracene in soil systems. J Water Pollut Control Fed 60: 1822–1825

    CAS  Google Scholar 

  • Pecher K, Haderlein SB, Schwarzenbach RP (2002) Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environ Sci Technol 36: 1734–1741

    Article  CAS  Google Scholar 

  • Penning TM, Burczynski ME, Hung C-F, McCoull KD, Palackal NT, Tsuruda LS (1999) Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 12: 1–18

    Article  CAS  Google Scholar 

  • Peters CA, Brown DG, Knightes CD (1999) Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33: 4499–4507

    Article  CAS  Google Scholar 

  • Poeton TS, Stensel HD, Strand SE (1999) Biodegradation of polyaromatic hydrocarbons by marine bacteria: effect of solid phase on degradation kinetics. Water Res 33: 868–880

    Article  CAS  Google Scholar 

  • Prabhu Y, Phale PS (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61: 342–351

    CAS  Google Scholar 

  • Preuß S, Wittneben D, Lorber KE (1997) Microbiological degradation of polycyclic aromatic hydrocarbons: anthracene, benzo(k)fluoranthene, dibenzothiophene, benzo(h)quinoline and 2-nitronaphthalene. Toxicol Environ Chem 58: 179–195

    Article  Google Scholar 

  • Ravelet C, Krivobok S, Sage L, Steiman R (1999) Biodegradation of pyrene by sediment fungi. Chemosphere 40: 557–563

    Article  Google Scholar 

  • Ravelet C, Grosset C, Krivobok S, Montuelle B, Alary J (2001) Pyrene degradation by two fungi in a freshwater sediment and evaluation of fungal biomass by ergosterol content. Appl Microbiol Biotechnol 56: 803–808

    Article  CAS  Google Scholar 

  • Reeves WR, Barhoumi R, Burghardt RC, Lemke SL, Mayura K, Mcdonald TJ, Phillips TD, Donnelly KC (2001) Evaluation of methods for predicting the toxicity of polycyclic aromatic hydrocarbon mixtures. Environ Sci Technol 35: 1630–1636

    Article  CAS  Google Scholar 

  • Rehmann K, Noll HP, Steinberg CEW, Kettrup AA (1998) Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36: 2977–2992

    Article  CAS  Google Scholar 

  • Reid BJ, Stokes JD, Jones KC, Semple KT (2000) Nonexhaustive cyclodextrin-based technique for the evaluation of PAH bioavailability. Environ Sci Technol 34: 3174–3179

    Article  CAS  Google Scholar 

  • Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp strain NCIB 9816. J Ind Microbiol 17: 438–457

    Article  CAS  Google Scholar 

  • Reza J, Trejo A, Vera-Avila LE (2002) Determination of the temperature dependence of water solubilities of polycyclic aromatic hydrocarbons by a generator column-on-line solid-phase extraction-liquid chromatographic method. Chemosphere 47: 933–945

    Article  CAS  Google Scholar 

  • Richnow HH, Seifert R, Kästner M, Mahro B, Horsfield B, Tiedgen U, Bohm S, Michaelis W (1996) Rapid screening of PAH-residues in bioremediated soils. Chemosphere 31: 3991–3999

    Article  Google Scholar 

  • Ringelberg DB, Talley JW, Perkins EJ, Tucker SG, Luthy RG, Bouwer EJ, Fredrickson HL (2001) Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl Environ Microbiol 67: 1542–1550

    Article  CAS  Google Scholar 

  • Rockne KJ, Strand SE (1998) Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. Environ Sci Technol 32: 3962–3967

    Article  CAS  Google Scholar 

  • Rockne KJ, Chee-Sanford JC, Sanford RA, Hedlund BP, Staley JT, Strand SE (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 66: 1595–1601

    Article  CAS  Google Scholar 

  • Rockne KJ, Strand SE (2001) Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Res 35: 291–299

    Article  CAS  Google Scholar 

  • Rockne KJ, Shor LM, Young LY, Taghon GL, Kosson DS (2002) Distributed sequestration and release of PAHs in weathered sediment: the role of sediment structure and organic carbon properties. Environ Sci Technol 36: 2636–2644

    Article  CAS  Google Scholar 

  • Rosselló-Mora RA, Lalucat J, Garcia-Valdés E (1994) Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains. Appl Environ Microbiol 60: 966–972

    Google Scholar 

  • Rothermich MM, Hayes LA, Lovley DR (2002) Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ Sci Technol 36: 4811–4817

    Article  CAS  Google Scholar 

  • Rouse JD, Sabatini DA, Suflita JM, Harwell JH (1994) Influence of surfactants on microbial degradation of organic compounds. Crit Rev Environ Sci Technol 24: 325–370

    Article  CAS  Google Scholar 

  • Roy TA, Krueger AJ, Taylor BB, Mauro DM, Goldstein LS (1998) Studies estimating the dermal bioavailability of polynuclear aromatic hydrocarbons from manufactured gas plant tar-contaminated soils. Environ Sci Technol 32: 3113–3117

    Article  CAS  Google Scholar 

  • Rutherford PM, Gray MR, Dudas MJ (1997) Desorption of [14Clnaphthalene from bioremediated and nonbioremediated soils contaminated with creosote compounds. Environ Sci Technol 31: 2515–2519

    Article  CAS  Google Scholar 

  • Rutherford PM, Banerjee DK, Luther SM, Gray MR, Dudas MJ, McGill WB, Pickard MA, Salloum MJ (1998) Slurry-phase bioremediation of creosote and petroleum-contaminated soils. Environ Technol 19: 683–696

    Article  CAS  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere 38: 1331–1337

    Article  CAS  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (2000) A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli. J Bacteriol 182: 2134–2141

    Article  CAS  Google Scholar 

  • Salicis F, Krivobok S, Jack M, Benoit-Guyod JL (1999) Biodegradation of fluoranthene by soil fungi. Chemosphere 38: 3031–3039

    Article  CAS  Google Scholar 

  • Samanta SK, Chakraborti AK, Jain RK (1999) Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53: 98–107

    Article  CAS  Google Scholar 

  • Samsoe-Petersen L, Larsen EH, Larsen PB, Bruun P (2002) Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ Sci Technol 36: 3057–3063

    Article  CAS  Google Scholar 

  • Sandoli RL, Ghiorse WC, Madsen EL (1996) Regulation of microbial phenanthrene mineralization in sediment samples by sorbent-sorbate contact time, inocula and gamma irradiation-induced sterilization artifacts. Environ Toxicol Chem 15: 1901–1907

    CAS  Google Scholar 

  • Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210: 227–232

    Article  CAS  Google Scholar 

  • Sayles GD, Acheson CM, Kupferle MJ, Shan Y, Zhou Q, Meier JR, Chang L, Brenner RC (1999) Land treatment of PAH-contaminated soil: performance measured by chemical and toxicity assays. Environ Sci Technol 33: 4310–4317

    Article  CAS  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz [a] anthracene, and benzo[a]pyrene by Mycobacterium sp strain RJGII135, isolated from a former coal gasification site. Appl Environ Microbiol 62: 13–19

    CAS  Google Scholar 

  • Selifonov SA, Grifoll M, Eaton RW, Chapman PJ (1996) Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2dioxygenase. Appl Environ Microbiol 62: 507–514

    CAS  Google Scholar 

  • Sepiè E, Bricelj M, Leskovsek H (1998) Degradation of fluroanthene by Pasteurella sp. IFA and Mycobacterium sp. PYR-1: isolation and identification of metabolites. J Appl Microbiol 85: 746–754

    Article  Google Scholar 

  • Shi T, Fredrickson JK, Balkwill DL (2001) Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. J Ind Microbiol Biotechnol 26: 283–289

    Article  CAS  Google Scholar 

  • Shiaris MP (1989) Seasonal biotransformation of naphthalene, phenanthrene, and benzo[a]pyrene in surficial estuarine sediments. Appl Environ Microbiol 55: 1391–1399

    CAS  Google Scholar 

  • Shor LM, Rockne KJ, Kosson DS (2003a) Intra-aggregate mass transport-limited bioavailability of polycyclic aromatic hydrocarbons to Mycobacterium strain PCO1. Environ Sci Technol 37: 1545–1552

    Article  CAS  Google Scholar 

  • Shor LM, Taghon GL, Kosson DS (2003b) Desorption kinetics for field-aged polycyclic aromatic hydrocarbons from sediments. Environ Sci Technol 37: 1535–1544

    Article  CAS  Google Scholar 

  • Shuttleworth KL, Cerniglia CE (1996) Bacterial degradation of low concentrations of phenanthrene and inhibition by naphthalene. Microb Ecol 31: 305–317

    Article  CAS  Google Scholar 

  • Smith JD, Bagg J, Wrigley I (1991) Extractable polycyclic hydrocarbons in waters from rivers in south-eastern Australia. Water Res 25: 1145–1150

    Article  CAS  Google Scholar 

  • Stapleton RD, Savage DC, Sayler GS, Stacey G (1998) Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl Environ Microbiol 64: 4180–4184

    CAS  Google Scholar 

  • Stout S, Magar V, Uhler A, Ickes J, Abbott J, Brenner R (2001) Characteristics of naturally occurring and anthropogenic PAHs in urban sediments–Wycoff/Eagle Harbor Superfund site. Environ Forensics 2: 287–300

    CAS  Google Scholar 

  • Stringfellow WT, Aitken MD (1995) Competitive metabolism of naphthalene, methyl-naphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl Environ Microbiol 61: 357–362

    CAS  Google Scholar 

  • Stroo HF, Jensen R, Loehr RC, Nakles DV, Fairbrother A, Liban CB (2000) Environmentally acceptable endpoints for PAHs at a manufactured gas plant site. Environ Sci Technol 34: 3831–3836

    Article  CAS  Google Scholar 

  • Sullivan ER, Zhang X, Phelps C, Young LY (2001) Anaerobic mineralization of stable-isotope-labeled 2-methylnaphthalene. Appl Environ Microbiol 67: 4353–4357

    Article  CAS  Google Scholar 

  • Surovtseva EG, Ivoilov VS, Belyaev SS (1999) Physiological and biochemical properties of Beijerinckia mobilis 1F Phn(+) capable of degrading polycyclic aromatic hydrocarbons. Microbiology 68: 746–750

    CAS  Google Scholar 

  • Sutherland JB, Rafii F, Khan AA, Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Young LY, Cerniglia CE (eds) Microbial Transformation and Degradation of Toxic Organic Chemicals. Wiley-Liss, New York, pp 269–306

    Google Scholar 

  • Sverdrup LE, Nielsen T, Krogh PH (2002) Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ Sci Technol 36: 2429–2435

    Article  CAS  Google Scholar 

  • Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 176: 2444–2449

    CAS  Google Scholar 

  • Talley JW, Ghosh U, Tucker SG, Furey JS, Luthy RG (2002) Particle-scale understanding of the bioavailability of PAHs in sediment. Environ Sci Technol 36: 477–483

    Article  CAS  Google Scholar 

  • Tang J, Carroquino MJ, Robertson BK, Alexander M (1998) Combined effect of sequestration and bioremediation in reducing the bioavailability of polycyclic aromatic hydrocarbons in soil. Environ Sci Technol 32: 3586–3590

    Article  CAS  Google Scholar 

  • Taroncher-Oldenburg G, Griner EM, Francis CA, Ward BB (2003) Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl Environ Microbiol 69: 1159–1171

    Article  CAS  Google Scholar 

  • Taylor LT, Jones DM (2001) Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere 44: 1131–1136

    Article  CAS  Google Scholar 

  • Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31: 2570–2576

    Article  CAS  Google Scholar 

  • Tittle PC, Liu Y-T, Strand SE, Stensel HD (1995) Use of alternative growth substrates to enhance PAH degradation. In: Hinchee RE, Anderson DB, Hoeppel RE (eds) Biore-mediation of Recalcitrant Organics. Battelle Press, Columbus,OH, pp 1–7

    Google Scholar 

  • Trzesicka-Mlynarz D, Ward OP (1995) Degradation of polycyclic aromatic hydrocarbons ( PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil. Can J Microbiol 41: 470–476

    Google Scholar 

  • US Environmental Protection Agency (1993) Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons, EPA/600/R-93/089. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (2000) A Resource for MGP Site Characterization and Remediation. Expedited Site Characterization and Source Remediation at Former Manufactured Gas Plant Sites, EPA-542-R-00–005. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • van Herwijnen R, Springael D, Slot P, Govers HAJ, Parsons JR (2003) Degradation of anthracene by Mycobacterium sp. strain LB501T proceeds via a novel pathway, through o-phthalic acid. Appl Environ Microbiol 69: 186–190

    Article  CAS  Google Scholar 

  • Vila J, Lopez Z, Sabate J, Minguillon C, Solanas AM, Grifoll M (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two-and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67: 5497–5505

    Article  CAS  Google Scholar 

  • Villholth KG (1999) Colloid characterization and colloidal phase partitioning of poly-cyclic aromatic hydrocarbons in two creosote-contaminated aquifers in Denmark. Environ Sci Technol 33: 691–699

    Article  CAS  Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm H-J (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34: 671–676

    Article  CAS  Google Scholar 

  • Weissenfels WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32: 479–484

    Article  CAS  Google Scholar 

  • Weissenfels WD, Klewer H-J, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: Influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36: 689–696

    Google Scholar 

  • White JC, Pignatello JJ (1999) Influence of bisolute competition on the desorption kinetics of polycyclic aromatic hydrocarbons in soil. Environ Sci Technol 33: 4292–4298

    Article  CAS  Google Scholar 

  • Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ Sci Technol 35: 354–361

    Article  CAS  Google Scholar 

  • Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T (2002) Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol 58: 202–209

    Article  CAS  Google Scholar 

  • Wild SR, Jones KC (1993) Biological and abiotic losses of polynuclear aromatic hydrocarbons ( PAHs) from soils freshly amended with sewage sludge. Environ Toxicol Chem 12: 5–12

    Google Scholar 

  • Williamson DG, Loehr RC, Kimura Y (1997) Measuring release and biodegradation kinetics of aged hydrocarbons from soils. In: Alleman BC, Leeson A (eds) In Situ and On-site Bioremediation. Battelle Press, Columbus, pp 605–610

    Google Scholar 

  • Willumsen PA, Arvin E (1999) Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis. Environ Sci Technol 33: 2571–2578

    Article  CAS  Google Scholar 

  • Wilson MS, Herrick JB, Jeon CO, Hinman DE, Madsen EL (2003) Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol 69: 2172–2181

    Article  CAS  Google Scholar 

  • Xia GS, Pignatello JJ (2001) Detailed sorption isotherms of polar and apolar compounds in a high-organic soil. Environ Sci Technol 35: 84–94

    Article  CAS  Google Scholar 

  • Yang Y, Chen RF, Shiaris MP (1994) Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816. J Bacteriol 176: 2158–2164

    CAS  Google Scholar 

  • Ye D, Siddiqi MA, Maccubbin AE, Kumar S, Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30: 136–142

    Article  CAS  Google Scholar 

  • Yen KM, Gunsalus IC (1982) Plasmid gene organization: Naphthalene/salicylate oxidation. Proc Nat Acad Sci USA 79: 874–878

    Google Scholar 

  • Yen K-M, Serdar CM (1988) Genetics of naphthalene catabolism in pseudomonads. CRC Crit Rev Microbiol 15: 247–268

    Article  CAS  Google Scholar 

  • Yuan SY, Wei SH, Chang BV (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41: 1463–1468

    Article  CAS  Google Scholar 

  • Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63: 4759–4764

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aitken, M.D., Long, T.C. (2004). Biotransformation, Biodegradation, and Bioremediation of Polycyclic Aromatic Hydrocarbons. In: Singh, A., Ward, O.P. (eds) Biodegradation and Bioremediation. Soil Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06066-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06066-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05929-2

  • Online ISBN: 978-3-662-06066-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics